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Abstract:  Location-Dependent Information Services is an emerging class of application that allows new types of 
queries such as location-dependent queries and continuous queries. In these systems, data caching plays an 
important role in data management due to its ability to improve system performance and availability in case 
of disconnection. In mobile environment, cache management requires more than traditional solutions. This 
paper presents a new semantic cache scheme for location dependent systems based on spatial property.  The 
proposed architecture is called as Location Dependent Semantic Cache Management – LDSCM. In addition, 
we examine location-dependent query processing issues and segment reorganization.  

1 INTRODUCTION 

Advances in mobile computing make possible the 
development of new classes of services such as 
Location-Dependent Information Services (LDIS). 
These services emerged with a variety of promising 
applications, such as local traffic report, hotel or 
restaurant information and emergency services.  

The access data, called Location Dependent Data  
- LDD, are related to their geographical position and 
the queries that issue for them are named Location-
Dependent Queries - LDQ (Ren and Dunham, 2000). 
A location-dependent query usually originates from 
a moving client, and the location determines the 
query results. “Find all restaurants within 10 miles 
of my position” is an example of a LDQ. The 
client’s geographical location is provided by a 
location service or global positioning system. 

Data management in an LDIS faces several 
challenges that have opened many new research 
problems (Lee et al., 2002). Mobile computing 
environments offer low-quality communication, 
frequent network disconnections and limited local 
resources. In addition, because of mobile user’s 

movement, some tasks such as data cache 
management are tough.  

Data caching plays a key role in data 
management in mobile computing since it helps to 
save power consumed with server communication.  
Besides, data caching improve data availability in 
case of disconnection. The mobile users are still able 
to work using the cached data when the network is 
unreachable.  

In LDIS, cached data become invalid not only as 
a result of updates performed on data items in the 
server but also when a mobile user changes its 
location (Zheng  et al., 2002). Traditional solutions 
are not suitable for LDIS and additional spatial 
properties such as data distance and movement must 
be considered. In conventional caching schemes 
such as tuple-based or page-based it is difficult to 
explore spatial properties because the cached data 
are not associated with any semantic meanings.  

A better alternative for mobile computing 
environment is the semantic caching (SC) model 
(Dar et al, 1996; Lee et al., 1999; Ren and Dunham, 
2000; Ren et al., 2003). The semantic cache stores in 
sets, named semantic segments, results of queries 
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submitted to the server (Ren and Dunham, 2000). 
Moreover, the SC maintains semantic descriptions 
associated to the answers of queries organized in an 
index structure. The semantic segments are disjoint 
and each tuple in the cache is associated with exactly 
one semantic segment. This model is ideal for 
location-dependent applications since it makes cache 
management more flexible. With semantic 
information, strategies with higher cache hit ratio 
can be developed. 

In a previous work (Manica et al., 2004-b), we 
propose a new semantic cache scheme for LDIS 
based on spatial property. In this paper, we 
improved our ideas, propose an architecture named 
Location Dependent Semantic Cache Management 
(LDSCM) and we better define our location-
dependent query processing issues and semantic 
segments reorganization.  

The remaining of this paper is organized as 
follows. Section 2 present related previous work. In 
section 3 we propose the semantic cache model and 
the algorithms for query processing and cache 
management issues. The design of our semantic 
caching architecture is presented in section 4. 
Finally, the section 5 concludes this article and 
present future works.  

2 RELATED WORK 

Querying location dependent information in mobile 
environment has been an important research area. In 
(Lee et al., 2002) the authors discuss location 
dependent information access in a mobile-pervasive 
environment and present new research issues.  

Zheng et al., (2002) introduce a new 
performance criterion, called caching efficiency, and 
propose a generic method for location-dependent 
cache invalidation strategies. In addition, Zheng et 
al. proposed two cache replacement policies: 
probability area and probability area inverse 
distance. 

Xu et al., (2003) proposed three schemes to 
handle the location-dependent cache invalidation 
issue: bit vector with compression, grouped bit 
vector with compression and implicit scope 
information.  

Another related area is the semantic cache 
model. (Dar et al., 1996) were the first work to use 
semantic distance function for replacement policy. 
They utilize the Manhattan distance function to 
calculate the distance of each semantic region from 
the user’s current location. Their algorithm discard 
regions according to the values computed. 

(Ren and Dunham, 2000) extend the work of Dar 
et al. to investigate ways in which semantic caching 

can be used to manage location-dependent data. 
Their work includes a formal model to represent 
moving objects and propose strategies of applying 
semantic caching to location dependent applications. 
For cache replacement, Ren and Dunham (2000) 
propose a semantic cache replacement policy called 
FAR (Furthest Away Replacement).  

Similar to ours, other works such as (Ren and 
Dunham, 2000) uses the semantic caching model to 
manage location-dependent data. However, our 
cache management strategies are based on the 
geographical relationship between the query and the 
semantic segments. Our semantic cache model group 
in the same semantic segment, results of queries 
with related predicate and also spatial properties. 
The spatial information is the minimum bounding 
rectangle that represents the valid spatial scope of a 
semantic segment.  

3 LOCATION-DEPENDENT 
SEMANTIC CACHING MODEL 

Different query types require different indexing and 
query-processing strategies. Initially, this model 
supports window query (Gaede and Graefe, 1998). 

Given a rectangle d-dimensional R ⊆ Ed, a 
window query searches all objects whose geographic 
position is inserted in the rectangle. The window 
extension is determinate trough the mobile client 
current location and the distance expressed in the 
query predicate. The supported operator is selection 
on single relations. 

The following definition describes the location 
dependent query supported by cache.  

Definition 1 (Location Dependent Query) 
Given a database D = {Ri}, a location dependent 
query Q is a tuple (QR, QP, QJ, QL, QC) where QR∈D 
represents the relation issued, QP a location 
predicate, QJ the window query, QL the mobile client 
current location and QC represents the query results. 

From now on, we also refer to location 
dependent query as the single word query. 

3.1 Model Organization 

The following definition describes the semantic 
segment.  

Definition 2 (Semantic segment) Given a 
relation R and its attributes set A1, A2…An, a 
semantic segment S on relation R is a tuple (SID, SR, 
SP, SA, SC, STS, SG) where SID stands for the segment 
identifier, SR the relation issued by the query, SP the 
select condition, SA the valid spatial scope of the 
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segment, SC the first page address of the segment 
content, STS  a timestamp and SG  the segment group. 

To maintain the spatial information SA, we use 
the minimum bounding rectangle (MBR) (Ix = [x1, 
x2] and Iy = [y1, y2]), that represents the geographic 
area of all data in the segment. MBR is a simple and 
efficient method to store geographic scopes. The 
semantic cache index is illustrated through the 
following example.  

Example 1: Consider an object-relational 
database in the server with two relations: Restaurant 
(id, name, type, geometry), Hotel (id, name, price, 
geometry). The mobile unite position is represented 
by MUP = (x, y) and the following queries Q1 and Q2 
are issued on time T1 and T2 respectively: 

Q1 UMP (10, 20): “Give me all hotels within 5 
miles with price lower than U$ 100”. 

Q2 UMP (20, -20): “Give me all Chinese 
restaurants within 10 miles”.  

Suppose that the client cache can’t contribute 
with the answer. Thus, these queries are sent to the 
server and the results are stored in cache. The 
semantic cache index is shown as Table 1. Next 
section addresses the query processing over 
semantic cache scheme. 

3.2 Semantic Query Processing 

To perform a query, it is checked whether the query 
can be answered by the cache. If the query result can 
be totally obtained from the cache content, there is 
no communication with the server.  

When the query can only be partially answered, 
there are two disjoint portions: one that can be 
answered in cache (probe query) and another that 
requires data to be fetched from the server 
(remainder query). The procedure of query partition 
is named query trimming (Ren et al., 2003). We 
define the probe and reminder query as follows. 

Definition 3 (Probe Query) Given a query Q on 
a relation R, S={Si} denotes the set of semantic 
segments in the client cache that contributes with the 
query answer, where SiR=QR, SiA∩Qj<>0 and 
QP∩SP<>∅. The probe query is the union of all 
partial results obtained from each segment in S. 

Definition 4 (Reminder Query) Given a query 
Q on a relation R. The remainder query (RQ) 
retrieves from the server the portion of Q not found 
in cache, that is, RQ = Q – PQ.  

According to the definitions above, PQ ∧ RQ = 
false and PQ ∨ RQ = Q. 

 
 
 
 
 

That is to say, the probe and the remainder query 
do not overlap and trough the union of the answers 
to these two queries we obtain the complete answer.  

Our query processing model involves two steps: 
1) to select the semantic segments candidate set; 2) 
to process the query against each candidate segment 
and the database in the server when is necessary. We 
present the algorithm 1, which selects the set of 
semantic segments (CjSC) that are candidate to 
answer the probe query.  

 
Algorithm CjSC (Q, SC) 

Input: Query Q, Semantic Cache SC  
Output: Semantic segments candidates set (CjSC)  
{ Cj  null 
 for each relation Ri in the index structure do {      

if (Ri = QR) then   
 Cj  segments Si…Sn }

 for each segment in Cj do {      
  if  intersection (SAi , QJ) = null then  
   Cj  Cj -  Si   } 
 for each segment in Cj do {      
  if  (QP ⇒ SP) or (QP ∧ SP) then  

 CjSC  Si }     } 
Algorithm 1:  Semantic segments candidate set selection  
 

Given a query Q and a semantic cache SC, firstly 
the algorithm selects the semantic segments that 
have the same relation of Q, that is, SR = QR. 
Secondly, for each selected segment, its geographic 
area is compared with the window query. If the 
semantic segment that doesn’t have any relationship 
with the window query it is eliminated from the set. 
Lastly, our algorithm analyzes the predicate 
similarity. At the end, we have the semantic 
segments that probably contribute to the answer.  
We illustrate this procedure with the example2. 

Example 2: Consider that Q is issued by UMP 
(15,45):  “Give me all hotels within 5 miles and 
diary price lower than U$ 100” (figure 1). According 
to the algorithm 1, Cj = {S1, S3, S6, S7}. The 
segment S6 is eliminated form Cj because its 
intersection with Qj is null. Finally, the segments 
from Cj whose predicate satisfies the query predicate 
are added in CjSC set. 

To avoid false segments selection, it is possible 
to use others geometric forms, such as circles or 
complex polygons. However, such representations 
consume a large portion of space and they introduce 
additional complexity to determine intersection 
areas. 

 

x
SID SR
S1 Hotel 
S2 Restaura
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 Table 1: Example of Semantic Cache Inde
 SP SA SC Ss SG
price<100 [(5,15), (15,25)] 4 T1 1 

nt type = “Chinese” [(10,-30), (30,-10)] 8 T2 1 

 
 



 
 
 
 
 
 
 
 
 
 
 
Figure 1: Example 2, semantic segments candidate  
 

Next, we present the algorithm 2 which processes 
the query against the semantic segments in cache 
and the database if necessary.  

 
Algorithm  QueryProcess (Q, CjSC )
Input: Q e CjSC          
Output: QR
{    For each Si in CjSC do   { 

Ii  intersection (SAi , QJ)          
If QP ∩ SiP = QiP then {          //** QP ^ ¬ SiP=0   

Execute Qi in Si and area Ii
PQR  PQR ∪ QiR  
X  X + Ii
ReorgSeg (Q, Ii, Si)  } 

Else (QP ∩ SiP ≠ QiP) { 
AQSiP  (QP ^ ¬ SiP) and area Ii  
Send to server AQSi
PQR  PQR ∪ AQSiR 
Execute Qi in Si and area Ii
PQR  PQR ∪ QiR  
X  X + Ii
ReorgSeg (Q, Ii, Si)  } } 

If X <> QJ then send to server RQ = Q ∧ ¬X 
QR =  RQR ∪ PQR 
Create a new semantic for QR      } 

Algorithm 2:  Query processing in segments candidate set 
 
For each segment in CjSC the following steps are 

applied. First, is defined the intersection area 
between the query window (QJ) and the segment 
geographic area (SiA). Following, the algorithm 
verifies the relationship between the segment (SiP) 
and the query predicate (QP). If the segment Si 
satisfies the query, it is not required data from the 
server. The query is executed over Si and its results 
contribute with the probe query.  

When a semantic segment Si answer partially the 
query, a partial sub-query named amending query is 
sent to the server. This amending query issues only 
the predicate that is not in Si.  

The intersection area Ii that it has already 
researched in cache is stored in the vector X. Last of 
all, if X <> QJ, the algorithm executes the reminder 
query in the server. The reminder query, represented 

by QJ ∧ ¬X, returns all tuple that are inside the 
window query and that are not in X. We illustrate 
the algorithm 2 with the following example. 

Example 3: With the query described in 
Example 2, suppose that S1 and S3 contribute with 
the query answer. Assume that the segment S3 stores 
hotels with price lower than U$ 50 and the segment 
S1 stores hotels with any price. In this case, S3P 
satisfies partially QP and S1P satisfies totally QP. 

Note that for the segment S3, all its contents 
contribute to the result of Q and the remaining data 
(hotel with price between U$ 50 and U$100) are 
requested to the server (amending query AQS3). 
Otherwise, S1 has the complete predicate to answer 
Q and the amending query is not required.  

We use the vector X that stores the rectangle of 
the areas already searched in cache. In Example 3, 
the reminder query is executed as follows: 
“SELECT * FROM Hotel WHERE Hotel.price < 
100 AND ((Hotel.geometry IN QJ) AND 
(Hotel.geometry NOT IN X))”.  

3.3 Semantic Segment Reorganization 

The previous sections described our SC model as 
well as the query processing. In this section, we deal 
with the scenario after query processing and 
semantic segment reorganization.  

To avoid redundant data, we cannot keep both S 
and Q in the cache. When a query is executed, if it is 
completely answered by the server, the complete 
answer is stored in a new segment. However, when a 
portion of the query answer is already in cache, only 
the data brought into the cache as the result of the 
remainder query should be stored in a new semantic 
segment. Therefore, the semantic segments can be 
modified dynamically based on the queries that are 
executed at the client. 

The way that semantic segments are formed has 
a significant effect on the performance of the 
semantic cache (Jónsson, 1998). In addiction, this 
model considers the geographic relationship between 
Q and S to reorganize the semantic segments. The 
algorithm 3 executes the segment reorganization.  

 
Procedure  ReorgSeg (Q, Ii, Si ) 
Input: Q, Ii and Si
{ If Ii < > SAi then { 

SAi  SAi - Ii
If SAi < > rectangle form  then {               

Adjust SiA with a rectangle representation } } 
Si  Si – ( (Si ∩ Q) in Ii ^ (Si ^ ¬ Q) in Ii ) 
If Si ^ ¬ Q < > null then { 

Create a new segment Si’ 
Si’  (Si ^ ¬ Q) in Ii }  } 

Algorithm 3:  Semantic segment reorganization procedure 

S6

S1

S3   QJ

         S7

S2

S5 S4

Legend: 
SR = Hotel

SR <> Hotel 
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Given a query Q, a semantic segment Si and the 
intersection area between Q and Si named Ii, the 
segment reorganization is given as follows. Firstly, 
the procedure verifies if Ii is different from SAi. 
When a window query Qj covers totally SA (figure 1 
- segment S1), it is not necessary to actualize SAi 
because the intersection area Ii is the same of Si.  

On the other hand, when SAi ∩ Qj is different 
from SAi (figure 1 - segment S3), it is necessary to 
reduce from SAi the intersection area Ii. If the 
remaining geographic area has a complex form, it 
must be adjusted as a rectangle shape. 

After geographic area verification, the semantic 
segment content should be updated. The data used to 
answer Q must be removed from S, and if it remains 
data, these remaining data should form a new 
semantic segment Si’. The complete result of Q 
always will generate a new segment. We illustrate 
this procedure with the following example. 

Example 4: Consider the query “Give me all 
hotels within 5 miles with price higher than U$ 
100”. Suppose that the segment S3 stores hotels with 
diary price higher than U$ 50. In this case, S3P 
satisfies QP and also S3A intersects partially with QJ. 
After query execution in S3, this segment must be 
reorganized (Figure 2).  

Note that SA3 ∩ QJ is different from SA3, then SA3 
 SA3 - I3. The resulting area has a complex form, 

and then it is adjusted as a rectangle shape. The data 
used to answer Q (S3 ∩ Q) must be removed from S3 
(that is, Hotel.price > 100 in I3). The remaining data 
S3 ^ ¬ Q (that is, Hotel.price >  50 and  Hotel.price 
< 100 in I3) is not null, then a new segment S3’ is 
created with these remaining content.  

 
 
 
 
 
 
 
 
 
 

 
 

Figure 2: An example of Segment Reorganization 

4 LOCATION DEPENDENT 
CACHE ARCHITECTURE 

In this section we propose a Location Dependent 
Semantic Cache Management – LDSCM (figure 3), 
an architecture that support LDQ and provides 
semantic cache management based on spatial 

property. In the server, placed at the fixed network, 
an object-relational database system stores and 
manages the LDD. The mobile clients communicate 
to the server through a wireless link and are 
responsible for storing and managing its semantic 
cache. Next section details the LDSCM components.  

The component LDQ Query Generator generates 
location dependent queries according to the database 
scheme in the server. This module is responsible for: 
(1) to elaborate a query; (2) to bind the user current 
location and to send the query to the component 
LDQ Query Processor; (3) to receive the complete 
answer from LDQ Query Processor and to send it to 
the application.  

Initially, an application won't be represented for 
user interface because the main objective of this 
prototype is to test the proposed solutions. Once 
proved the benefits of this new model, this will be 
able to be implemented according to the 
characteristics of different mobile devices, such as 
notebook, palm, PDA and so on. 

The component LDQ Query Processor is 
responsible for the following tasks: (1) to determine 
and execute the probe query, amending query and 
reminder query, according to relationship with the 
semantic segments in cache; and (2) to combine the 
results obtained in cache with the results shipped 
from the server and return the complete answer to 
the component LDQ Query Generator. To 
accomplish these tasks, the LDQ Query Processor is 
composed by the following modules: Segments 
Candidates Selector and Query Divisor and 
Executor. The module Segments Candidates 
Selector is responsible for determining the set 
(CjSC) of semantic segments that are candidates to 
answer the query Q. This process is executed using 
the algorithm 1, as described in section 3.  

Once defined the CjSC, the Query Divisor and 
Executor component defines and execute the probe 
query for each segment in CjSC as shown in 
algorithm 2. This module also sends to the server the 
remaining and amending queries when necessary. 
The server receives queries from the client, 
processes them, and sends the results back.  

The complete probe query is composed by one or 
more sub-queries. The reminder query result is 
combined with the probe query to compose the 
complete answer.  

The portion of the answer that is not in cache 
(reminder query) must be sent to the component 
Cache Structures Manager. This component 
reorganizes the semantic segments, as described in 
algorithm 3.  

The Cache Structures Manager is also 
responsible for semantic caching replacement. If 
necessary, the replacement is performed using the 
ASCR policy (Manica et al., 2004). 

Q

   New 
S 

S3P ∩ QP in Ii 

 S3P-(S3P ∩QP) in Ii 

  I3

S3 S3S3 - I3 with complex 
shape adjust 

S3’ 
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5 CONCLUSIONS AND FUTURE 
WORK  

Semantic caching is a new client caching 
architecture, which focuses on reducing network 
traffic and improving data availability in case of 
disconnection.  

We proposed a new semantic caching model for 
location dependent information systems. The 
characteristics of the SC architecture, SC query 
processing strategy and practical issues of client 
caching management were described. One of the 
main contributions of this work is the use of 
geographic information on cache management. 

Here we describe the design of our prototype, the 
next step is to study its performance and compare 
with other proposals.  

Future studies also will explore semantic cache 
management issues for complex location-dependent 
queries. 
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