
SOFTWARE MAINTENANCE EXPERT SYSTEM (SMxpert)
A Decision Support Instrument

Alain April, Jean-Marc Desharnais, Ph.D.
École de Technologie Supérieure, 1100 Notre-Dame West, Montreal, Canada

Keywords: Knowledge-based system, software maintenance, maturity model, ontology, decision support.

Abstract: Maintaining and supporting the software of an organization is not an easy task, and software maintainers do
not currently have access to tools to evaluate strategies for improving the specific activities of software
maintenance. This article presents a knowledge-based system which helps in locating best practices in a
software maintenance capability maturity model (SMmm). The contributions of this paper are: 1) to
instrument the maturity model with a support tool to aid software maintenance practitioners in locating
specific best practices; and 2) to describe the knowledge-based approach and system overview used by the
research team.

1 INTRODUCTION

Knowledge transfer of a large number of best
practices, described in a maturity model, has proved
difficult (Abran et al., 2004) . This is especially true
during the training stage for an assessor or a new
participant in a process improvement activity. It is
also challenging to quickly refer to, or access, the
right practice, or subset of practices, when trying to
answer specific questions during or after a maturity
assessment.

The maturity model SMmm contains a large
number of concepts and information which are
structured in many successive levels (April et al.,
2004b, 2002, April et al., 2004a). The first is called
the process domains level, and reflects the main
process knowledge areas of a maturity model. In the
SMmm, there are 4 process domains (process
management, maintenance request management,
software evolution engineering and support to
software engineering evolution). Each process
domain is broken down into one or more key
process areas (KPAs). These KPAs logically group
together items which conceptually belong together.
A KPA is further divided into roadmaps with one or
more best practices, spanning five SMmm maturity
levels. The complete SMmm has 4 domains, 18
KPAs, 74 roadmaps and 443 best practices.

It would be beneficial to have a knowledge-
based system (KBS) to help access this complex
structure and large amount of information. A
potential solution to this problem would be to
develop a knowledge-based system for the SMmm.
The proposed modeling of a software maintenance

KBS is based on the van Heijst methodology (Van
Heijst et al., 1997), which consists of constructing a
task model, selecting or building an ontology
(Uschold and Jasper, 2001), mapping the ontology
onto the knowledge roles in the task model and
instantiating the application ontology with this
specific domain knowledge. According to van
Heijst, there are at least five different types of
knowledge to be taken into account when
constructing such a system: tasks, problem-solving
methods, inferences, the ontology and the domain
knowledge1. For van Heijst, domain knowledge
refers to a collection of statements about the domain
(Van Heijst et al., 1997). The domain of this
specific research is software maintenance, and it is
divided into 4 process domains. Examples of
statements are presented in section 3. At a high
level, the ontology refers to a part of the software
maintenance ontology proposed by (Kitchenham and
et al., 1999) presented in section 4. The inferences,
problem-solving methods and tasks are described at
length in section 5. The tool environment and
conclusion, as well as future work, are presented in
sections 6 and 7. Section 2 begins by presenting the
goals of the SMmm architecture.

1 van Heijst uses the different types of knowledge in a
more generic way than we do in this document, and these
have been adapted for us by Desharnais, J.-M.,Application
de la mesure fonctionnelle COSMIC-FFP: une approche
cognitive,, UQAM,2004 Montréal

142
April A. and Desharnais J. (2005).
SOFTWARE MAINTENANCE EXPERT SYSTEM (SMxpert) - A Decision Support Instrument.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 142-148
DOI: 10.5220/0002526601420148
Copyright c© SciTePress

2 GOALS OF THE SMmm
ARCHITECTURE

The SMmm was designed as a customer-focused
benchmark for either:
• Auditing the software maintenance capability

of a service supplier or outsourcer; or
• Supporting the process improvement activities

of software maintenance organizations.

To address the concerns specific to the
maintainer, a distinct maintenance body of
knowledge is required . The SMmm is also designed
to complement the maturity model developed by the
SEI at Carnegie Mellon University in Pittsburgh
(CMMi, 2002) by focusing mainly on practices
specific to software maintenance. The architecture
of the model locates the most fundamental practices
at a lower level of maturity, whereas the most
advanced practices are located at a higher level of
maturity. An organization will typically mature from
the lower to the higher maturity level as it improves.
Lower-level practices must be implemented and
sustained for higher-level practices to be achieved.

3 SMmm AND KNOWLEDGE
STATEMENTS

Software maintainers experience a number of
problems. These have been documented and an
attempt made to rank them in order of importance.
One of the first reported investigations was
conducted by Lientz and Swanson (Lientz and
Swanson, 1981). They identified six problems
related to users of the applications, to managerial
constraints and to the quality of software
documentation. Other surveys have found that a
large percentage of the software maintenance
problems reported are related to the software
product itself. This survey identified complex and
old source code which was badly documented and
structured in a complex way. More recent surveys
conducted among attendees at successive software
maintenance conferences (Dekleva, 1992) ranked
perceived problems in the following order of
importance (see Table 1). These are also examples
of knowledge statements about the domain of
software maintenance. Key to helping software

maintainers would be to provide them with ways of
resolving their problems by leading them to
documented best practices.

Table 1: Top maintenance problems (Dekleva, 1992)

Rank Maintenance problem
1 Managing fast-changing priorities
2 Inadequate testing techniques
3 Difficulty in measuring performance
4 Missing or incomplete software

documentation
5 Adapting to rapid changes in user

organizations
6 A large number of user requests in waiting
7 Difficulty in measuring/demonstrating the

maintenance team’s contribution
8 Low morale due to lack of recognition
9 Not many professionals in the field,

especially experienced ones
10 Little methodology, few standards,

procedures or tools specific to maintenance
11 Source code complex and unstructured
12 Integration, overlap and incompatibility of

systems
13 Little training available to personnel
14 No strategic plans for maintenance
15 Difficulty in meeting user expectations
16 Lack of understanding and support from IT

managers
17 Maintenance software running on obsolete

systems and technologies
18 Little will for reengineering applications
19 Loss of expertise when employees leave

There is a growing number of sources where

software maintainers can look for best practices, a
major challenge being to encourage these sources to
use the same terminology, process models and
international standards. The practices used by
maintainers need to show them how to meet their
daily service goals. While these practices are most
often described within their corresponding
operational and support processes, and consist of
numerous procedures, a very large number of
problem-solving practices could be presented in a
KBS which would answer their many questions
about those problems. Examples are presented in
section 5. When using the software maintenance
ontology in the KBS, it was necessary to consider
the structure of the maturity model relationship
between the many process domains, roadmaps and
practices. This problem is addressed next.

SOFTWARE MAINTENANCE EXPERT SYSTEM (SMxpert) - A Decision Support Instrument

143

Method

constrains

Client organisation

Client Human Resources

Process

Procedure

Modification Activity

Maintenance Activity

Maint. Manager

Management activity

Change Control

Event Management

Human Resource

SLA

approves

Technique

Paradigm

Users

Resource

uses
is used in

Maint. Human Resources

performs

CustomerMaint. Engineer negotiates_with

Maintenance Management

Maintenance Planning

performs

Maintenance Training

informstrains
trains

Method

constrains

Client organisationClient organization

Client Human Resources

Process

Procedure

Modification Activity

Maintenance Activity

Maint. Manager

Management activity

Change Control

Event Management

Human ResourceHuman Resources

SLA

approves

Technique

Paradigm

Users

Resources

uses
is used in

Maint. Human Resources

performs

CustomerCustomerMaint. EngineerMaint. Engineer negotiates_with

Maintenance Management

Maintenance PlanningMaintenance Planning

performs

Maintenance TrainingMaintenance Training

informstrains
trains

Method

constrains

Client organisationClient organisation

Client Human Resources

Process

Procedure

Modification Activity

Maintenance Activity

Maint. Manager

Management activity

Change Control

Event Management

Human ResourceHuman Resource

SLA

approves

Technique

Paradigm

Users

Resource

uses
is used in

Maint. Human Resources

performs

CustomerCustomerMaint. EngineerMaint. Engineer negotiates_with

Maintenance Management

Maintenance PlanningMaintenance Planning

performs

Maintenance TrainingMaintenance Training

informstrains
trains

Method

constrains

Client organisationClient organization

Client Human Resources

Process

Procedure

Modification Activity

Maintenance Activity

Maint. Manager

Management activity

Change Control

Event Management

Human ResourceHuman Resources

SLA

approves

Technique

Paradigm

Users

Resources

uses
is used in

Maint. Human Resources

performs

CustomerCustomerMaint. EngineerMaint. Engineer negotiates_with

Maintenance Management

Maintenance PlanningMaintenance Planning

performs

Maintenance TrainingMaintenance Training

informstrains
trains

Figure 1: Part of the software maintenance ontology of (Kitchenham and et al., 1999)

4 ONTOLOGY OF THE

SOFTWARE MAINTENANCE
BODY OF KNOWLEDGE

We elected to implement only a subset of the
ontology developed by Kitchenham et al. (1999) for
the initial trial of this research project. The
Kitchenam ontology was chosen because its author
is well known in Software Engineering maintenance,
The following authors also write on the subject
(Vizcaíno et al., 2003), (Ruiz et al., 2004) and (Dias
et al., 2003) from the point of view of the
knowledge system. Figure 1 describes the different
maintenance concepts considered surrounding a
software maintenance activity. Software
maintenance is highly event-driven, which means
that some maintenance activities are unscheduled
and can interrupt ongoing work. This subset of the
ontology represents many, but not all, the concepts
involved in responding to the questions related to
the first problem identified by Dekleva: ‘Managing
fast-changing priorities.’ Maintainers agree that this
is the most important problem they face. How can
they handle the fast-changing priorities of the
customer? Solutions to this problem are likely to be
found by using many paths through the maintenance
concepts of the ontology. Navigation through these
concepts should lead to associated concepts which
are conceptually linked and likely to contribute to a
solution, like the need for better event management,

change control, maintenance planning, Service
Level Agreements, maintenance manager
negotiation, training, procedures, and so forth. Many
more concepts must be involved to contribute to all
aspects of the solution, but our purpose is to show
the utility of a KBS in the software maintenance
domain, and it therefore starts with a constrained
number of concepts. Maturity models typically
include the detailed best practices that could be of
help in solving this type of problem. The main issue
is that the best practice locations and their
interrelationships are hidden in the layered
architecture of the maturity model, specifically in its
process domains, KPAs and roadmaps. It is
therefore necessary to find a way to link this layered
architecture with the maintenance concepts of the
ontology and proceed to analyze the tasks required
to build a KBS to support the maintainers in their
quest for solutions. The next section describes the
navigation concepts that have been implemented in
SMxpert. The user of the KBS navigates using a
sequence of tasks that will lead him through a
further sequence of tasks.

5 TASK ANALYSIS

According to (Van Heijst et al., 1997), the first
activity in the construction of a KBS is the definition
of task analysis. Task analysis begins, at a high
level, with a definition of an index of terms. This

ICEIS 2005 - ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS

144

index includes words commonly used in software
engineering (see Figure 2). From this index, a subset
of more restrictive words is identified. This subset is
a list of keywords recognized specifically in
software maintenance. Each keyword is then
connected to one or more maintenance concepts. A
maintenance concept, in software maintenance, is a
concept found in the Software Maintenance Body of
Knowledge and ontology (see Figure 2). Using the
software maintenance ontology, every software
maintenance problem identified by Dekleva has
been linked to themes (questions) which help the
user of the KBS to navigate to the part of the
maturity model that will propose recommendations
in the form of best practices.

Expanding the 5 high-level tasks in Figure 2, we
propose 15 detailed tasks (see Table 2) which will
help identify a best practice related to the SMmm.
The link between the maintenance concepts and the
maturity model is made in the themes concept.
Themes are questions which have been developed to
hop from node to node in the ontology. A close look
at Figure 1 reveals that the themes concept can send
the user to another theme, to another maintenance
concept (up arrow), or, finally, to a recommendation
of the maturity model (down arrow). In Table 2, step
11, a number of themes, in the form of questions, are
presented to the user to guide him through the
network of maintenance concepts. For every best
practice, there are a number of themes (or choices)
from which the user can select (also called facts)
which will lead to a specific recommendation. There
are also a number of sub-tasks related to the
maintenance processes and the maintenance best
practices. (see Table 2). This step-by-step process
corresponds to the establishment of a diagnosis on
the basis of the identification of symptoms. It
indicates probabilities of occurrence of a specific
software maintenance problem. No symptom is
sufficient by itself to confirm the existence of a
specific problem. This is why we should use the
word “diagnosis”. The task model is used to help
“diagnose” the current maintenance practice and
map it to the maintenance model.

Figure 2: High-level view of SMxpert

Appendix A shows how the KBS helps the user
answer the following question: How do we accept or
reject a new maintenance request?

6 TOOL ENVIRONMENT

The SMxpert KBS was built using Java script and
XML, and supports the SMmm. The architecture,
design and implementation details of this KBS are
similar to those of the COSMIC KBS (Desharnais,
2003) which was developed as a diagnostic tool to
help IT personnel in the estimation of functional
size. The design of the KBS is based on using both
the case-based and ruled-based approaches
(Desharnais et al., 2002). The SMxpert KBS was
developed by two Master’s degree students from the
University of Namur, Belgium, during a research
exchange program with our university (Desharnais
et al., 2004). There is still a great deal of work
required to populate the knowledge base for all the
SMmm practices to allow users to obtain answers to
all the software maintenance problems identified by
Dekleva. Figure 3 shows an example of the user
layout. In this case, the user requests a
recommendation in a case where the service request
is very costly. A number of questions (themes) are
asked by the system. According to the answers,
there will be a specific recommendation which could
either suggest further research or provide an
opinion. There are also interfaces for both the
administrator and the expert. The administrator
interface manages access to SMXpert, while the
expert interface gives the expert the option of adding
new keywords, concepts, cases, themes and
recommendations.

SOFTWARE MAINTENANCE EXPERT SYSTEM (SMxpert) - A Decision Support Instrument

145

Figure 3: SMxpert user interface layout

7 CONCLUSION AND FUTURE
WORK

Identifying the best practices in a maturity model is
a difficult task, considering their number and the
multiple appropriate answers associated with each of
them. Our hypothesis is that a KBS could help in
finding an appropriate recommendation. The next
step in this research project is to populate the KBS,
validate the results with experts in the domain and
determine whether or not the KBS is a useful
support tool for training on the content of the
maturity model. It will be also necessary to improve
the interface, mainly for the sake of the expert.

REFERENCES

Abran, A., Moore, J. W., Bourque, P., Dupuis, R. and
Tripp, L.,Guide for the Software Engineering Body of
Knowledge (SWEBOK), Ironman version, IEEE
Computer Society Press: Los Alamitos CA,2004; 6-1-
6-15, Montréal, http://www.swebok.org [27 January
2005].

April, A., Abran, A. and Dumke, R. SMCMM Model to
Evaluate and Improve the Quality of the Software
Maintenance Process: Improvements, traceability and
conformity to standards, CSMR 2004 8th European
Conference on Software Maintenance and
Reengineering, (2004a) Tampere (Finland)

April, A., Abran A. and Dumke, R. Assessment of
Software Maintenance Capability: A model and its
Design Process, IASTED 2004, Conference on
Software Engineering (2004b), Innsbruck (Austria)

CMMi (Ed.) (2002) Capability Maturity Model
Integration for Software Engineering (CMMi),
Version 1.1, CMU/SEI-2002-TR-028, ESC-TR-2002-
028, Carnegie Mellon University.

Dekleva, S. M. Delphi Study of Software Maintenance
Problems, International Conference on Software
Maintenance (CSM 1992) (1992) IEEE Computer
Society Press: Los Alamitos CA

Desharnais, J.-M., Application de la mesure fonctionnelle
COSMIC-FFP: une approche cognitive, UQAM,
Montréal, 2003

Desharnais, J.-M., Application de la mesure fonctionnelle
COSMIC-FFP: une approche cognitive, UQAM,
Montréal, 2004

Desharnais, J.-M., Abran, A., Mayers, A., Buglione, L.
and Bevo, V. Knowledge Modeling for the Design of a
KBS in the Functional Size Measurement Domain,
KES 2002, IOS Press, Crema, Italy

Desharnais, J. M., Abran, A., Mayers, A., Vilz, J. and
Gruselin, F. (2004), Verification and validation of a
knowledge base system, KI, Special Issue on Software
Engineering for Knowledge-based Systems, Germany,
3.

Dias, M. G., Anquetil, N. and Oliveira, K. M. (2003),
Organizing the Knowledge Used in Software
Maintenance, Journal of Universal Computer Science,
9, 7 64-658.

Durkin, J. (1994) Expert system: Design and
Development, Prentice Hall, New York.

Kitchenham, B. and et al. (1999), Towards an Ontology of
Software Maintenance, J. Softw. Maint:Res. Parct.,
11(6):365-389.

Lientz, B. and Swanson, E. (1981), Problems in
Application Software Maintenance, Communications
of the ACM, 24, 11, 763-769.

Ruiz, F., Vizcaino, A., Piattini, M. and Garcia, F. (2004)
International Journal of Software Engineering and
Knowledge Engineering, 14, 3 323-349.

ICEIS 2005 - ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS

146

Uschold, M. and Jasper, R. (2001), An ontology for the
management of software maintenance projects, In
Industrial Knowledge Management: a micro-level
approach,Bedford (UK), pp. 549-563.

Van Heijst, G., Schreiber, A. T. and Wielinga, A.,Using
Explicit Ontologies in KBS Development, 2003
University of Amsterdam, Department of Social
Science Informatics, Amsterdam, 1997

Vizcaíno, A., Favela, J. and Piattini, M. A multi-agent
system for knowledge management in software
maintenance, KES 2003 (2003), Springer Verlag,
Oxford, UK

SOFTWARE MAINTENANCE EXPERT SYSTEM (SMxpert) - A Decision Support Instrument

147

Appendix A: Task description of the KBS using Dekleva’s first problem

NO. TASK EXAMPLE
1. Accessing the index The user enters a word that will identify a suggested keyword. As an example, the

user enters: Change in Priority
2. Choosing a resulting

keyword
The user will enter a keyword that will help the KBS find the most closely related
KPA and roadmap concepts. The system presents the following keywords: Change
Management, Change Control, Staff Rotation, Event and Service Request, Service
Level Agreement. The user chooses: Event and Service Request

3. Searching for a related
software maintenance
concept

The KBS presents the maintenance concepts (which are related to the KPA and
roadmap) to the user.

4. Giving priority to
concepts

The KBS will present the concepts in order of priority to the user. A percentage is
related to each concept. The expert has previously established this percentage. As an
example: 1) Event, 2) Process, 3) SLA, 4) Resource, 5) Change Control and 6)
Maintenance Manager.

5. Choosing a maintenance
topological concept

The user chooses one or multiple maintenance concepts, Event in our example

6. Displaying themes With Event, there are 5 themes presented to the user in the forum of questions:
A) Is there a Service Level Agreement ?
B) Are the software maintenance services/processes defined ?
C) Are the services/requests planned ?
D) Are the maintenance personnel aware of agreed priorities and amenable to
change?

7. Choosing the status of
each theme

The user will find facts for each practice (theme). He can answer yes or no to any of
the themes.

8. Rating the status (facts) An algorithm based on Bayesian Theory (Uschold and Jasper, 2001) is used to
calculate the rate (MYCIN approach). The algorithm rates the facts chosen.

9. Displaying the results The resulting percentage relating to the best request management is shown to the user.
10. Assessing the results The formula is based on Bayesian Theory, as explained by (Durkin, 1994).

Case 1 – CF(CP) = CF(Theme1) = q_choice_perc*P_Q_perc
Case 2 – CF(CP) = CF(Theme1) *CF(Theme2)
Case 3 – CF1(Theme) = CFcombine[CF(Theme1, CF(Theme2)]
 CF(CP) = CFcombine[CF1(Theme), CF(Theme3)]
Etc.

11. Recommendation/explan
ation

no Service Level Agreement

A yes B yes C yes D Improvement

no Process

no Maintenance Training

no Maintenance Planning

no Service Level Agreement

A yes B yes C yes D Improvement

no Process

no Maintenance Training

no Maintenance Planning

The KBS will recommend the following solution (simplified for this paper):

12. Displaying other best
practices

Another part of the recommendation will show a different option, like: route request
to account manager, interrupt work and insert in list of work, insert minor
enhancement in list of work.

13. Displaying an
explanation

There is also the possibility of an explanation. In our case, the explanation takes up
one page and could not be presented here due to lack of space (April et al., 2004b)

14. Acceptability Depending on the case that the user has to solve, the recommendation/explanation
will be accepted or rejected. In our case, the user accepted the recommendation
because it was not necessary to refer the change request to another group based on the
criteria.

15. Choosing best practices
(new)

The process could start again. In this example, the user decided to stop because he
considered he had enough information about the case. In a more complex situation,
more choices could be necessary.

ICEIS 2005 - ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS

148

