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Abstract: Most search engines do their text query and retrieval based on keyword phrases. However, publishers 
cannot anticipate all possible ways in which users search for the items in their documents. In fact, many 
times, there may be no direct keyword match between a search phrase and descriptions of items that are 
perfect “hits” for the search. We present a highly automated solution to the problem of bridging the 
semantic gap between item information and search phrases. Our system can learn rule-based definitions that 
can be ascribed to search phrases with dynamic connotations by extracting structured item information 
from product catalogs and by utilizing a frequent itemset mining algorithm. We present experimental results 
for a realistic e-commerce domain. Also, we compare our rule-mining approach to vector-based relevance 
feedback retrieval techniques and show that our system yields definitions that are easier to validate and 
perform better.  

1 INTRODUCTION 

Most search engines do their text query and retrieval 
using keywords. The average keyword query length 
is under three words (2.2 words (Crescenzi, 2000)). 
Recent research (Andrews, 2003) found that 40 
percent of companies rate their search tools as “not 
very useful” or “only somewhat useful.” Further, a 
review of 89 sites (Andrews, 2003) found that 75 
percent have keyword search engines that fail to 
retrieve important information and put results in 
order of relevance; 92 percent fail to provide guided 
search interfaces to help offset keyword deficiencies 
(Andrews, 2003), and seven out of 10 web shoppers 
were unable to find products using the search 
engine, even when the items were stocked and 
available. 

The Defining Problem: Publishers cannot 
anticipate all possible ways in which users search for 
the items in their documents. In fact, many times, 
there may be no direct keyword match between a 
search phrase and descriptions of items that are 
perfect “hits” for the search. For example, if a 
shopper uses “motorcycle jacket” then, unless the 
publisher or search engine knows that every “leather 
jacket” is a “motorcycle jacket”, it cannot produce 
all matches for user’s search. Thus, for certain 
phrases, there is a semantic gap between the search 

phrase used and the way the corresponding matching 
items are described. A serious consequence of this 
gap is that it results in unsatisfied customers. Thus 
there is a critical need to boost item findability by 
bridging the semantic gap that exists between search 
phrases and item information.  Closing this gap has 
the strong potential to translate web search traffic 
into higher conversion rates and more satisfied 
customers. 

Issues in Bridging the Semantic Gap: We 
denote a search phrase to be a “target search 
phrase” if does not directly match certain relevant 
item descriptions.  The semantics of items matching 
such “target search phrases” is implicit in their 
descriptions. For phrases with fixed meanings i.e. 
their connotations do not change such as in “animal 
print comforter”, it is possible to close the gap by 
extracting their meaning with a thesaurus (Voorhees, 
1998) and relating it to product descriptions, such as 
“zebra print comforter” or “leopard print bedding” 
etc. Where they pose a more interesting challenge is 
when their meaning is subjective, driven by 
perceptions, and hence their connotations change 
over time as in the case of “fashionable handbag” 
and “luxury bedding”. The concept of a fashionable 
handbag is based on trends, which change over time, 
and correspondingly the attribute values 
characterizing such a bag also changes. Similarly, 
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the concept of “luxury bedding” depends on the 
brands and designs available on the market that are 
considered as luxury and their attributes. Bridging 
the semantic gap therefore is in essence the problem 
of inferring the meaning of search phrases in all its 
nuances. 

Our Approach: In this paper we present an 
algorithm that (i) structures item information and (ii) 
uses a frequent itemset mining algorithm to learn the 
“target phrase” definitions. 

2 RELATED WORKS  

In (Aholen, 1998), generalized episodes and episode 
rules are used for Descriptive Phrase Extraction. 
Episode rules are the modification of association 
rules and episode is the modification of frequent set.  
An episode is a collection of feature vectors with a 
partial order; authors claimed that their approach is 
useful in phrase mining in Finnish, a language that 
has the relaxed order of words in a sentence. In our 
previous work (Nguyen, 2003), we present a co-
occurrence clustering algorithm that identifies 
phrases that frequently co-occurs with the target 
phrase from the meta-tags of Web documents. 
However, in this paper we address a different 
problem; we attempt to mine the phrase definitions 
in terms of extracted item information, thus, the 
mined definitions can be utilized to connect “search 
phrases” to real items in all their nuances. 

     The frequent itemset mining problem is to 
discover a set of items shared among a large number 
of records in the database. There are two main 
search strategies to find the frequent items set. 
Apriori (Agrawal, 1994) and several other Apriori 
like algorithms adopt Breadth-First-Search model, 
while Eclat (Zaki, 2000) and FPGrowth (Han, 2000) 
are well known algorithms that employ Depth-First 
manner to search all frequent itemsets of a database. 
Our algorithm also searches for frequent itemsets in 
a Depth-First manner. But, unlike the lattice 
structure used in Eclat or the conditional frequent 
pattern tree used in FPGrowth, we propose the so 
called 2-frequent itemset graph and utilize heuristic 
syntheses to prune the search space in order to 
improve the performance. We plan to further 
optimize our algorithm and conduct detailed 
comparisons to the above algorithms. 
     The relevance feedback (Salton, 1990) method 
can also be used to refine the original keyword 
phrase by using the document vectors (Baeza-Yates, 
1999) of the extracted relevant items as additional 
information. In Section 6, we present experimental 
results and show that the rules that our system 

learns, by utilizing the extracted relevant item 
information, are easier to validate and perform better 
than retrieval with the relevance feedback method. 

3 SYSTEM DESCRIPTION 

I. Item Name Structuring:  This component takes a 
product catalogue and extracts structured 
information for mining the phrase based and 
parametric definitions. Details are discussed in 
Section 4. 
II. Mining Search Phrase Definitions: In this 
phase, we divide the phrase definition mining 
problems into two sub problems (i) mining the 
parametric definitions from extracted attribute value 
pairs of items, and (ii) mining phrase based 
definitions from the long item descriptions. Details 
are discussed in Section 5. 

4 DATA LABELING 

This section presents the techniques for an e-
commerce domain, for the sake of providing 
examples. Our techniques can be customized for 
different domains.  The major tasks in this phase are 
structuring and labeling of extracted data. The 
readers are also referred to (Davulcu, 2003) for more 
information in details. 

4.1 Labeling and Structuring 
Extracted Data 

This section describes a technique to partition the 
short product item names into their various 
attributes. We achieve this by grouping and aligning 
the tokens in the item names such that the instances 
of the same attribute from multiple products fall 
under the same category indicating that they are of 
similar types.  

The motivation behind doing the partition is to 
organize data. By discovering attributes in product 
data and arranging the values in a table, one can 
build a search engine which can enable quicker and 
precise product searches in an efficient way.  

4.2 The Algorithm 

Before proceeding to the algorithm, it helps to 
identify item names as a sequence of tokens obtained 
when white-space is used as a delimiter. Since the 
sequences of tokens obtained from item names are 
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all from a single web page and belong to the same 
category, they are likely to have a similar pattern. As 
mentioned before, our algorithm is designed to 
process collections of such item names without any 
labeling whatsoever. So it can be performed on the 
fly as and when data is extracted from the web sites. 
Following are the general properties of the data our 
algorithm can process: 

Super-Tokens: Any pair of tokens t1, t2 that always 
co-occur together and occur more than once belong 
to a multi token instance of a type.  

Context: All single tokens occurring between 
identical attribute types belong to the same type. 
This means that if two tokens t1 and t2 from distinct 
item names occur in between same types TL and TR 
then they should be of the same type.  

Anchor Type: A token that uniquely occurs within 
all item names should belong to a unique type, 
which we call an Anchor Type.  

Density: Attribute types should be densely 
populated. Meaning that, every type should occur 
within the majority of item names.  

Ordering: Pairwise ordering of all types should be 
consistent within a collection. 

Tokenization: The item names are tokenized by 
using white space characters as delimiters. Tokens 
are stemmed so using the Porter Stemmer (Porter, 
1980).  

Super Tokenization: The second step identifies 
multi-token attributes.  

Initialization of Types: To initialize, every item 
name is prefixed and suffixed with a Begin and an 
End token.  

Context Based Inference: This step aligns tokens 
from different item names under a single type. This 
step takes advantage of tokens repeating across 
descriptions and operates based on the first 
assumption, Context, that tokens within similar 
contexts have similar attribute types. 

If a token sequences tx,t, ty and t'x, t', t'y  exist in 
D such that tx, t'x ∈Tp and ty, t'y ∈Tq, then combine 
and replace the types of tokens t and t' with a new 
type Tn = Typeof(t) U Typeof(t') . 

Type Ordering: In this step, the set of inferred 
types T are sorted based on their ordering in the 
original item names. We utilize the Pairwise Offset 
Difference (POD) metric to compare different types.  

POD between types Ti and Tj is defined as: 

 

where fx is the token offset of x from the start of 
its item name and fy is the token offset of y. If this 
value is greater than zero, then the type Ti comes 
after type Tj in the sorted order. 

Due to space constraints, tokens have been 
aligned such that those from the same type are offset 
at the same column. The type numbers the tokens 
belong to are indicated at the top. 

___________________________________ 
Algorithm 1: Item Name Partition 

 

 

 

 

 

 

 

 

 

 

 

 

 

Type Merging: A careful observation shows that 
some of the neighbouring types are fillers for each 
other. Meaning that, they are not instantiated 
together for any item name. Such types are 
candidates for merging and are called merge 
compatible. Merging at this point is logical because 
of our assumption that the types are densely 
populated. 

Merge Concatenation: Finally, merge-
concatenation is performed to eliminate sparsely 
populated types. Sparsely populated types are those 
with a majority of missing values. By our 
assumption, collections of item names should have 
dense attributes. This implies that the tokens of a 
sparsely populated type should be concatenated with 
the values of one of the neighbouring types.  

4.3 Experimental Results 

To evaluate the algorithm, our DataRover system 
was used to crawl and extract list-of-products from 
the following five Web sites: www.officemax.com, 

(1)
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www.officedepot.com, www.acehardware.com, 
www.homeclick.com and www.overstock.com.  

 Three metrics were used to measure the 
effectiveness of the algorithm. The first two evaluate 
the ability to identify fragments of the descriptions 
to the correct type and the last one indicates the 
correctness of the number of attributes. 

     Precision indicates how correctly type-value 
pairs are identified.  

 
     Recall This quantity indicates if every 

existing type-value pair is being identified. 

 
     Attributes Error Rate indicates the error in 

the number of attributes described in the set of 
product names.  

 

Table 1: Summary of Evaluation Measures for Different 
Web Sites for the Items Name Structuring Algorithm 

 

 
 
 
 
 

5 MINING THE DEFINITION OF A 
TARGET PHRASE 

In this section, we introduce the problem of mining 
definitions of a phrase from product data extracted 
from the matching Web pages. Using extraction 
techniques discussed in Section 4 we can retrieve 
tabular parametric attributes of matching products as 
well as their long descriptions. Next, we apply 
frequent itemset mining algorithms to learn the 
parametric definitions and phrase-based definitions 
of target phrases from the extracted product data.  
First, in Sections 5.1 thru 5.4 we introduce an 
algorithm that finds all frequent itemsets from a 
database. Section 5.5 discusses the problem of 
mining parametric definitions. In Section 5.6 textual 

definition mining is discussed. Since their 
introduction in 1994 by Agrawal et al. (Agrawal, 
1994), the frequent itemset and association rule 
mining problems have received a lot of attention 
among data mining research community. Over the 
last decade, many research papers (Han, 2001) have 
been published presenting new algorithms as well as 
improvements on existing algorithms to tackle the 
efficiency of frequent itemset mining problems. The 
frequent itemset mining problem is to discover a set 
of items shared among a large number of transaction 
instances in the database. For example, consider the 
product information database matching ‘trendy 
shoes’ that we extract from retail Web sites. Here, 
each instance represents the collection of product’s 
<attribute, value>pairs for attributes such as brand, 
price, style, gender, color and description. The 
discovered patterns would be the set of <attribute, 
value> pairs that most frequently co-occur in the 
database. These patterns define the parametric 
description of the target phrase ‘trendy shoe’. 

5.1 Boolean Representation of the 
Database 

The advantage of Boolean representation is that 
many logical operations such as superset, subset, set 
subtraction, OR, XOR, etc between any number of 
attribute vectors can be performed extremely fast. 

5.2 Constructing 2-frequent Itemsets 
Graph 

The set of 2-frequent itemsets plays crucial role in 
finding all frequent itemsets. The main idea is that, 
from the observation that if {Ii….Ij} is a frequent 
itemset then all pairs of items in this set must also be 
a frequent itemset. Using this property of a frequent 
set, our algorithm will first create a graph that 
represents the 2-frequent itemsets among all items 
that satisfy the minimum support threshold.  

The the 2-frequent itemset graph is the directed 
graph G(V,E) which is constructed as follows: 

V = I; I is the set of items that satisfy the 
minimum support in database D. 

E = {(vi,vj) | {i,j} is a 2-frequent itemset and i<j). 
We sort the frequent single items into 

lexicographical order and for a 2-frequent itemset, 
we construct a directed edge from the node (item) 
whose index is lower to the node whose index is 
higher. 

 

BOOSTING ITEM FINDABILITY: BRIDGING THE SEMANTIC GAP BETWEEN SEARCH PHRASES AND ITEM
INFORMATION

51



 

Example 1. 
                        
 
 
 
 
 
 

 
 

I1 I2 I3 I4

1 1 1 0 
0 1 1 1 
1 0 1 0 
1 1 0 0 
0 0 1 1 
1 1 0 0 
0 1 0 1 
1 0 0 1 

Figure 1: Database I and its 2-frequent item graph. 
 

For this database, if minimum support δ is set to 
25%, then the 2-frequent itemsets are I1I2, I2I3, I2I4, 
I3I4. The 2-frequent itemsets graph would be as in 
Figure 1. 

5.3 Searching for Frequent Itemsets 

The algorithm iteratively starts from every node in 
the graph and recursively traverses depth-first to its 
descendants. At any step k (k>1), the algorithm will 
choose to go to a child node v of the current node so 
that the path from the beginning node to v forms a k-
frequent itemset. If so, the algorithm will continue 
expand to v’s children to search for (k+1)-frequent 
itemset and so on. There are several algorithms [8, 
16] that generate frequent itemsets in depth-first 
manner. A distinguishing feature of our algorithm is 
that it searches on the 2-frequent itemset graph. 
Finding all 2-frequent set takes O(n2) operations 
where n is the number of frequent single items. Our 
algorithm utilizes the following heuristics to guide 
the search. 

Heuristic 1: At step k, choose only children 
nodes of node vk-1 that have incoming degree greater 
than or equal to the number of visited nodes, 
counted from the beginning node. Incoming degree 
of a node v, denoted as deg(v) is the number of 
nodes that point to v. The meaning of this heuristic is 
that, if deg(v) is smaller than the number of visited 
nodes (nodes in the path) then there exists at least 
one node among the set of previously visited k-1 
nodes that does not point to v. In other words, there 
exists at least one node in the current path that does 
not form a 2-frequent itemset with v. Therefore the 
k-1 nodes in the path (visited nodes) and v cannot 

form a k-frequent itemset hence it is pruned out 
without candidate itemset generation. 

Heuristic 2: At step k, choose only children 
nodes of node vk-1 that have the set of incoming 
nodes that is a superset of the set of all k-1 nodes in 
the visited path. This heuristic, which is applied after 
Heuristic 1, ensures that all previously visited nodes 
in the current path, must point to the node in 
consideration. This is also a necessary precondition 
that each visited node forms a 2-frequent itemset 
with the node in consideration. 

Heuristic 1 is efficient since the 2-frequent 
itemset graph is already constructed and the degree 
of all nodes is stored before the search proceeds. 
Heuristic 2 superset testing operation can also be 
performed efficiently using the bit-vector 
representation. Consequently, by utilizing these 
heuristic estimates, we can prune a lot of nodes that 
cannot be added to the visited nodes to form a 
frequent itemset and eliminate a lot of candidate 
itemset generation. 

5.4 Mining Parametric Definition of 
Phrases 

Note that, since we extract data from the Web by 
posing a search phrase query to a web search engine, 
all the instances in the data we get contain search 
phrase. Therefore, the association rule generation 
becomes simple by just putting the search phrase 
into the header of association rules and the body of 
rules is frequent itemsets. The support of obtained 
association rules equals to the support of frequent 
items set in their body since for a rule, the search 
phrase occurs in all instances that the frequent 
itemset (in the body of the rule) occurs. Next, we 
would like to utilize the extracted product 
information to mine parametric phrase definition 
rules made up from conjunctions of distinct 
<attribute, value> pairs, like: 

Trendy shoe ←  
brand = Steve Madden,  
Color = black,  
material = leather     

5.5 Mining Textual Definitions of 
Target Phrases 

Another resource of rich phrase definitions is the 
long product descriptions of the matching products. 
In the Section 4, we have already described how we 
plan to collect long product descriptions from 
product Web pages that matches a given target 
search phrase. In this section we describe the 
proposed algorithm for mining phrase definitions 
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that can connect hidden phrases to product 
descriptions themselves. In order to generate 
candidate phrases first we perform part-of-speech 
(POS) tagging and noun and verb phrase chunking 
(Finch, 1997) on the long description to obtain a 
more structured textual description. Part-of-speech 
(POS) tagging and chunking the above description 
yields the following structure. In the next step, we 
utilize the noun phrases as transaction instances and 
mine frequently used phrases from all the noun 
phrases of all the product descriptions that we have 
collected from the Web documents.  
       ___________________________________ 

   Algorithm 2: Frequent Itemset Mining 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Next, we use the mined frequent phrases as 

items and create transaction instances by marking all 
of the frequently used phrases matching anywhere in 
the long description. This would yield transaction 
instances made-up from frequently used phrases 
matching the product descriptions. 
      Next we mine the frequent itemsets among 
instances corresponding to the long descriptions to 
find the phrase definitions. Note that, due to our way 

to construct the items, all items are combinations of 
single words; therefore, there are items that subsume 
other items. As a subsequence, there are a lot of 
redundant final resultant frequent itemsets. For 
example a long description might yield the following 
items: “suede”, “pump”, “suede pump”, “fashion”, 
“savvy”, “woman”, “fashion savvy”, “savvy 
woman”, “fashion savvy woman”. Hence, we only 
want to mine the frequent itemset “suede pump”, 
“fashion savvy woman” because these frequent 
itemsets subsume the former frequent itemsets.  

6 EXPERIMENTAL RESULTS 

The tables below show some of the definitions that 
were mined. It is a relatively easy task for a domain 
expert to inspect and evaluate the quality of such 
rule-based definitions.  

6.1 Comparison to Relevance 
Feedback Method 

In order to compare the performance of our 
definition miner to standard relevance feedback 
retrieval method we mined a large database of shoes 
(33,000 items) from a collection of online vendors. 
Next, we keyword queried the database with the 
target exemplary search phrase “trendy shoe”.From 
the 166 keyword matching shoes, we mined rule-
based phrase definitions for “trendy shoes” yielding 
rules such as fashionable sneaker, platform shoes 
etc. that were validated by a domain expert. These 
mined rules matched 3,653 additional shoes. 
Alternatively, we also computed the relevance 
feedback query vector using the above 166 matching 
shoes.  We also identified a similarity threshold by 
finding the maximal cosine theta, Θ, between the 
relevance feedback query vector and all of the 166 
shoe vectors. Retrieval using the relevance feedback 
vector with this threshold yields more than 29,000 
matches out of 33,000! The light colored bars in 
Figure 3 illustrates the histogram plot of the 29,293 
instances that falls into various similarity ranges. 
Similarly, the dark colored bars plots the similarity 
ranges of the 3,653 shoes that were retrieved by 
matching with our mined definitions. As can be seen 
from the distributions in the above chart, the items 
retrieved with our mined definitions have a very 
uniform similarity distribution (with around 300 of 
these being below the threshold), as opposed to 
having a skewed distribution towards the higher 
values of similarity. Since dark colored bars 
correspond to relevant “trendy shoes” matching our 
rules, which were validated by an expert, most of 
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these items should have ranked towards the higher 
end of the similarity spectrum. However, relevance 
feedback measure failed to rank them as such; 
hence, it performed poorly for this task. 

6.2 Comparison to Relevance 
Feedback with LSI 

The plot of similarity ranges obtained by ranking the 
3,653 shoes, retrieved with our mined rules, using 
relevance feedback with and without latent semantic 
indexing (LSI) (Deerwester, 1990) technique is 
shown in Figure 2. The light colored dashed line 
represents the cosine theta threshold Θ for the 
relevance feedback ranking, similarly the dark 
colored dashed line represents the cosine theta 
threshold for the relevance feedback with LSI. The 
recall for relevance feedback is nearly 93%, 
however, since it matches 88% of a random 
collection of shoes, its precision is lower. On the 

other hand, even though the ranking of relevance 
feedback with LSI falls onto a higher similarity 
range, it appears to have a much lower recall (of 
25%) for this experiment with exemplary target 
phrase “trendy shoes”. 

7 CONCLUSIONS AND FUTURE 
WORK 

Our initial experimental results for mining phrase 
definitions are promising according to our retail 
domain expert who is the Webmaster of an affiliate 
marketing web site. We plan to scale up our 
experiments to hundreds of product categories and 
thousands of phrases. Also, we would like to 
perform experiments to determine how precisely our 
algorithm learns the definitions of phrases that 
changes their meaning over time. 

 
 Parametric Rules  Support 

Brand = Jil Sander, material = leather, type = clutch  fashion handbags 4.25% 

Brand = Carla, design = mancini, material = leather  fashion handbags 2.4% 
Brand = Butterfly, design =beaded  fashion handbags 2.4% 

Brand = Sven, material = leather  fashion handbags 10.2% 

Design = beaded, color = pink  fashion handbags 2% 

Fashion
handbags

Design = beaded, color = blue, type = tote  fashion handbags 3.2% 

Design = Baffled box, material = cotton     luxury beddings 5% 

Design = Waterford, material = linen     luxury beddings 6% 
Material = silk     luxury beddings 3% 

Luxury 
beddings

Design = Sussex, material = polyester     luxury beddings 6% 

Design = All American, material = polyester  sport beddings 6% 
Design = All star, material = polyester  sport beddings 9% 

Design = Big and bold  sport beddings 17% 

Sport 
beddings

Design = sports fan  sport beddings 45% 
   

 Textual Rules  Support 

Egyptian cotton mate-lass  luxury beddings 0.6% 
Silk, smooth, King set  luxury beddings 0.75% 

Piece ensemble  luxury beddings 0.75% 

American sport ensemble   sport beddings 0.4% 
Paraphernalia sport   sport beddings 0.6% 

fashionable sneaker  trendy shoes 7% 

Wedge edge  trendy shoes 5% 

 

Platform shoes  trendy shoes 6% 
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Figure 2: Similarity histogram for relevance feedback and 

relevance feedback with LSI 
 

Figure 3: Similarity histogram for rule-based and 
relevance feedback based matches 
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