
A PROTOTYPE FOR INTEGRATION OF WEB SERVICES INTO
THE IRULES APPROACH TO COMPONENT INTEGRATION

Susan D. Urban, Vikram V. Kumar, and Suzanne W. Dietrich
Department of Computer Science and Engineering

 Arizona State University
 Tempe, Arizona USA

Keywords: web services, component integration, integration rules, event generation, component relationships

Abstract: The Integration Rules (IRules) environment provides a framework for using events and rules in the
integration of EJB components. This research has investigated the extensions required to integrate Web
Services into the IRules architecture and execution environment. The IRules language framework and
metadata have been extended for Web Services, with enhancements to Web Service interfaces for
describing services that represent object manipulation operations as well as component enhancements such
as event generation, stored attributes, and externalized relationships between distributed components. Web
service wrappers provide the additional IRules functionality for the enhanced Web Service interfaces, with a
state management facility in the IRules environment providing persistent storage of stored attributes and
externalized relationships. The IRules Web service wrappers are client-side, component-independent
wrappers for Web Services, thus providing a more dynamic approach to the modification of service
interfaces as well as the dynamic entry and exit of participants in the integration process.

1 INTRODUCTION

A Service-Oriented Architecture (SOA) (Brown et
al., 2003) is a paradigm that has recently emerged,
where software components are exposed as services
that can be consumed by clients over the network.
While an SOA represents an important concept for
the interconnection of software components, Web
Services (Web Services, 2000) provide a framework
for a platform and programming language-
independent implementation of SOAs.

The integration of Web Services is typically
performed in a procedural manner. Languages such
as BPEL4WS (Curbera et al., 2002) have been
developed specifically to support the composition of
Web Services into business processes. The
Integration Rules Project (IRules) (Urban et al.,
2001) has taken a different approach to business
process specification, defining an event and rule-
based environment for the integration of black-box
components. The IRules approach provides an
event-driven architecture, where an event, such as
the execution of a method, triggers the execution of
integration rules. An integration rule provides a
declarative framework for the specification of
conditions that are to be checked in response to

events. If the condition is satisfied, additional
methods or transactions can be invoked.

In the initial implementation of the IRules
environment, integration rules were specifically used
for the integration of Enterprise JavaBeans (EJBs)
components (EJB, 2001). The Component Definition
Language (CDL) of the IRules environment is used
to enhance EJB components with IRules
functionality, defining named extents, stored
attributes, externalized relationships between
components, and events for existing components.
This functionality is provided through IRules
wrappers for EJB components that are automatically
generated from the compilation of the CDL (Patil,
2003). The wrappers, also implemented as EJB
components, serve as proxies to components,
generating events before and after the execution of
component methods and providing persistent storage
for extents, stored attributes, and externalized
relationships.

One of the goals of the IRules project is to
support the integration of different types of
component models. Since many component models
will likely expose their capabilities as Web Services,
the primary objective of this research has been to
develop a prototype for the use of Web Services
within the IRules event and rule-based integration

3
D. Urban S., V. Kumar V. and W. Dietrich S. (2005).
A PROTOTYPE FOR INTEGRATION OF WEB SERVICES INTO THE IRULES APPROACH TO COMPONENT INTEGRATION.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 3-10
DOI: 10.5220/0002527900030010
Copyright c© SciTePress

framework (Kumar, 2004). To make use of the
existing IRules execution environment, our
investigation has experimented with the use of Web
Services as an interface to EJB components.

The incorporation of Web Services into the
IRules environment introduced several challenging
design and architectural issues. Unlike EJB
components, Web Services do not have any naming
conventions for identifying create, remove, and findAll
methods. Since these methods are needed for query
processing within the condition evaluator of
integration rules, this research has incorporated
language features for identifying such methods in
CDL for Web Services. Another difference between
the original IRules environment and the use of Web
Services is found in the state management
capabilities. The IRules environment was originally
developed with EJBs providing state management
for the storage of stored attributes and externalized
relationships defined in CDL. This research has
defined a state management facility for Web
Services within the IRules execution framework.
The state management facility is a relational
database that is constructed dynamically using the
metadata generated by CDL together with Java
Database Connectivity (JDBC) for incremental
definition of relations.

The placement and nature of the IRules wrapper
for Web Services has also been redefined as a result
of this research. Web Services represent true black-
box components, where the integrator does not have
control over how the services are exposed. The
containers where services exist are also not
accessible to the integrator. For this reason, this
research has defined the IRules Web Service
wrappers to exist in the integrators environment
rather than within the component’s container. In
addition, the Web Service wrapper design is
dynamic in nature, where services can be added and
removed from the overall integration process
without the need to regenerate the Web Service
wrapper as with the EJB design.

The remainder of this paper is structured as
follows. Section 2 provides an overview of the
IRules environment. Section 3 presents the Web
Service wrapper architecture and design. Section 4
discusses the IRules property repository for
providing state management. Related work is
presented in Section 5. The paper concludes with a
summary in Section 6.

2 OVERVIEW OF IRULES

The IRules environment enhances distributed EJB
components with IRules specific semantics that
enable event and rule-based integration. IRules

follows a declarative approach where the integration
logic and component enhancements are explicitly
specified by the integrator using various IRules
languages.

CDL is used as a semantic layer over components
and provides a way of defining externalized
relationships between components, event definitions,
extents, and stored attributes. The syntax of CDL is
presented in Figure 1 from (Patil, 2003). Extents
provide a mechanism for iterating through the objects
of a specific component type. Stored attributes are a
persistent capability provided by the IRules wrapper.
Externalized relationships are also persistent and are
used to establish associations between component
instances. IRules also provides the capability of
defining before and after events on methods as part of
CDL. Before events are generated before the
invocation of a component method, while after events
are invoked after method invocation. Events in IRules
are used to trigger integration rules expressed using
the Integration Rule Language (IRL) (Dietrich et al.,
2001).

Component ComponentName implements ComponentType
(extent ExtentName)
{
 attribute AttributeType AttributeName
 [{SessionBeanName.MethodName (SessionParameters) }];

 relationship TargetOfPath RelationshipName inverse
 InverseRelationshipTarget::InverseRelationshipName;

 event IRulesEventName (EventParameters)
 {method Modifier MethodName (MethodParameters) };};

Figure: 1: Syntax of CDL (Patil, 2003)

The IRules Scripting Language (ISL) is used to
create application transactions that invoke methods on
components (Kambhampati, 2003). The Event
Definition Language (EDL) is used to specify
additional events associated with application
transactions and other external events (Kambhampati,
2003; Urban et al., 2004). IRL is used to define
integration rules and is based on Event-Condition-
Action (ECA) rules from active database systems.
Each integration rule consists of an event, a condition,
and an action. An event triggers a rule associated with
the event. A condition is evaluated over distributed
components. The action is a call to a method of a
component or an application transaction if the
condition evaluates to true. Several coupling modes
have been defined to handle the transactional
relationships that exist between the event, condition,
and action parts of an integration rule (Jin et al.,
2002).

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

4

3 WEB SERVICE WRAPPER
ARCHITECTURE AND DESIGN

To generalize the use of the IRules approach, this
research has investigated the use of Web Services as
an interface to EJB components. Web Services,
however, must still be wrapped to provide the IRules
functionality described in Section 2.

3.1 Web Service Wrapper Location

Two approaches have been investigated for the
location of the IRules Web Service wrapper. The
wrapper can exist in the integrator’s environment, or
the wrapper can exist with the service provider as in
the original EJB wrapper design of the IRules
environment. In the later case, the provider wraps the
component with the IRules wrapper and exposes the
wrapped service as a Web Service, as shown in Figure
2. One of the restrictions of this approach is that all
clients of the Web Service must have access to the
service through the IRules wrapper. This approach is
unnecessary for applications that are not a part of the
IRules environment. Moreover this approach assumes
an environment where the integrator has access to the
implementation of each of the Web Services involved
in the integration. In a service-oriented environment,
this approach for the use of wrappers may not be
possible for access to services provided by business
partners. In addition, different wrappers would have
to be developed for different component models,
defeating the purpose of achieving component
independence.

The other approach to the design of the IRules
Web Service wrapper is to wrap the Web Service
proxy as shown in Figure 3. This approach provides a
more flexible environment since every client who
uses the Web Service need not go through the IRules
environment. Furthermore, the service wrapper is
common irrespective of the component model
employed by the Web Service provider, thus helping
to achieve component independence within the IRules
environment. The Web Service provider is therefore
not concerned about the implementation and
deployment of the IRules wrapper since the burden of
integration is placed on the integrator at the client
side.

In a Web Service environment, Web Services can
also be dynamically discovered. The service provider
approach shown in Figure 2 does not support these
dynamic requirements. The service provider approach
also suffers from the disadvantage of having to
generate and re-compile the wrappers for each of the
services involved in the integration. This is a limiting
factor that hampers seamless and flexible integration.

The wrapped proxy approach is more generic and
does not require modifications to be done by the
service. As a result, the wrapped proxy approach of
Figure 3 was chosen for this research.

 IRules wrapper

Component

P
R
O
X
YC

L
I
E
N
T

SERVICE PROVIDER
SERVICE

CONSUMER

Web Service
P
R
O
X
Y

Figure 2: IRules Wrapper with the
 Service Provider

Component

Wrapper
C
L
I
E
N
T

SERVICE PROVIDER
SERVICE

CONSUMER

Web Service

P
R
O
X
Y

Wrapper

P
R
O
X
Y

Figure 3: IRules Wrapper on the
Web Service Proxy

Figure 4 illustrates the architecture of the IRules

Web Service integration prototype. The core of the
architecture is composed of the Web Service proxies
and the IRules Web Service wrapper that encapsulates
the proxies. The IRules Web Service wrapper is
responsible for providing an enhanced interface to the
Web Service. The service wrapper implements
externalized relationships and stored attributes (i.e.,
IRules properties), which are made persistent in the
IRules Property Repository. The repository is a
centralized database storing all of the tables that are
created to maintain IRules property values. These
tables are created dynamically according to
integration needs. An IRules Web Service wrapper is
responsible for retrieving the required contents from
these tables when the IRules Property accessor
methods are called. The IRules Web Service Wrapper
is also responsible for generating method events as
shown in Figure 4.

The execution environment shown in Figure 4
makes extensive use of metadata generated from
CDL, EDL, ISL and the IRL. This metadata is made

A PROTOTYPE FOR INTEGRATION OF WEB SERVICES INTO THE IRULES APPROACH TO COMPONENT
INTEGRATION

5

J M S

P ro x y

W e b
S e rv ic e

P ro x y

M e th o d
E v e n ts

M e th o d
E v e n ts

IR u le s P ro p e r ty R e p o s ito ry

S to re d
A ttr ib u te

S to re d
A ttr ib u te

IR u le s M e ta d a ta
C D L S p a c e

S y n c S p a c e
(J a v a S p a c e)

W e b
S e rv ic e

IR u le s S e rv ic e W ra p p e r

IR U L E S E N V IR O N M E N T

T ra n s a c -
tio n

M a n a g e r

O b je c t
M a n a g e r

J IN I

E v e n t
H a n d le r

E v e n t
Q u e u e

R u le
M a n a g e r

R u le
P ro c e s s o r

A p p lic a tio n
T ra n s a c tio n

p ro c e s s o r a n d
a p p lic a tio n e v e n t

d e te c to rE x te rn a l E v e n t
D e te c to r

IR u le s P ro p e rty
G e n e ra to r

E x te rn a liz e d R e la tio n s h ip

Figure 4: IRules Service Integration Environment.

persistent using the storage capabilities of
JavaSpaces. In addition, JavaSpaces provides a
synchronization mechanism that is used to
coordinate the execution of rules with the invocation
of Web Services. The coordination algorithm
appears in (Kambhampati, 2003; Urban et al., 2004).

3.2 IRules Web Service Specification

The syntax of the extended CDL for Web Services is
illustrated in Figure 5. The ComponentName is the
name given to the component being exposed. The
syntax implements WebService identifies that the
component is exposed as a Web Service. Every
WebService has a proxy class that is used to access the
service. The syntax proxy ProxyClassName identifies
the proxy class associated with the component
exposed as a Web Service. The name of the proxy
class is used to instantiate wrapper objects. The

syntax (extent extentName) is used to specify the name
of the extent for the component.

For integration of components in the IRules
environment, it is necessary to identify the create,
remove, and the findAll methods of a component. Create
methods are responsible for creating an instance of a
bean, while the remove method deletes an instance.
The findAll method is responsible for retrieving the
extent of a particular EJB. Extents are used in IRL to
query instances of objects representing rows in a
database. Unlike EJBs, which have naming
conventions for creating, removing, and finding
instances of EJBs, Web Services do not have any
naming conventions. These methods are explicitly
identified by the integrator as shown in the extended
CDL for Web Services in Figure 5.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

6

Component ComponentName implements WebService proxy
ProxyClassName (extent extentName)
{return_value create (method parameters)
 {method Name (method parameters)};

 void remove (method parameters)
 {method Name (method parameters};

 return_value findAll ()
 {method Name (method parameters)};

 relationship TargetOfPath RelationshipName inverse
 InverseRelationshipTarget::InverseRelationshipName;

 event IRulesEventName (EventParameters)
 {method Modifier MethodName (MethodParameters) };}

Figure 5: Extended CDL for Web Services

3.3 IRules Web Service Wrapper
Design

Every method of a Web Service in the IRules
environment is accessed through the IRulesWrapper
class. A single IRulesWrapper class exists for all of the
services in the IRules environment. The constructor of
the class takes the name of the service that needs to be
invoked as a parameter. The name of the service is the
same as the name of the Web Service proxy class.
Thus, depending on the value of the parameter passed
to the constructor of the wrapper class, an instance of
the wrapper is configured for that particular Web
Service. As a result, many instances of IRulesWrapper
are created - one for each service. Once a particular
instance of the wrapper is created, the integrator
cannot change the Web Service for which that
particular instance of the wrapper is configured.
 The methods of a Web Service are called through
the callWebService generic method of the
IRulesWrapper class. The parameters to the
callWebService method, indicated in Figure 6, include
the name of the method to be called, the parameters of
the method to be called, and an additional transaction
identifier to be passed with each method. Therefore a
call to callWebService is actually a call on a proxy of a
particular Web Service. This approach provides a
dynamic nature to method invocation in IRules Web
Service composition.

The implementation of callWebService takes care
of invoking the appropriate method on the Web
service using reflection as illustrated in Figure 6. The
value of the wsProxy variable is the name of the proxy
class of a particular Web Service, the value of which

is passed as a parameter during the creation of the
wrapper instance.

There are several advantages to the IRules Web
Service wrapper design. One advantage is that there
is no need for code generation for each of the
components involved in the integration as in the
original EJB wrapper design. An instance of each
generic wrapper is simply created using the
IRulesWrapper class. If a separate wrapper existed for
each Web Service, a new wrapper would have to be
generated for each new service added to the system.
The IRules Web Service wrapper design makes it
possible to dynamically change the underlying Web
Service.

The wrapper instance also reads the appropriate
metadata corresponding to the particular Web
Service invoked and generates the method events
required by the IRules environment. In addition, the
wrapper instance maintains the externalized
relationships through calls to create and remove
methods on CDL relationships. Since all methods on
the Web Service, including the methods of the
IRules enhanced interface, are accessed through the
generic callWebService method, there is no
regeneration of the wrapper needed when new
externalized relationships are created for a
component exposed in a service. This enables the
dynamic creation of relationships between
components, where externalized relationships can be
added at any point in the integration process without
regenerating the wrappers. Similarly, the integrator
can define new method events at run time.

public class IRulesWrapper {
private string wsProxy;
public Object callWebService (String methodName, Object []
methodParams, int TransactionID)

{ Class cls = Class.forName(wsProxy);
Object obj = cls.newInstance();
Method method = obj.getMethod(methodName,null);
Object returnValue =
meth.invoke(obj.methodParams);}}

Figure 6: Invoking the Service Method through Reflection

3.4 A Motivating Example

This section presents an ONLINE SHOPPING
APPLICATION to illustrate the integration of Web
Services using the IRules service-oriented
architecture. The application consists of six Web
Services as shown in Figure 7. These Web Services
access EJB components, which

A PROTOTYPE FOR INTEGRATION OF WEB SERVICES INTO THE IRULES APPROACH TO COMPONENT
INTEGRATION

7

+Create()
+getCustName()
+getCustZipCode()
+getCustCardIno()

-CustomerID : String
-CustomerName : String
-CustomerAddress : String
-CusotmerZipCode : String
-CustomerPhone : String

CustomerInfo

-CustomerID : String
-CustomerNameOnCard : String
-CustomerCardNo : String
-CustomerCardName : String
-CustomerCardExpDate : String

CustomerCard

+Create()
+Remove()
+addItems()
+getItems()
+setShipper()
+setPaymentStatus()
+setShippingStatus()

-CustomerOrderNo : String
-CustomerLoginName : String
-CustomerCardName : String
-OrderDate : String
-PaymentStatus : String
-Shipper : String
-ShippingStatus : String
-Price : String

CusomerOrder

-ItemID : String
-ItemName : String
-QtyOrdered : String
-ItemPrice : String
-CustomerOrderNo : String

LineItems

+CreateShppingOrder()
+CancelOrder()
+getTrackingInfo()

-TrackingNo : String
-ItemShipped : String
-Source : String
-Destination : String
-DateOfShipping : String
-TrackingInfo : String

ShippingService

+getCreditRating()
+makePayment()

CreditPayment

-hasCustomers

1
-hasCards

*

-hasOrder

1
-hasItems

*

-hasItem

*

-hasLineItems

1

*

-suppliesItems*

-hasSuppliers

-hasOrder1

-hasTrackingNo1

Customer Info
Service

Customer
Order Service Item Stock Service

Supplier
Service

+getSupplier()

+supplierID : String
+supplierName : String
+supplierAdd : String
+supplierZipCode : String
+supplierPhone : String

Supplier

Customer Information Container Supplier Container

Customer
Order

Container

+Create()
+Remove()
+updateQty()

+itemID : String
+itemCode : String
+itemDescription : String
+itemPrice : String
+itemQty : Integer
-reorderQty : Integer
-reorderStatus : String
-threshHold : Integer

ItemStock

-hasCustomer1

-relatedOrders*

+Create()
+Remove()
+addItems()
+getItems()
+setShipper()
+setPaymentStatus()
+setShippingStatus()

-CustomerOrderNo : String
-CustomerLoginName : String
-CustomerCardName : String
-OrderDate : String
-PaymentStatus : String
-Shipper : String
-ShipperStatus : String
-Price : String

CustomerOrder

Figure 7: Online Shopping Application Components with Externalized Relationships

have been developed using the Web Logic
application server. The Web Services were
developed using BEA Web Logic Workshop,
accessing the underlying EJBs.

Figure 7 depicts the various containers and
components for the ONLINE SHOPPING APPLICATION.
The CustomerInfo and CustomerCard components are
located in one container. The CustomerOrder
component, the LineItems component, and the
ItemStock component are located in a separate
container. A third container is used to store the
Supplier component. These containers provide Web
Services that are internal to the organization.

The application also makes use of two external
Web Services. A CreditPayment service is used to
approve credit card payments from customers.
ShippingService is used to handle the shipping of the
purchased items to the customer destination.

When a CustomerOrder is created, it needs to be
associated with the customer information for that
particular order. Since CustomerInfo is stored in a
separate container, an externalized relationship is
needed to associate a particular CustomerOrder with
the CustomerInfo of the customer who created the
order. Figure 8 illustrates the CDL definition for the
Web Service associated with CustomerOrder. The
definition enhances the CustomerOrder component
with an explicit relationship to CustomerInfo. The
Web Services wrapper for the CustomerOrder will
provide the appropriate accessor methods to
establish such relationships, with the details of the
relationship stored in the IRules Property Repository
(described in Section 4). A similar relationship
exists between ItemStock and Supplier to indicate the
supplier of a specific inventory item.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

8

Component CustomerOrder implements WebService proxy
CustomerOrder (extent orders)
{CustomerOrder create (String orderId, String custId, String
orderDate, String creditCardName, String paymentStatus, String
shipper, String shippingStatus, String price)
{CustomerOrder createOrder (String orderId, String custId, String
orderDate, String creditCardName, String paymentStatus, String
shipper, String shippingStatus, String price);}

Void remove (String orderId)
{Void removeCustomerOrder (String orderId);}

Collection findAll ()
{Collection findAllCustomerOrder ();}
relationship CustomerInfo hasCustomer inverse
CustomerInfo::relatedOrders;

relationship Shipper hasTrackingNo inverse Shipper::hasOrder;}

Figure 8: CDL of CustomerOrder

Externalized relationships can also exist with

services outside of the enterprise. In Figure 7,
ShippingService is an external service used by the
application. The ShippingService provides a unique
tracking number for items being shipped. An
externalized relationship is used to relate a
CustomerOrder with its ShippingService tracking
number.

4 THE IRULES PROPERTY
REPOSITORY

The IRules Property Repository shown in Figure 4 is
a centralized state management facility for storing
the stored attributes and externalized relationships of
distributed components. The repository has been
designed to take care of the dynamic aspects of Web
Service composition by dynamically generating the
relational tables for storing these IRules properties.
The necessary SQL statements for creation of the
appropriate tables are constructed using the CDL
metadata at run time, using JDBC to send create table
statements to the property repository for each stored
attribute and externalized relationship to be defined.
Therefore, any addition of services can be
dynamically incorporated into the overall integration
process.

For example, to relate an instance of
CustomerOrder with the CustomerInfo component
across Web Services, the primary keys that are used
as references to instances of EJBs across the two
Web Services are stored in an externalized
relationship table, named CustomerOrderCustomerInfo
within the IRules Property Repository. The table is

dynamically constructed through an algorithm that
retrieves the IRules Web Service metadata to issue
the following create table statement:

create table CustomerOrderCustomerInfo (

customerOrderNo varchar(5) primary key
customerId varchar(30));.

Since the relationship is an N:1 relationship (i.e.,
many orders related to one customer), the
customerOrderNo is determined to be the key of the
table. To set the value of an externalized
relationship, the integrator calls the
setCustomerOrderCustomerInfo (keyCustomerOrder,
keyCustomerInfo) accessor method for that particular
relation. Accessor methods are provided by default
by the Web Service wrapper for each relationship
defined. On calling the relationship method, the keys
passed to the method are stored into the externalized
relationship table. Additional accessor methods can
be called to retrieve the details of relationships
between component instances. As with the
invocation of methods on components, the
relationship accessor methods are invoked by
calling the generic callWebServiceMethod for the
appropriate instance of the IRulesWrapperClass.

5 RELATED WORK

There are several recent projects related to the use of
Web Services in the IRules event and rule-based
integration environment. The research in (Benatallah
et al., 2002) presents a novel declarative language
for composition of Web Services using state charts.
A state chart is composed of states and transitions,
where transitions are represented as active rules. The
eFlow system (Casati et al., 2000) is a service
process engine that supports specification,
enactment, and management of composite e-
services. A composite service in eFlow is described
as a process schema that may include services,
decisions or rules, and event nodes. Rules control
the business flow while event nodes enable sending
and receiving different types of events. The research
in (Zeng et al., 2002) presents a rule-based approach
for composition of Web Services, enabling dynamic
composition of Web Services with run-time
activation of rules. The research in (Zeng et al.,
2002) provides a declarative language for the
composition of services. The service composition
models are generated on demand and can be re-
configured at runtime.
In comparison to the related work described above,
the IRules project follows a database centric
approach. The concept of externalized relationships
and stored attributes are absent in the Web Services

A PROTOTYPE FOR INTEGRATION OF WEB SERVICES INTO THE IRULES APPROACH TO COMPONENT
INTEGRATION

9

project of (Benatallah et al., 2002). The research
presented in this paper demonstrates the use of
IRules functionality within Web Services. The
eFlow system (Casati et al., 2000) provides features
for service processes to be adaptive and change
according to business requirements and environment
conditions. Similar functionality can be achieved in
the IRules system by defining integration rules,
which may change according to business
requirements to enable adaptive integration of
components.

6 SUMMARY

This research has developed a prototype for
extending the IRules environment for the use of
Web Services as a service interface to EJB
components. The IRules Web Service Wrappers
have been designed to give a dynamic nature to the
IRules integration environment, in addition to
supporting the functionality of the IRules
environment. This research has also developed a
state management facility for the dynamic creation
and storage of IRules properties without
recompilation of the wrappers, thus enabling
dynamic business processes.

There are several directions for future research.
One direction involves the incorporation of other
component models into the IRules framework using
the Web Services interface to demonstrate the
component independence of the environment.
Furthermore, a Grid Service provide a means for
exposing a Web Service as one that provides a set of
well-defined interfaces that follow specific
conventions. Future research should extend the
IRules approach for the integration of Grid Services.
The ISL can also be enhanced to provide an XML-
based process specification language, such as that of
BPEL4WS, together with a mechanism for handling
events and integration rules. The processing
language can be further extended to support Grid
Services.

REFERENCES

Benatallah, B., Dumas, M., Sheng, Q., and Ngu, A. 2002.
Declarative Composition and Peer-to-Peer
Provisioning of Dynamic Web Services. Proc. of 18th
Int. Conf. on Data Eng. (San Jose, USA), pp. 297–
308.

Brown, A., Johnston, S., and Kelly K., 2003. Using
Service Oriented Architecture and Component Based
Development to Build Web Services Application.
Rational-IBM White paper.

Casati, F., Ilnicki, S., Jin, L., and Krishnamoorthy, V.,
Shan, M. 2000. eFlow: a Platform for Developing and
Managing Composite e-Services, Software
Technology, Hewlett-Packard, HPL-2000-39 (March).

Curbera, F., Y. Goland, J. Klein, F. Leymann, D. Roller,
S. Thatte, S. and Weerawarana 2002. Business Process
Execution Language for Web Services, Version1.0.
http://www.ibm.com/developerworks/ li-brary/ws-
bpel.

Dietrich, S., Urban, S., Sundermier, A., Jin, Y.,
Kambhampati, S., and Na, Y. 2001. A Language and
Framework for Supporting an Active Approach to
Component-Based Software Integration, Informatica,
volume 25, number 4, pp. 443-454.

EJB, 2001. Enterprise JavaBeans Specification 2.0.
Proposed Final Draft 2.

Jin, Y., Urban, S., Sundermier, A., Dietrich, S. 2002. An
Execution and Transaction Model for Active, Rule-
Based Component Integration Middleware, Proc. of
the Engineering and Deployment of Cooperative
Information Systems, (Sept) (Beijing, China), pp. 403-
417.

Kambhampati S, 2003. An Event Service For A Rule-
Based Approach To Component Integration, M.S.
Thesis, Arizona State University, Dept. of Computer
Sci. and Eng.

Kumar, V. 2004. A Prototype for Integration Of Web
Services Into The IRules Approach To Component
Integration, M.S. Thesis, Arizona State University,
Dept. of Computer Sci. and Eng.

Patil, R. 2003. A Framework for supporting an active
approach to component based software integration,
M.S. Thesis, Arizona State University, Dept. of
Computer Sci. and Eng.

Urban, S., Dietrich, S., Na, Y., Jin, Y., Sundermier, A.,
Saxena, A. 2001. The IRules Project: Using Active
Rules for the Integration of Distributed Software
Components, Proc. of the 9th IFIP 2.6 Working Conf.
on Database Semantics: Semantic Issues in E-
Commerce Systems, (Hong Kong), pp. 265-286.

Urban, S., Kambhampati, S., Dietrich. S., Jin, Y., and
Sundermier, A., 2004. An Event Processing System
for Rule-Based Component Integration Int. Conf. on
Enterprise Information Systems, (Porto, Portugal), pp.
312-319

 Web Services, 2000. Web services architecture overview.
The next stage of evolution for e-business, IBM
Technical Document, Web Architecture Library.

Zeng, L., Benatallah, B., Lei, H., Ngu, A., Flaxer, D., and
Chang, H., 2002. Flexible Composition of Enterprise
Web Services, IBM T.J. Watson Research Center.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

10

