
XML VIEWS, PART III
An UML Based Design Methodology for XML Views

Rajugan R., Tharam S. Dillon
Faculty of Information Technology, University of Technology, Sydney, Australia

Elizabeth Chang
School of Information Systems, Curtin University of Technology, Australia

Ling Feng
Faculty of Computer Science, University of Twente, The Netherlands

Keywords: OO conceptual models, XML views, Conceptual views, XML, UML, XML Schema

Abstract: Object-Oriented (OO) conceptual models have the power in describing and modelling real-world data
semantics and their inter-relationships in a form that is precise and comprehensible to users. Today UML
has established itself as the language of choice for modelling complex enterprises information systems (EIS)
using OO techniques. Conversely, the eXtensible Markup Language (XML) is fast emerging as the
dominant standard for storing, describing and interchanging data among various enterprises systems and
databases. With the introduction of XML Schema, which provides rich facilities for constraining and
defining XML content, XML provides the ideal platform and the flexibility for capturing and representing
complex enterprise data formats. Yet, UML provides insufficient modelling constructs for utilising XML
schema based data description and constraints, while XML Schema lacks the ability to provide higher levels
of abstraction (such as conceptual models) that are easily understood by humans. Therefore to enable
efficient business application development of large-scale enterprise systems, we need UML like models
with rich XML schema like semantics. To address such issue, in this paper, we proposed a generic,
semantically rich view mechanism to conceptually model and design (using UML) XML domains to
support data modelling of complex domains such as data warehousing and e-commerce systems. Our
approach is based on UML and UML stereotypes to design and transform XML views.

1 INTRODUCTION

In software engineering, many methodologies have
been proposed to capture real-world problems into
manageable segments, which can be communicated,
modelled and developed into error-free maintainable
software modules/systems. Similarly, in the case of
data models, the main objective of conceptual data
models is to define real-world objects and their
relationships in such a way that they represent
meaningful units of information with respect to the
semantics of the domain in question (Jorge H.
Doorn, C. Rivero, & (eds), 2002). These models
span from early data centred models (e.g. ER/DFD)
to the modern Object-Oriented (OO) models, where

a software system is modelled at varying levels of
abstractions, namely conceptual, logical and
physical levels. Here the conceptual level being the
highest level of abstraction (being close to the real-
world), while the physical level being the
data/programming modules (being close to the
actual system and implementation specific).

Therefore, in building a well defined blue-print
of a software system, it is essential that, for a given
set of data objects, we capture all feasible contexts
for the data as possible. This is because all software
systems, during their lifetime provides not just one,
but many perspectives of the data that they transact
or store. Thus it is imperative that we cater for such
demand in early stages of the system development,
such as the conceptual model. In all conceptual

19
R. R., S. Dillon T., Chang E. and Feng L. (2005).
XML VIEWS, PART III - An UML Based Design Methodology for XML Views.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 19-28
DOI: 10.5220/0002534400190028
Copyright c© SciTePress

models, there exist one or more constructs to capture
data objects and their inter-relationships such as; (1)
in ER, entities and relationships, (2) EER entities
and enhanced relationship and (3) in OO classes,
structural and role relationships (UML), but no
mechanisms to capture transitive and/or dynamic
data perspectives (views).

In database systems, views are persistent (Jacek
Blazewicz, Wieslaw Kubiak, Tadeusz Morzy,
Rusinkiewicz, & (eds), 2003); that is to say, view
definitions are stored unless they are changed or
deleted. In classical data oriented systems, views are
initially used to provide access control to the
underlying stored data. Later views, in addition to
user-access control, are used as a short-hard for
complex queries or frequently used user queries and
to complement various Application Programming
Interfaces (APIs) in the relational model. Thus they
form the external schema of the three-schema
architecture (or ANSI/SPARC architecture
[Tsichritzis & Klug 1978]); (1) the conceptual
schema, (2) the storage/internal schema, and (3) the
external schema of the relational models (Kim &
Kelly, 1995). Due to these implications, relational
view definitions are visible only at the lower levels
of the system development lifecycle and/or at the
operational phase of the systems. Thus, design of
views are normally left to database programmers and
done without consideration for other system aspects
such as flexibility, change and/or re-use. But with
new realizations for views in complex domains
(such as web, data warehousing/OLAP, ERP and e-
Commerce), coupled with new data
models/standards available (such as OO-DBMS
(Abiteboul & Bonner, 1991; Dillon & Tan, 1993;
Kim & Kelly, 1995)), the demand for a well defined
and maintained view mechanism has increased.
Also, with the introduction of XML (W3C-XML,
2004) (semi-structured data), the requirement for a
view mechanism has changed, as an XML view
mechanism has to deal with both its structure and
data (unlike in structured data, where data is
independent of its structure and depended on its data
model) (Abiteboul, 1999; Rajugan R., Chang,
Dillon, & Ling, 2003).

Since its introduction in 1996, XML has become
an increasingly important data format for both data-
centric and document-centric applications. This
includes semi-structured data (web applications) and
traditional structured data (legacy, database
applications) intended for dissemination,
manipulation and publication among both
homogenous and heterogeneous systems. An XML
document contains a non-scalar, set-based
hierarchical document tree with interconnected
nodes (branches) hosting special instructions (such
as entities, relationship, constraints etc) called tags

(defined by users), which enclose identifiable parts
of the document (Renguo Xiaou, Tharam S. Dillon,
Elizabeth Chang, & Ling Feng, 2001a). Thus XML
is said to be self-describing and since it separates
data from presentation (unlike HTML) it is reusable.
With the Introduction of DTD and later its
replacement XML Schema (W3C-XSD, 2004),
XML provides a flexible yet powerful data model.

The rest of this paper is organized as follows.
Section 1.1 briefly looks at some early view models,
definitions, conceptual data models and XML while,
section 1.2 outlines our own work done in this areas
followed by a motivating case study description
(Section 1.3). Section 2 and 3 provide a detailed
discussion on our XML view concepts, definitions
and modeling issues, while Section 4 provides a
discussion on XML view hierarchy. In section 5, we
highlight some real-world application scenarios that
use the XML view methodology. This is followed by
section 6 which concludes this paper with some
discussion on future research directions.

1.1 Related Work

Today motivation for views include; (1) user access
(Elmasri & Navathe, 2000), (2) user
perspectives/profiles (E. Chang & Dillon, 1994; E. J.
Chang, 1996; Rajugan R. et al., 2003), (3) data
perspectives (Abiteboul, Goldman, McHugh,
Vassalos, & Zhuge, 1997; Elmasri & Navathe,
2000), (4) performance (materialised views in Data
Warehouse/OLAP, web-data cache), (5) web portals
& profiles, (6) dimensional data modelling (Lucie-
Xyleme, 2001; Vicky Nassis, Rajugan, Dillon, &
Rahayu, 2004; Vicky Nassis, Rajugan R., Dillon, &
Rahayu, 2005) and (7) sub-ontology or ontology
views (Volz, Oberle, & Studer, 2003a, 2003b).
Though the usefulness of views are realized more
than their originally intended use (user access
control), and extensive research have been carried
out by both researchers and industry to improve their
design, construction and performance, the view
concept is still a data language and model
dependent, lower level construct (implementation).
Here we first briefly look at history of the view
mechanisms available today and some of the
proposals for an XML view mechanism.

The relational (classical) definition of a view is
based on ANSI/SPAC three-schema architecture,
where a view is treated as a virtual relation,
constructed by a query which is executed on one or
more stored relations (Elmasri & Navathe, 2000).
Later the concept of view was extended to support
complex queries and/or aggregate/summary queries.
During the OO revolution, the relational view
definitions were extended to OO data models by

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

20

Won Kim et al. (Kim, 1990; Kim & Kelly, 1995),
Abiteboul et al. (Abiteboul & Bonner, 1991), and
Chang (E. J. Chang, 1996). Here the views were
defined in a synonymous manner to the relational
model and/or extending the relational definition
(Kim, 1990), when a needed. They included the idea
of the virtual class. Both relational and OO view
concepts make two implicit assumptions; that the
underlying data is structured and there exists a fixed
data model and a data access/query language. But
only Chang et al. allows some form of abstraction at
a higher level, a view definition in the form of
Abstract views (E. J. Chang, 1996). All other view
definitions are defined at the data manipulation
language level. This we argue is not enough to
provide a real-world scenario and/or abstraction to
complex domain. We argue that, providing view
formalism at the conceptual level will improve the
resulting view implementation, similar to a
conceptual model of a software system.

Since the emergence of the Internet and XML,
the need for semi-structured data models, which
have to be independent of fixed data models and
data access, violates fundamental properties of
persistent data models. Many researchers attempted
to solve these issues by using graph based (Zhuge &
Garcia-Molina, 1998) and/or semi-structured data
models (Abiteboul et al., 1997; Liefke & Davidson,
2000). Again, the actual view definitions are only
available at the lower level of the implementation
and not at the conceptual level. One of the early
discussions on XML view was by Serge Abiteboul
(Abiteboul, 1999) and later more formally by Sophie
Cluet et al. (Cluet, Veltri, & Vodislav, 2001). They
proposed a declarative notion of XML views.

Abiteboul et al. pointed out that, a view for
XML, unlike classical views, should do more than
just providing different presentation of underlying
data (Abiteboul, 1999). This, he argues, arises
mainly due to the nature (semi-structured) and the
usage (primarily as common data model for
heterogeneous data on the web) of XML. Also he
argues that, an XML view specification should rely
on a data model (like ODMG model) and a query
language. In the paper (Cluet et al., 2001), they
discuss in detail on how abstract paths/DTDs are
mapped to concrete paths/DTDs. These concepts,
which are implemented in the Xyleme project
(Lucie-Xyleme, 2001; Xyleme, 2001), provide one
of the most comprehensive mechanisms to construct
an XML view to-date. The Xyleme project uses an
extension of ODMG Object Query Language (OQL)
to implement such an XML view. But, in relation to
conceptual modeling, these view concepts provide
no support. The view formalism is derived from the
instantiated XML documents (instant level) and is
associated with DTD in comparison to flexible XML

Schema. Also, the Xyleme view concept is mainly
focused on web based XML data.

To our knowledge, other than our work, there
exists no research direction that explores the
possibility of utilizing the view concept for
conceptual modeling. Though we mainly focus on
native XML data/document, our notation of
conceptual views and XML views (Rajugan R. et al.,
2003; Rajugan R., Chang, Feng, & Dillon, 2004) can
be mapped to any existing data models that provide
XML support, since it is defined at the higher level
of abstraction, the conceptual level. Since the view
definitions are not available at a higher level, it is a
time consuming effort to reflect an errors and/or
changes at the schema level of the domain to the
resulting view definitions as all resulting view
definitions have to re-written.

1.2 Our Work

Our work described in this paper includes; (1)
enable modeling conceptual views using UML (at
the conceptual level) and (2) map conceptual views
to XML view schemas (at the logical level). First we
propose an abstract notion of conceptual views
based on UML. Secondly we map these conceptual
views (in UML) to XML Views (XML Schema, at
the logical model/schema level). Due to its abstract
nature, XML conceptual views can be captured
using any high level modeling languages such as
Dillon & Tan notation (Dillon & Tan, 1993), UML
(OMG-UML™, 2003), XMSemantic Nets (Rajugan
R. et al., 2004) or Enhanced-ER (Enhanced or
Extended Entity-Relationship Model (EER))
(Elmasri & Navathe, 2000) models.

In the paper (Feng, Chang, & Dillon, 2002),
authors demonstrate how OO concepts can be
captured in semantic network based modeling
language in regards to XML domains and we have
extended that work in (Rajugan R. et al., 2004) to
model XML conceptual views. In this paper, we
adopt OMG’s UML as UML has established itself as
the de-facto modelling langue of choice. UML
provides a well defined rich collection of tools to
model a given domain into needed level of
abstraction. It can be said that, UML helps to
provide a well-defined blue print for a software
system that is easily understood both by users and
developers alike. UML also provides extensibility to
the modelling language in the form of stereotypes
which we utilise in defining our conceptual views
(discussed in Section 2). Another reason we adopt
UML is that, many authors (Conrad et al.) including
authors of the papers (Feng, Chang, & Dillon, 2003;
Xiaou et al., 2001a; Renguo Xiaou, Tharam S
Dillon, Elizabeth Chang, & Ling Feng, 2001b) have

XML VIEWS, PART III: An UML Based Design Methodology for XML Views

21

intuitively shown mapping UML models to XML
Schema, which we adopt as the mapping formalism
(with some extensions) between our XML
conceptual views (in UML) to XML views (XML
Schema).

Domain View

Figure 1: Case Study example (Level 0)1.3 An Example Case-Study

As a motivating example/ case study, we use in this
paper is a simple Conference System (CS). A
conference Paper consists of one or more (up to a
maximum of 6) Author/(s). A Paper can be a
Short Paper, Long Paper or an Extended
Abstract. A Journal Paper is similar to a
Long Paper except it contains very detailed
discussion on a subject and may have special
material/(s) associated with it. An Abstract is part
of a Paper. A Paper is classified as Short Paper,

Long Paper, Journal Paper or an Extended
Abstract depending on number pages and the
depth of subject material covered in it.

Generally speaking, an Extended Abstract
can be of maximum 2 pages, a Short Paper
between 5–12 pages, a Long Paper between 12–
20 pages and a Journal Paper more than 25
pages. The page count for all papers includes all
appendices, supplementary and special materials.

There can be exception and this is only approved
by the Chairperson of each Conference. For each
paper in the system, there must be a Conference

ShortPaper

LongPaper
Ext_Abstract

JournalPaperInsititute
Inst_ID
Inst_Name
Inst_Business
Inst_Location
Inst_ContactPerson
Inst_Address

Person
<<OID>> person_ID
person_Title
person_FirstName
person_LastName
person_Initials
person_DOB
person_Email
person_ContactNo
person_Address
person_LoginName
person_Pwd

1

n

1

n

belongs_to

Chairperson
<<OID>> cpFax
cpOffice
cpEmail

Conference
<<OID>> conf_ID
conf_Name
conf_Date
conf_Location
conf_Office
conf_Email
conf_Phone
conf_WWW
conf_ContactPerson
conf_Address
conf_CFP

1..n

1

1..n

1

organise

Author

Abstract
abstractContents
abstractKeywords

Referee

Proceedings
<<OID>> proc_ID
proc_ISBN
proc_Editors
proc_VolNo
proc_Title
proc_Publisher
proc_Pages

1..n

1

1..n

1

publish

Paper
<<OID>> paper_ID
paper_Title
paper_Keywords
paper_Type
paper_PubYear

1..61..6

2..4

n

2..4

n

refereed_by

nn

Section
nn

n
+subSection

n{ 5<= paper_Length <= 12 }

{ 12 < paper_Length <= 20 }

{ 20 < paper_Length }

{paper_Length <= 2 }

{ paper_ID NOT IN
(get paper_ID
where Referee->personID < > Author->person_ID)

}

Figure 2: UML model of the example case study

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

22

associated with it together with two Referees (max
of 4). All Referees in the system has to be approved
by the conference chair with which s/he is associated
with. An Author must belong to an Institute
(academic education or industry). When a paper is
submitted to a Conference, at least one Author
of the paper has to register to attend the
Conference. A UML representation of this domain
model is given in Fig. 1 and 2.

2 CONCEPTUAL VIEWS

A conceptual view (Rajugan R. et al., 2003; Rajugan
R. et al., 2004) is the one which is defined at the
conceptual level with higher level of abstraction.

In simple terms, a conceptual view (shown in
Fig. 3 - 6) describes how a collection of XML tags
make sense to a domain user (here we use this term
very generally to refer to all people who are working
in a particular domain and not to task specific
people) at the conceptual/abstract level. A typical
XML domain may contain few XML documents to
many thousands of semantically related, clusters of
XML documents (and their related schemas)
depending on the real world requirement. At a given
instant, only a subset of these cluster of XML tags,
its specification and their data values (information)
may be of use or required by a domain user. This

subset of XML tags, collectively form a conceptual
view which is of interest to the domain user at a
point in time.

In related literature, the notion of conceptual
views is non-existent. From relational to semi-
structured and XML, the view concept begins at the
data manipulation language level.We argue that,
providing view formalism at the conceptual level
(abstract views) will improve the resulting view
implementation similar to that of a conceptual model
what does to a software system. An abstract view
formalism will; (1) Provide data abstraction to view
data set similar to a class (in OO) does to real-world
objects, (2) Enable the software designers (not the
programmers) to visualise, construct and validate
constructed data sets (views) that are normally left to
implementers, (3) Utilise as a tool to communicate
better with the domain users (DU) and to improve
domain user feedbacks (as DU usually used to
visualise data as a constructed data sets (views) than
a stored/modelled data class), (4) Be utilised in other
areas, such as User Interface Engineering (UIE),
where abstract constructs can be constructed at the
conceptual level to capture Abstract User Interface
(AUI) objects (E. J. Chang, 1996), where the user
interface objects are identified based on what the
user interface does and not how it is done and (5) Be
utilised by system designers to add additional data
semantics at a higher level of abstractions to data
intensive domains (such as XML based domains),

Person
(from Domain)

<<OID>> person_ID
person_Title
person_FirstName
person_LastName
person_Initials
person_DOB
person_Email
person_ContactNo
person_Address
person_LoginName
person_Pwd

Chairperson
(from Domain)
<<OID>> cpFax
cpOffice
cpEmail

Author
(from Domain))

Referee
(from Domain))

Address_Book
<<view>>

AB_Title
ABook_FirstName
ABook_LastName
AB_Initilas
AB_Email
AB_ContactNO

project (author U referee U chairperson)()

<<construct>>

<<construct>>

<<construct>>

Address_Book = {
(get ALL Author/[personTitle, personFirstName, personLastName,

personInitials, personEmail, personContactNO])
UNION
(get ALL Referee/[personTitle, personFirstName, personLastName,

personInitials, personEmail, personContactNO])
UNION
get ALL Chairperson/[personTitle, personFirstName,

personLastName, personInitials, personEmail, personContactNO])}

Figure 3: Conceptual view example (in UML)

XML VIEWS, PART III: An UML Based Design Methodology for XML Views

23

where the meaning of data is important than the data
itself. In doing so, the designers are motivated by the
fact that, they only need to worry about what is need
than how to do it.

Ci Vj
<<view>><<construct>>

Vj= {constraint1, constraint2,.....}
Note: In this paper, we only consider static aspects
of the view mechanism (both in abstract and
concrete).

Figure 4: A conceptual view (in UML)
2.1 Conceptual View and UML™

To model conceptual views in UML, we introduce a
set of stereotypes and conceptual operators. In
addition, to make view constraints more explicit and
visible, we use declarative view constraint
specification language (discussed in Section 2.2),
similar to OMG’s Object Constraint Language
(OCL). Though our future work will focus on OCL
for view constraints, to keep the concepts presented
in this paper simple and complex-free, we adopt the
declarative view constraint approach. In Fig. 3, 5
and 6 shows some example conceptual views
constructed for the example case study.

The conceptual operators (Rajugan R. et al.,
2004) enable systematic construction conceptual
views. These operators can be easily transformed
into query segments, user defined functions and/or
procedures for implementation. By doing so help the
modeller to capture view construct at the abstract
level without knowing or worrying about
query/language syntax. They are grouped into set
operators, namely union, difference, intersection,
Cartesian product and unary operators namely
projection, rename, restructure, selection and joins.

2.2 Constraint Specification

The constraint specification we used here is
declarative; that is, it is simple, OCL/SQL like and
helps to explain our view model (at the conceptual
level) more explicitly in UML. As shown in Fig. 4,
where a view Vj is constructed from a stored class
Ci, the view constraints are shown over the
<<construct>> relationship.

2.3 UML and Stereotypes

In UML, a stereotype is based on an existing base
model element or on a variant of the base model
element, to provide extensibility and model
management for an existing, well-defined model.
Here, we use UML stereotypes to provide
conceptual semantics to view formalism, defined
over a stored/domain data model such as shown in

Fig. 2. The following sections discuss some of the
main stereotypes used to capture conceptual views.

2.4 Constructor: <<construct>>

The show the relationship between a conceptual
view and the stored class/(es) from which it is
constructed, we use directed-dashed line with
<<construct>> keyword shown above the line
(Fig. 4). This is to avoid confusion with the built-in
UML dependency relationship and other stereotypes.
As shown in Fig. 4, where a view Vj is constructed
from a stored class Ci, the relationship is as
<<construct>> relationship; the relationship that
exists between a conceptual view and its stored
class/(es). If a conceptual view is constructed over
an existing conceptual view (view of a view), same
relationship is used show the hierarchy (the base
conceptual view and the new conceptual view).

2.5 Object Identifier: <<OID>>

In an OO system, an object has a unique system-
wide identifier that is independent of the values of
its attribute/(s), called Object Identifier or OID
(Dillon & Tan, 1993; Jacek Blazewicz et al., 2003).
When created, an object will be referred to, using its
system assigned OID during its entire existence. In
DBMS systems, OIDs can be either logical or
physical depending on it nature.

In many OO conceptual models and diagrams,
though the concept of OID is assumed to be an
implicit concept (unlike primary keys in E/ER), in
our work, with conceptual views, we have a need to
explicitly state the OIDs and should be available to
visualize at that highest level of abstraction.
Therefore, here, we provide a means of using OIDs
for the purpose of IDs, similar to that of
primary/foreign key constraints available in E/ER
models. We argue that, just utilizing OID (a unique
concept to OO systems) in our conceptual model
provides additional semantics, such as providing
Id/keys, referential and integrity constraints that are
visually lacking in many OO conceptual modelling
technique.

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

24

To visually model OID in UML class diagram,
we define a stereotype <<OID>>, shown in Fig. 2, 3,
and 5 as an attribute type. Together with attribute
name and optional type definition, OID stereotype
<<OID>> can be used in UML to indicate that the
attribute that is an OID. Later in the implementation
of the system, these OID can be mapped to XML
Schema specific ID/KEY and UNIQUE constraints.

Abstract
(from Domain)

abstractContents
abstractKeywords

Paper
(from Domain)

<<OID>> paper_ID
paper_Title
paper_Keywords
paper_Type
paper_PubYear

Author
(from Domain))

1..61..6

Abstract_List
<<view>>

AbsLst_PaperID
AbsLst_PaperTitle
AbsLst_Authors
AbsLst_PubYear
AbsLst_AbstractContents

Abstract_list_
By_Authors

<<construct>>

<<construct>>

<<construct>>
<<construct>>

Abstract_List_by_Year
<<view>>

Abstract_List_by_Year = {
(get ALL Abstract_List/[AbsLst_PaperTitle,

AbsLst_Authors, AbsLst_PubYear,
AbsLst_AbstractContents])

SORT BY Abstract_List/[AbsLst_PubYear] }

<<construct>>

Abstract_List_by_Year = {
(get ALL Abstract_List/[AbsLst_PaperTitle,

AbsLst_Authors, AbsLst_PubYear,
AbsLst_AbstractContents])

SORT BY Abstract_List/[AbsLst_Authors] }

Figure 5: Another conceptual view example (the contents of the Abstract_List package)

2.6 Ordered Composition/Ordering

In real-world, composite objects being in an
aggregation with one or more sub-objects, they also
can be in a pre-defined order. For example in XML
Schema construct such as with <xsd:sequence>,
we regularly observe that the tag <xsd:sequence>
signifies that the embedded elements are not only a
simple assortment of components but these have a
specific ordering. This signifies an important OO
concept, ordered composition.

Simply said, to capture ordering, we add an
UML stereotype that allows capturing of the ordered
composition utilizing stereotypes to specify the
objects’ order of occurrence such as <<1>>, <<2>>,
<<3>>, .… ,<<n>>. In related work (Vicky Nassis et
al., 2004; Vicky Nassis, Rajugan R., Dillon et al.,
2005), we have extensively discussed defining such
ordered composition and mapping it to XML
Schema. Due to page limitation we do not include
that detailed discussion here.

3 XML VIEWS

An XML View is an imaginary XML document
which points to a collection of semantically related
XML tags from an XML domain and satisfies a
Conceptual View definition from the target XML
conceptual domain (Rajugan R. et al., 2003).

An imaginary XML document is said to be an
XML View if and only if, it has a document name, a
valid schema definition (which constrains and
validates the document), a collection of semantically
related tags and their namespaces (or domain), a set
of new tags (if any) and their namespaces which are
derived from others and a constructor that defines
how the document will be materialized.

Since an XML View document may result in a
few collections of XML tags to that of a whole
semantically related cluster of XML tags, for the
user, the resulting XML View document behaves as
another XML document.

3.1 Mapping Conceptual views to
XML views

An XML Schema is usually comprised of a set of
schema components, such as type definitions and
element declarations. There are 12 kinds of schema
components in total, falling into three groups. The
most used components include simple type and

XML VIEWS, PART III: An UML Based Design Methodology for XML Views

25

complex type definitions, attribute declarations, and
element declarations.

For example, in the example case study,
conceptual view Address_Book will be mapped to
XML view schema as a complexType in XML
Schema, while conceptual view attributes such as
ABook_FirstName and ABook_LastName, which
will correspond XML Schema simpleType in
XML view (Schema). Some of the conceptual view
constraints are mapped to XML view schema in the
form of XML Schema constraints such as ID /
IDREF, KEY / KEYREF, USE, minOccurs /
maxOccurs, extension / restriction,
order, sequence etc. Similarly these constraints
can also be used to map the OO relationships
captured in UML to XML (view) Schema
constructs. For example extension, can be used to
map a IS-A relationship for extending the base class,
while ID combined with minOccurs/maxOccurs
can be used to map an association relationship
between two nodes. A more detailed discussion on
mapping OO generic concepts to XML Schema can
be found in (Feng et al., 2003; Xiaou et al., 2001a;
Xiaou et al., 2001b). In the following sections, we
briefly show how some of the main view
components (discussed in section 2) are mapped to
XML views (schema).

3.2 Stereotype: <<OID>>

The <<OID>> stereotype is mapped to XML view
(Schema) is shown below in the code listing.

<xs:complexType name="OIDType">
 <xs:sequence>

 <xs:element name="ID">
 <xs:unique name="OID">
 <xs:selector xpath="OIDType"/>
 <xs:field xpath="ID"/>
 </xs:unique>
 </xs:element>
</xs:sequence>

</xs:complexType>

3.3 Stereotype: <<View>>

All conceptual views are initially mapped to a basic
XML view type and extended to fit the new view
definition. For example the basic <<view>> type is
mapped into XML Schema as shown in the code
listing below.

<xs:complexType name="viewType">

<xs:sequence>
 <xs:element name="view_ID" type="OIDType"/>
 <xs:element name="view_Name"/>
 <xs:element name="view_Query" minOccurs="0"/>
</xs:sequence>

</xs:complexType>

And other conceptual views (in our example the
conceptual view “Address_Book”) are derived from
this basic view type. For example,

<xs:complexType>

<xs:sequence>
 <xs:element name="Address_Book">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="viewType">
 <xs:sequence>
 <xs:element name="AB_Title"/>
 <xs:element

name="ABook_FirstName"/>
 <xs:element

name="ABook_LastName"/>
 <!-- additional nesting -->
 <!-- additional nesting -->
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
</xs:sequence>

</xs:complexType>

4 VIEW HIERARCHY

In related work (E. J. Chang, 1996; Kim, 1990; Kim
& Kelly, 1995), we argued that, in OO systems, the
view hierarchy and the stored class hierarchy should
be kept separately from each other. In continuing the
discussion of view hierarchy to XML domain, to
avoid confusion, we need to clarify the issue of the
relationship between stored XML documents and
view documents (both conceptual and XML views).
In our work (Rajugan R. et al., 2003), we argued that
the view hierarchy in XML domain (both conceptual
and XML) should be kept separately from the stored
document hierarchy.

This is because, as in relational and OO systems,
modelling of XML documents share some relational
and many OO features. Naturally, new View
documents may form new document hierarchies
(inheritance, aggregation, nested etc.), may extend
the existing namespace of the stored XML
namespace/(s) and may be used to provide dynamic
windows to one or more stored heterogenous XML
domains. Views in XML domain may also be used
to provide imaginary schema changes (such new
simple/complex tags, new document hierarchy,
restructuring etc.). But, keeping in line with the
arguments presented for OO views in (E. J. Chang,
1996; Kim, 1990; Kim & Kelly, 1995), we believe
that the stored XML documents hierarchy and the
XML View documents hierarchy should be kept
separate. Many of the points made by Won Kim and
Chang and Dillon et al. (Dillon & Tan, 1993) for OO
views apply to XML views.

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

26

4.1 UML Package Diagram

As we stated earlier, the role of conceptual views is
to provide different perspectives to a stored
document class hierarchy. Also in the previous
section we argued that, they can be grouped into
logical groups/hierarchies. Here, if we look closely,
each hierarchy/group that is very similar to that of a
subject area (Dillon & Tan ’93, Coad & Yourdon
’90) (Dillon & Tan, 1993) (or class categories Booch
1991) in OO conceptual modeling techniques. When
we allow logical grouping of conceptual views and
their associated relationships to clarify a given
perspective, we are giving the designer the
abstraction needed to model a cluster of conceptual
views, without worrying about external connectivity
of the view cluster (Vicky Nassis et al., 2004; Vicky
Nassis, Rajugan R., Dillon et al., 2005; Rajugan R.
et al., 2003).

In order to capture this logical grouping in UML,
we utilize the UML package construct. Intuitively,
based on OMG’s UML package specification
(OMG-UML™, 2003), it describes our logical
grouping of conceptual views into clusters (Vicky
Nassis et al., 2004; Vicky Nassis, Rajugan R., Dillon
et al., 2005). Given a conceptual view, in order to
include additional semantics/refinements, we can
construct additional new view-hierarchies. These
hierarchies may form additional structural or
dependency relationship with existing conceptual
views or view hierarchies. To model such view
hierarchy using UML packages, we introduced a
<<view>> stereotype construct for packages as
shown in Fig. 6. Some work has already been done
in investigated packages for dimensional modelling
(Sergio Lujan-Mora, Juan Trujillo, & Song, 2002a,
2002b). Here we use packages not just for grouping
tool, but also as a structural construct as well as a
new namespace model for the new view hierarchy.

5 REAL-WORLD APPLICATIONS
OF THE XML-VIEWS

Since XML and XML driven solution frameworks
are on the increase, it is important to provide models

and techniques for XML, which is at a high enough
level of abstraction but with rigorously defined
standards that are to be more widely understood by
both developers and non-technical users. To address
some of these issues, here we proposed a generic
XML view design formalism/methodology for XML
domains to provide view-driven-architecture
solutions for varied, yet complex enterprise systems.

For example, our work on XML views are
utilized in; (1) XML Document Warehouse design
(Vicky Nassis et al., 2004; Vicky Nassis, Rajugan
R., Dillon et al., 2005; Vicky Nassis, Rajugan R.,
Rahayu, & Dillon, 2005); where the proposed
conceptual design of a XML document warehouse
model uses XML views as dimensions, (2) web
engineering (Gardner, Rajugan R., Chang, & Dillon,
2004; Rajugan R., Gardner, Chang, & Dillon, 2005);
where user-centred web portal and website are
designed and implement using XML-view
formalism and finally (3) User Access Control
(UAC) design and implementation (Steele, Gardner,
Rajugan R., & Dillon, 2005), where XML-view
formalism is used as a middleware in providing
UAC for XML repositories and databases. Abstract_List

<<view>>

6 CONCLUSION AND FUTURE
WORK

Figure 6: The UML model of a conceptual
view using UML “package”

Though very useful, existing view formalisms (for
all data models including XML) lacks higher level
modelling techniques and abstraction that is needed
to describe, model, and communicate complex
systems such as data warehouse and e-commerce
systems. Therefore, in this paper, we presented a
generic view design methodology for XML domains
at three levels (conceptual, logical and document
level) of abstraction. It is UML driven and
semantically rich for designing enterprise solution
and architectures.

For future work, a lot of issues deserve
investigation. First, the application of OCL in
specifying view constraints at the conceptual level
and mapping between OCL and XML Schema.
Second a well-formulated empirical study to focus
on validating the view design methodology. Third is
the investigation into dynamic perspectives of the
XML view formalism. Another area that deserves
investigation is the area of XML-view in the OMG
proposal on querying MOF based models for MDA
solutions.

XML VIEWS, PART III: An UML Based Design Methodology for XML Views

27

REFERENCES

Abiteboul, S. (1999). On Views and XML. 18th ACM
SIGMOD-SIGACT-SIGART (PODS '99), USA.

Abiteboul, S., & Bonner, A. (1991). Objects and Views.
ACM SIGMOD, ACM SIGMOD '91.

Abiteboul, S., Goldman, R., McHugh, J., Vassalos, V., &
Zhuge, Y. (1997). Views for Semistructured Data.
Work. on Mgmt. of Semistructured Data, USA.

Chang, E., & Dillon, T. S. (1994). Integration of User
Interfaces with Application Software and Databases
Through the Use of Perspectives. ORM '94, Australia.

Chang, E. J. (1996). Object Oriented User Interface
Design and Usability Evaluation. Doctor of
Philosophy (Ph.D), La Trobe University, Melbourne,
Australia.

Cluet, S., Veltri, P., & Vodislav, D. (2001). Views in a
Large Scale XML Repository. 27th VLDB '01, Italy.

Dillon, T. S., & Tan, P. L. (1993). Object-Oriented
Conceptual Modeling: Prentice Hall, Australia.

Elmasri, R., & Navathe, S. B. (2000). Fundamentals of
database systems (3 ed.): Addison-Wesley.

Feng, L., Chang, E., & Dillon, T. S. (2002). A Semantic
Network-based Design Methodology for XML
Documents. ACM Transactions on Information
Systems (TOIS), 20, No 4, 390 - 421.

Feng, L., Chang, E., & Dillon, T. S. (2003). Schemata
Transformation of Object-Oriented Conceptual
Models to XML. International Journal of Computer
Systems Science & Engineering, 18, No. 1(1), 8845-
8860.

Gardner, W., Rajugan R., Chang, E., & Dillon, T. S.
(2004). xPortal: XML View Based Web Portal Design.
17th Int. Conf. ICSSEA '04, Paris, France.

Jacek Blazewicz, Wieslaw Kubiak, Tadeusz Morzy,
Rusinkiewicz, M., & (eds). (2003). Handbook on Data
Mgmt. in IS: Springer, Berlin ; New York.

Jorge H. Doorn, C. Rivero, L., & (eds). (2002). Database
Integrity: Challenges & Solutions: Idea Group
Publishing, Hershey, PA.

Kim, W. (1990). Research Directions in Object-Oriented
Database Systems. Proc. of the 9th ACM SIGACT-
SIGMOD-SIGART, USA.

Kim, W., & Kelly, W. (1995). Chapter 6: On View
Support in Object-Oriented Database Systems. In
Modern Database Systems (pp. 108-129): Addison-
Wesley Publishing Company.

Liefke, H., & Davidson, S. (2000). View Maintenance for
Hierarchical Semistructured. DaWak '00, UK.

Lucie-Xyleme. (2001). Lucie Xyleme: A dynamic
warehouse for XML Data of the Web. IEEE Data
Engineering Bulletin, 24, No 2, 40-47.

Nassis, V., Rajugan, R., Dillon, T. S., & Rahayu, W.
(2004, September 1-3). XML Document Warehouse
Design. Proc. of DaWaK '04, Zaragoza, Spain.

Nassis, V., Rajugan R., Dillon, T. S., & Rahayu, W.
(2005). Conceptual and Systematic Design Approach
for XML Document Warehouses. Int. Journal of Data
Warehousing and Mining, 1, No 3.

Nassis, V., Rajugan R., Rahayu, W., & Dillon, T. S.
(2005, 9-12 May 2005). A Systematic Design
Approach for XML-View Driven Web Document
Warehouses. Int. Work. on Ubiq. Web Sys. & Intel.
(UWSI '05).

OMG-UML™. (2003). Unified Modeling Language™
(UML) Version 1.5 Specification: OMG.

Rajugan R., Chang, E., Dillon, T. S., & Ling, F. (2003).
XML Views: Part 1. Proc. of DEXA '03.

Rajugan R., Chang, E., Feng, L., & Dillon, T. S. (2004).
XML Views, Part II: Modeling Conceptual Views
Using XSemantic Nets. Workshop & SSS on
Industrial Informatics, The 30th IEEE IECON '04,
S.Korea.

Rajugan R., Gardner, W., Chang, E., & Dillon, T. S.
(2005, 9-12 May 2005). xWeb: An XML View Based
Web Engineering Methodology. Int. Work. on Ubiq.
Web Sys. & Intel. (UWSI '05).

Sergio Lujan-Mora, Juan Trujillo, & Song, I.-Y. (2002a).
Extending the UML for Multidimensional Modeling.
5th Int. Conf. on UML & Apps. (UML '02), Germany.

Sergio Lujan-Mora, Juan Trujillo, & Song, I.-Y. (2002b).
Multidimensional Modeling with UML Package
Diagrams. Proc. of the 21st Int. Conf. on (ER '02).

Steele, R., Gardner, W., Rajugan R., & Dillon, T. S.
(2005). Design of an XML View Based User Access
Control (UAC) Middleware. IEEE Int. Conf. EEE '05,
Hong Kong.

Volz, R., Oberle, D., & Studer, R. (2003a). Implementing
Views for Light-Weight Web Ontologies. Proc. 7th
IDEAS '03, Hong Kong.

Volz, R., Oberle, D., & Studer, R. (2003b). Views for
light-weight Web ontologies. Proc. of the ACM
Symposium on Applied Computing (SAC '03), USA.

W3C-XML. (2004, 4th February 2004). Extensible
Markup Language (XML) 1.0 (Third Edition). from
http://www.w3.org/XML/

W3C-XSD. (2004). XML Schema, 2004, from
http://www.w3.org/XML/Schema

Xiaou, R., Dillon, T. S., Chang, E., & Feng, L. (2001a).
Mapping Object Relationships into XML Schema.
Proc. of OOPSLA Work. on Objects, XML and DBs.

Xiaou, R., Dillon, T. S., Chang, E., & Feng, L. (2001b,
September 3-5). Modeling and Transformation of
Object-Oriented Conceptual Models into XML
Schema. 12th Int. Conf. on DEXA '01.

Xyleme. (2001). Xyleme Project, from
http://www.xyleme.com/

Zhuge, Y., & Garcia-Molina, H. (1998). Graph structured
Views and Incremental Maintenance. Proc. of the
14th IEEE ICDE '98, USA.

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

28

