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Abstract: Event monitoring and correlation across a large network is inherently difficult given limitations in 
processing with regards to the huge quantity of generated data.  Multiple agent systems allow local 
processing of events, with certain events or aggregate statistics being reported to centralized data stores for 
further processing and correlation by other agents. This paper presents a framework for a secure and scalable 
multiagent system for distributed event capture and correlation.  We will look at what requirements are 
necessary to implement a generic multiagent system from the abstract view of the framework itself.  We will 
propose an architecture that meets these requirements.  Then, we provide some possible applications of the 
multiagent network within the described framework. 

1 INTRODUCTION 

Correlating multiple sensor readings in real-time or 
near-real-time is process intensive when the sensors 
generate data at even a moderate rate.  In our 
experience, it is not uncommon for servers in large 
organizations to generate over two gigabytes of 
event data per day. Centralized correlation with any 
but the simplest rules would be severely taxing to 
process in near-real-time.  However there is a 
solution.  Agent architectures are appropriate for 
problems that require systems to meet a variety of 
goals in a dynamic, unpredictable environment 
(Maes, 1992) and multiagent systems provide a 
distributed framework for problem solving that is 
too large for a centralized agent to solve because of 
resource limitations or the risk of having a 
processing bottleneck or single point of failure 
(Sycara, 1998). The definition and advantages of 
autonomous agents are described in detail in AAFID 
(Balasubramaniyan, 1998).  This paper will examine 
some of the requirements that are necessary to a 
generic, hierarchical multiagent network designed to 
capture events and perform event correlation, 
present some architectural considerations that meet 
those requirements, and discuss some potential 
applications for the architecture. 

2 REQUIREMENTS 

In a multiagent system, the correlation workload can 
be distributed so that only events or statistics of 
significance are reported up the agent hierarchy.  
Obviously, this system can only be successful if the 
definition of interesting events can adapt to the ever-
changing environment of production networks. 
However, when using a multiagent system to 
distribute the correlation workload, we want the 
architecture to preserve the security and integrity of 
the entire system, and make use of the existing 
sensors whose data we want to correlate. 
In creating such a distributed multiagent 
architecture, it is necessary establish a set of 
requirements and constraints upon our system.  
These are much like Silva et al’s “agent properties” 
which they refer to as non-functional requirements 
(Silva, 2003). They are desired system qualities that 
are not necessarily required for agents to complete 
their goals. These include requirements such as: (1) 
the system must be scalable; (2) it must be relatively 
simple to implement, configure and maintain; (3) it 
must be secure, meaning that the traffic generated by 
the correlation network can not be sniffed of 
spoofed; (4) it must not be limited by the network 
topology; (5) it must be self-healing; and (6) it must 
be time-synchronized. 
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• Scalability 
 In terms of scalability, we want to be able to 
grow our agent network as large as functionally 
necessary regardless of the size of the network.  
Depending on the application of the correlation 
network and the established correlation rule set, we 
could have as few as one agent for the entire sensor 
network or as many as one agent per sensor (1 ≤ x ≤ 
n : x is the number of deployed agents and n is the 
number of individual sensors on the network). 
  
• Simplicity 
 In order to keep the agent deployment and 
distribution complexity to a minimum, we want all 
agents to be identical.  In other words, the coded 
representation of each agent is the same.  However, 
this does not mean that they all behave the same.  
Each agent’s role and functionality is determined not 
by its binary code, but by data in its configuration 
file and the specific sensors it monitors. 
Configuration modification can either be performed 
on a host local to the agent or via a graphical user or 
web based interface that communicates strictly with 
the “uber-agent”.  The configuration changes are 
then disseminated to the necessary agents in the 
logical agent hierarchy. 
 We also want to avoid the need to develop new 
sensors or to modify existing ones so that they 
integrate into our framework. Modifications to 
sensors such as syslog or SNORT would seriously 
complicate deployment and could undermine 
security. To this end, we want the framework to tap 
into the data stores of a large variety of widely used 
sensors such as Microsoft® Windows™ auditing, 
syslog, SNORT, as well as others found in such 
devices as firewalls and Honeynets. 
 
• Security 
 To enhance security and limit the traffic 
generated by the correlation network, each agent is 
configured so that it can only communicate with a 
limited number of other agents.  This prevents rogue 
agents from being launched in order to corrupt or 
control the correlation network. 
 Each agent should contain a message 
management class which handles encryption and 
decryption of message traffic and key management.   
The message management class of one agent uses 
asymmetric encryption to communicate with the 
message management class of other agents.  Using 
asymmetric encryption allows for both encrypted 
and digitally signed traffic.  Encrypted traffic 
prevents sniffing and signed traffic prevents 
spoofing.  
 
 
 

• Independent of physical network topology 
 The topology of the multiagent network is 
independent of the physical network.  Thus, the 
employment of agents and sensors may or may not 
match the topology of the physical network.  The 
only requirement is that agents must be able to 
communicate. Agents that are adjacent on the 
correlation network may be located on entirely 
different subnets.  For example, the correlation 
network can be organized by sensor type with the 
sensors being distributed one per subnet or logical 
work unit.  On the other hand, an agent hierarchy 
could be built to handle all web servers in the 
enterprise, regardless of where they are in the 
physical network.  This requires agent hierarchies to 
be deployed across functional business units within 
an organization.  For this reason, we do not want to 
restrict our multiagent network by constraints that 
may not apply to the application. 
 
• Self Healing 
 The distributed nature of the system and the 
requirement that each agent’s code be identical 
means that any agent can perform in the role of 
another agent.  Thus,  there is built in redundancy 
and we do not have a single point of failure within 
the system. This allows our agent network to have a 
method of recovering from the failure of a single 
agent, i.e. the network is self-healing.  Any agent 
can assume the role of another agent in the logical 
agent hierarchy, and the agent network thus becomes 
resilient against attack or localized network failure.
  
 The agent network needs to be able to recover 
from the loss of one or multiple agents within the 
hierarchy.  It needs to be able to self-heal in the 
event it loses communication with other agents in 
the network.  Within its configuration file, the agent 
could contain the address of one or more generations 
of its ancestry and progeny. Thus if communication 
is lost in either direction, communication can be re-
established.  In this manner, one (or multiple) failed 
agent(s) does not result in the failure of an entire 
subnet within the multiagent hierarchy. 
 
• Time synchronization 
 The distributed design of the agent network 
requires a system be implemented for network time 
synchronization.  This is particularly important when 
performing correlation of events across distributed 
sensors/hosts to resolve relative order of events and 
determine causality between events (Karp, 2003). 
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Figure 1: Agent Roles and Hierarchy. The above illustrates a malicious act (as defined in the agent’s rule set) on 
Host 3.  This in turn triggers the agent to send a report to the next higher agent in the hierarchy 

3 ARCHITECTURE 
CONSIDERATIONS 

With these requirements in mind, we next strive to 
develop an architecture that meets these 
requirements while maintaining a degree of 
independence from the actual application for which 
it will be used.  Our architecture consists of the 
agents, which consult (correlate) sensor data. They 
do this by querying the sensors’ data repositories 
and the sensors themselves, which provide the data 
tracking vital dimensions of the problem space.  An 
agent consists of a communication package that 
provides secure communications with other agents; a 
query engine that can formulate database queries and 
search XML or flat files for specific information 
(still field based); and a correlation engine which 
processes query results and generates alerts and/or 
query replies to/from another agent.  The agents are 
organized hierarchically with one agent at each tree 
or subtree root designated as the “uber-agent” as 
shown in Figure 1.  A user interface ties into the 
“uber-agent” for managing the multiagent network. 
 
• Sensors 
 In the context of this architecture, a sensor is 
anything that logs updates of a changing state either 
internal or external to the network.  In the classical 
context, a sensor may measure or record physical 
phenomena such as temperature, air pressure, light, 
etc.  But, a sensor could also “measure” a given 
dimension of the network, by tracking packets or 
logging events.  Sensors can be imbedded in the 
operating system as proposed by Kerschbaum 
(Kerschbaum, 2000), or separate processes.  
Examples of such sensor measurements or 
recordings include log files produced by syslog, a 
firewall log, an alert log generated by an intrusion 
detection system, Windows™ events, etc.  A sensor 
must satisfy two constraints: (1) it must measure a 
necessary dimension of our problem space; (2) and it 
must record its measurement in some sort of 

datastore.  The datastore is not required to be on the 
same host as the sensor.  We have thus far restricted 
a datastore to one of three formats (though others are 
possible): a relational database; an XML file; or a 
text file.    
• Agents 
 An agent is a self-contained process that has the 
ability to perform queries on a datastore, correlate 
the results of the queries in accordance with the 
agents query rules, and communicate with other 
agents.  Communication takes the form of queries, 
query results, or configuration changes.  
Communication is secure, meaning that the traffic 
can not be sniffed of spoofed.   
 The agent network is hierarchical in nature.  At 
the top, a graphical or web-based interface 
communicates with the “uber-agent”.   The “uber-
agent” communicates with several “sub-agents” 
and/or sensors.  This can be seen in Figure 1.  These 
“sub-agents” communicate with one or more “sub-
agents” and/or sensors, recursively.  Dispersion of 
agents matches the distribution of the datastores 
across the network.  An agent is co-located on the 
same host as a datastore.  One agent suffices to 
query all datastores located on a single host.  
 
• Correlation Engine 
 The correlation engine is part of an agent.  Within 
the context of our architecture, the correlation 
engine consists of two parts: (1) data correlation; 
and (2) alert generation.  Data correlation stems 
from simple and compound Boolean and relational 
operations on data queries.  A compound Boolean 
expression, or signature, can be easily parsed and 
transformed into one or more queries of the 
datastore.  At this level, data correlation is a matter 
of pattern matching the data within a datastore to a 
signature (i.e. misuse detection). 
 Should a signature be matched then that may be 
enough to generate an alert.  In fact, this is how 
many intrusion detection systems work.  The 
problem with this approach is that it is limited to 
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matching known signatures.  We also need a way to 
recognize hidden or new correlations for which we 
have no signatures.  One way of doing this is 
through anomaly detection based on a statistical 
analysis of “typical” network data.  We register 
“normal” data over time and generate an alert when 
the correlation of data from one or more sensors flag 
“abnormal” behaviour (i.e. anomaly detection). 
 The architecture presented in this paper really is a 
framework which is independent of “how” the 
correlation is done.  All agents can correlate their 
data in an identical manner, or agents can be 
specialized as in (Chatzigiannakis, 2004).  Our 
architecture is suitable for use as a research platform 
for exploring distributed AI.  Furthermore, the 
modular design of our framework makes it possible 
for various agents to correlate events differently and 
still maintain their sociability. 
 
• Configuration 
 A configuration file for a given agent provides 
the agent with the information it needs in order to 
understand its environment.  The configuration file 
will contain information regarding one or more 
levels of the agent’s “parent” and “children” 
depending on the level of self-healing desired by the 
agent network.  Additionally, information is also 
contained in the configuration concerning the sensor 
datastore(s) for which the agent is responsible.  The 
agent’s configuration is also established by a set of 
correlation rules that it applies locally on its own 
datastores. 

4 APPLICATIONS  

Our multiagent architecture is generic enough to be 
the basis for implementation in multiple 
applications.  An example of a possible deployment 
of the multiagent network is shown in Figure 2 in 
which we see sensors distributed throughout a 
network.  Each sensor logs its data either locally on 
the same host or remotely to a different host.  Sensor 
logs take the form of a relational database, an XML 
file, or a text file.  Agents are distributed throughout 
the system as well.  To minimize the potential of 
queries being attacked, agents are collocated with 
the sensor logs.  Agents query sensor logs and 
correlate the results.  Based on the correlation rules, 
the agents could disseminate the results of its 
correlation to other agents for further action.  Agents 
can have access to a special data store known as the 
central logging facility (CLF).  The CLF can store 
either results of reports generated by agents, or raw 
sensor data used for further correlation.  The intent 
is for storage of query results pending further action, 

correlation rules, configuration rules, etc.  The 
multiagent network is hierarchical in structure and 
managed at the root by a user interface. 
 The architecture discussed in this paper was 
primarily developed for correlation of intrusion 
detection systems with system and network logs.  
The abstract and modular structure of the 
architecture makes it easy to implement for 
correlating any sensor network.  In this or similar 
contexts, we could use the system to implement a 
system monitor or an intrusion detection system.  
We could also use the system to guide forensics of a 
network attack either as part of the network or as 
part of a honeynet.  Or, we could use the same 
architecture in an entirely different way for 
environmental monitoring. 
 
• System monitor 
 A system monitor could perform data mining and 
correlation on any logging process that monitors the 
state of a host, network, etc.  In this context, sensors 
take the form of system logs such as syslog, httpd 
log, firewall log, router log, etc.  Agents then 
perform distributed queries on the datastores (logs) 
of these sensors.  Correlation rules are developed in 
order to match specific contextual criteria.  For 
example, a rule could be developed to return data 
associated with events within a given time frame, or 
generate an alert if a certain number of failed log-
ins, power interruptions, or other event of 
significance occurs within a specified time.  From 
these rules and queries, the overall status of a 
network, functional systems (like all web servers 
within an enterprise) or workstations within a 
business unit can be determined and reported. 
 
• Intrusion detection 
 One of the problems with many available 
intrusion detection systems is determining the proper 
balance between rules that produce an excessive 
number of false positives or potentially allow a false 
negative.  In the first case, the network administrator 
wastes time chasing after ghosts, and in the second, 
a wily hacker remains undetected while having free 
reign of the network.   
 Using multiple individual intrusion detection 
systems as sensors (such as Snort, Border Guard by 
StillSecure, Cisco IDS, etc), forming a distributed 
IDS or dIDS (Einwechter, 2001), the multiagent 
network could potentially correlate the alerts 
generated by the multiple IDS with other system 
logs.  For example, the IDS would log alerts to a file 
or database.  An agent would query an associated 
IDS log and correlate the results with the results of 
other agents and their queries on other IDS or 
system logs in order to reduce the number of false 
positives generated.  Additionally, the multiagent 
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network could look for variations of attempted 
attacks by taking a rule which generated an alert and 
querying the system for data regarding things like all 
traffic from the attacking host, all traffic directed to 
the attacked port, etc.  A different strategy might be 
to correlate the results of various statistical-based 
IDS with the results of other rule-based IDS.  Then, 
the agent could develop new rules for the rule-based 
IDS based on the results. 
 Optionally, we could develop an IDS from 
scratch that is rule-based, statistical-based, neural 
network based, or based on any potential new 
research in intrusion detection.  Using a packet 
sniffer that promiscuously logs all subnet traffic, the 
agent network could look for patterns in the data.  
For a rule-based approach, the agent’s local query 
rules would be developed that match a potential 
attack signature.  Queries on the sensor logs would 
be executed by the agents.  Positive returns on the 
queries would generate an alert.  Used in 
conjunction with perhaps a statistical correlation 
engine, or a domain specific AI, a sophisticated 
network IDS could be developed. 
 
• Forensics 
 In the event that we detect a successful 
penetration of our network “after the fact”, we will 
ideally need to pull our network offline and study 
how the hacker succeeded.  In this scenario, 
computer forensics is a means to analyze the 
network events in order to determine what occurred  
 during the attack.  Good forensics will help us 

“generate” proper IDS rules to prevent hackers from 
using the same method of attack in the future.  Our 
agent network, using the same sensor setup as used 
in intrusion detection or system monitoring can 
easily be used for forensics.  Here, with an agent’s 
configuration, correlation rules are generated at the 
interface in accordance with the demands of the 
security administrator.  Thus, the administrator 
would select the constraints with which to filter 
network data.  These constraints would be 
transformed into the agent network’s query language 
and disseminated through the network as 
appropriate.  Each agent would receive some form of 
the original query, parse the query, forward the 
query in part or in whole, and perform queries on its 
local datastores, as necessary.  The results received 
from an agent’s “children” are then consolidated 
with the results of the local queries and passed up to 
the agent’s parent.  The “uber-agent” passes the 
results to the interface which displays them for the 
administrator.  Using this technique, a security 
administrator should be able to narrow down which 
network traffic applied to the hackers attack and 
glean from the logs an attack’s modus operandi.  
Additionally, by exporting log data and reports off a 
compromised machine to the CLF on a recurring 
basis allows a redundancy that can be used to 
compensate for suspect logs from a hacked machine. 
 
 • Environmental monitoring 
 A completely different context for the same agent 
network would be one where the network sensors 

Figure 2: Picture depicting how sensors, agents and datastores can be deployed across a netwrok.  Sensors must 
create logs, either on the local host or at a distributed log site.  For each host with a log data store, there is a co-

located agent that can query the data store and send information to agents higher in the hierarchy. 
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were actual physical sensors.  Sensors such as those 
that measure power consumption, temperature, 
humidity, air pressure, wind speed, perhaps digital 
camera, motion detectors, or just about anything that 
digitally records a physical parameter can be used.  
Examples of correlating such data would be to 
generate an alert if the temperature dropped more 
than ten degrees in an hour.  This type of system 
could be part of an IDS, a means to protect 
equipment sensitive to changes in 
weather/conditions, etc. 
 
• Alert conditions (holistic vs. local) 
 By correlating sensor data across the entire 
network, we can potentially generate one alert 
condition for a local host or subnet and a different 
alert condition for the entire network.  A local alert 
condition may be high if hacker penetration is 
eminent, but the services on the affected host are 
minimal enough that the host’s compromise would 
not provide the hacker with much useful 
information. For example, an agent is monitoring a 
honeypot and an intrusion is detected.  The result 
would be a low alert condition for the network.  
Also, we could change the rule set that an agent uses 
based on the alert level - additional parameters could 
be monitored, certain events could automatically be 
forwarded to the CLF of the “uber-agent”, etc.   
 Another example, in an IDS application, if a 
subnet was recently port scanned, it might set its 
alert condition to “red” and use a looser set of rules 
that would otherwise have generated a high number 
of false positives. Other agents within the system 
could be notified of the threat and adjust their threat 
condition accordingly.  The alert condition for high-
value targets would be set to “red”, some subnets 
might increase to “amber”, and low-value systems 
might not change at all.   
 In an environmental monitoring system, perhaps 
the agents query sensor logs once every 15 minutes.  
If one of the sensors record a drastic change 
(temperature, air pressure, etc.) within one or more 
monitoring periods, the agents could be set to query 
the sensor logs once every minute.  

5 CONCLUSIONS  

A multiagent architecture shows great potential for 
solving problems in a distributed manner that a 
single agent could not process in a timely manner.  
Research in this area tends to focus on ways to 
implement a cooperative artificial intelligence.  The 
architecture presented in this paper provides a means 
to separate the AI from the other important aspects 
of a multiagent system.  The modular design allows 

for easy research, testing, and application of 
distributed AI systems in a variety of contexts.  The 
scalability, simplicity, security, and robust nature of 
the architecture provide a common structure in 
which to compare and contrast competing paradigms 
for learning, cooperation, network timing, etc. 
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