
AN ARCHITECTURE FOR LOCATION-DEPENDENT
SEMANTIC CACHE MANAGEMENT

Heloise Manica , MAR Dantas
Department of Informatics and Statistics - Federal University of Santa Catarina (UFSC)

Campus Universitario Trindade, Caixa Postal 476
Florianópolis – SC, Brasil, CEP 88.040-900

Murilo S. de Camargo
Department of Computer Science - University of Brasília (UnB)

Campus Universitário Darcy Ribeiro
Brasília – DF, Brasil, CEP 70.910-900

Keywords: Mobile Computing, Mobile Databases, Cache Management, Semantic Cache, Location-Dependent Systems.

Abstract: Location-Dependent Information Services is an emerging class of application that allows new types of
queries such as location-dependent queries and continuous queries. In these systems, data caching plays an
important role in data management due to its ability to improve system performance and availability in case
of disconnection. In mobile environment, cache management requires more than traditional solutions. This
paper presents a new semantic cache scheme for location dependent systems based on spatial property. The
proposed architecture is called as Location Dependent Semantic Cache Management – LDSCM. In addition,
we examine location-dependent query processing issues and segment reorganization.

1 INTRODUCTION

Advances in mobile computing make possible the
development of new classes of services such as
Location-Dependent Information Services (LDIS).
These services emerged with a variety of promising
applications, such as local traffic report, hotel or
restaurant information and emergency services.

The access data, called Location Dependent Data
- LDD, are related to their geographical position and
the queries that issue for them are named Location-
Dependent Queries - LDQ (Ren and Dunham, 2000).
A location-dependent query usually originates from
a moving client, and the location determines the
query results. “Find all restaurants within 10 miles
of my position” is an example of a LDQ. The
client’s geographical location is provided by a
location service or global positioning system.

Data management in an LDIS faces several
challenges that have opened many new research
problems (Lee et al., 2002). Mobile computing
environments offer low-quality communication,
frequent network disconnections and limited local
resources. In addition, because of mobile user’s

movement, some tasks such as data cache
management are tough.

Data caching plays a key role in data
management in mobile computing since it helps to
save power consumed with server communication.
Besides, data caching improve data availability in
case of disconnection. The mobile users are still able
to work using the cached data when the network is
unreachable.

In LDIS, cached data become invalid not only as
a result of updates performed on data items in the
server but also when a mobile user changes its
location (Zheng et al., 2002). Traditional solutions
are not suitable for LDIS and additional spatial
properties such as data distance and movement must
be considered. In conventional caching schemes
such as tuple-based or page-based it is difficult to
explore spatial properties because the cached data
are not associated with any semantic meanings.

A better alternative for mobile computing
environment is the semantic caching (SC) model
(Dar et al, 1996; Lee et al., 1999; Ren and Dunham,
2000; Ren et al., 2003). The semantic cache stores in
sets, named semantic segments, results of queries

320
Manica H., Dantas M. and S. de Camargo M. (2005).
AN ARCHITECTURE FOR LOCATION-DEPENDENT SEMANTIC CACHE MANAGEMENT.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 320-325
DOI: 10.5220/0002524903200325
Copyright c© SciTePress

mailto:murilo@cic.unb.br

submitted to the server (Ren and Dunham, 2000).
Moreover, the SC maintains semantic descriptions
associated to the answers of queries organized in an
index structure. The semantic segments are disjoint
and each tuple in the cache is associated with exactly
one semantic segment. This model is ideal for
location-dependent applications since it makes cache
management more flexible. With semantic
information, strategies with higher cache hit ratio
can be developed.

In a previous work (Manica et al., 2004-b), we
propose a new semantic cache scheme for LDIS
based on spatial property. In this paper, we
improved our ideas, propose an architecture named
Location Dependent Semantic Cache Management
(LDSCM) and we better define our location-
dependent query processing issues and semantic
segments reorganization.

The remaining of this paper is organized as
follows. Section 2 present related previous work. In
section 3 we propose the semantic cache model and
the algorithms for query processing and cache
management issues. The design of our semantic
caching architecture is presented in section 4.
Finally, the section 5 concludes this article and
present future works.

2 RELATED WORK

Querying location dependent information in mobile
environment has been an important research area. In
(Lee et al., 2002) the authors discuss location
dependent information access in a mobile-pervasive
environment and present new research issues.

Zheng et al., (2002) introduce a new
performance criterion, called caching efficiency, and
propose a generic method for location-dependent
cache invalidation strategies. In addition, Zheng et
al. proposed two cache replacement policies:
probability area and probability area inverse
distance.

Xu et al., (2003) proposed three schemes to
handle the location-dependent cache invalidation
issue: bit vector with compression, grouped bit
vector with compression and implicit scope
information.

Another related area is the semantic cache
model. (Dar et al., 1996) were the first work to use
semantic distance function for replacement policy.
They utilize the Manhattan distance function to
calculate the distance of each semantic region from
the user’s current location. Their algorithm discard
regions according to the values computed.

(Ren and Dunham, 2000) extend the work of Dar
et al. to investigate ways in which semantic caching

can be used to manage location-dependent data.
Their work includes a formal model to represent
moving objects and propose strategies of applying
semantic caching to location dependent applications.
For cache replacement, Ren and Dunham (2000)
propose a semantic cache replacement policy called
FAR (Furthest Away Replacement).

Similar to ours, other works such as (Ren and
Dunham, 2000) uses the semantic caching model to
manage location-dependent data. However, our
cache management strategies are based on the
geographical relationship between the query and the
semantic segments. Our semantic cache model group
in the same semantic segment, results of queries
with related predicate and also spatial properties.
The spatial information is the minimum bounding
rectangle that represents the valid spatial scope of a
semantic segment.

3 LOCATION-DEPENDENT
SEMANTIC CACHING MODEL

Different query types require different indexing and
query-processing strategies. Initially, this model
supports window query (Gaede and Graefe, 1998).

Given a rectangle d-dimensional R ⊆ Ed, a
window query searches all objects whose geographic
position is inserted in the rectangle. The window
extension is determinate trough the mobile client
current location and the distance expressed in the
query predicate. The supported operator is selection
on single relations.

The following definition describes the location
dependent query supported by cache.

Definition 1 (Location Dependent Query)
Given a database D = {Ri}, a location dependent
query Q is a tuple (QR, QP, QJ, QL, QC) where QR∈D
represents the relation issued, QP a location
predicate, QJ the window query, QL the mobile client
current location and QC represents the query results.

From now on, we also refer to location
dependent query as the single word query.

3.1 Model Organization

The following definition describes the semantic
segment.

Definition 2 (Semantic segment) Given a
relation R and its attributes set A1, A2…An, a
semantic segment S on relation R is a tuple (SID, SR,
SP, SA, SC, STS, SG) where SID stands for the segment
identifier, SR the relation issued by the query, SP the
select condition, SA the valid spatial scope of the

AN ARCHITECTURE FOR LOCATION-DEPENDENT SEMANTIC CACHE MANAGEMENT

321

segment, SC the first page address of the segment
content, STS a timestamp and SG the segment group.

To maintain the spatial information SA, we use
the minimum bounding rectangle (MBR) (Ix = [x1,
x2] and Iy = [y1, y2]), that represents the geographic
area of all data in the segment. MBR is a simple and
efficient method to store geographic scopes. The
semantic cache index is illustrated through the
following example.

Example 1: Consider an object-relational
database in the server with two relations: Restaurant
(id, name, type, geometry), Hotel (id, name, price,
geometry). The mobile unite position is represented
by MUP = (x, y) and the following queries Q1 and Q2
are issued on time T1 and T2 respectively:

Q1 UMP (10, 20): “Give me all hotels within 5
miles with price lower than U$ 100”.

Q2 UMP (20, -20): “Give me all Chinese
restaurants within 10 miles”.

Suppose that the client cache can’t contribute
with the answer. Thus, these queries are sent to the
server and the results are stored in cache. The
semantic cache index is shown as Table 1. Next
section addresses the query processing over
semantic cache scheme.

3.2 Semantic Query Processing

To perform a query, it is checked whether the query
can be answered by the cache. If the query result can
be totally obtained from the cache content, there is
no communication with the server.

When the query can only be partially answered,
there are two disjoint portions: one that can be
answered in cache (probe query) and another that
requires data to be fetched from the server
(remainder query). The procedure of query partition
is named query trimming (Ren et al., 2003). We
define the probe and reminder query as follows.

Definition 3 (Probe Query) Given a query Q on
a relation R, S={Si} denotes the set of semantic
segments in the client cache that contributes with the
query answer, where SiR=QR, SiA∩Qj<>0 and
QP∩SP<>∅. The probe query is the union of all
partial results obtained from each segment in S.

Definition 4 (Reminder Query) Given a query
Q on a relation R. The remainder query (RQ)
retrieves from the server the portion of Q not found
in cache, that is, RQ = Q – PQ.

According to the definitions above, PQ ∧ RQ =
false and PQ ∨ RQ = Q.

That is to say, the probe and the remainder query
do not overlap and trough the union of the answers
to these two queries we obtain the complete answer.

Our query processing model involves two steps:
1) to select the semantic segments candidate set; 2)
to process the query against each candidate segment
and the database in the server when is necessary. We
present the algorithm 1, which selects the set of
semantic segments (CjSC) that are candidate to
answer the probe query.

Algorithm CjSC (Q, SC)

Input: Query Q, Semantic Cache SC
Output: Semantic segments candidates set (CjSC)
{ Cj null
 for each relation Ri in the index structure do {

if (Ri = QR) then
 Cj segments Si…Sn }

 for each segment in Cj do {
 if intersection (SAi , QJ) = null then
 Cj Cj - Si }
 for each segment in Cj do {
 if (QP ⇒ SP) or (QP ∧ SP) then

 CjSC Si } }
Algorithm 1: Semantic segments candidate set selection

Given a query Q and a semantic cache SC, firstly
the algorithm selects the semantic segments that
have the same relation of Q, that is, SR = QR.
Secondly, for each selected segment, its geographic
area is compared with the window query. If the
semantic segment that doesn’t have any relationship
with the window query it is eliminated from the set.
Lastly, our algorithm analyzes the predicate
similarity. At the end, we have the semantic
segments that probably contribute to the answer.
We illustrate this procedure with the example2.

Example 2: Consider that Q is issued by UMP
(15,45): “Give me all hotels within 5 miles and
diary price lower than U$ 100” (figure 1). According
to the algorithm 1, Cj = {S1, S3, S6, S7}. The
segment S6 is eliminated form Cj because its
intersection with Qj is null. Finally, the segments
from Cj whose predicate satisfies the query predicate
are added in CjSC set.

To avoid false segments selection, it is possible
to use others geometric forms, such as circles or
complex polygons. However, such representations
consume a large portion of space and they introduce
additional complexity to determine intersection
areas.

x
SID SR
S1 Hotel
S2 Restaura

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

322

 Table 1: Example of Semantic Cache Inde
 SP SA SC Ss SG
price<100 [(5,15), (15,25)] 4 T1 1

nt type = “Chinese” [(10,-30), (30,-10)] 8 T2 1

Figure 1: Example 2, semantic segments candidate

Next, we present the algorithm 2 which processes
the query against the semantic segments in cache
and the database if necessary.

Algorithm QueryProcess (Q, CjSC)
Input: Q e CjSC
Output: QR
{ For each Si in CjSC do {

Ii intersection (SAi , QJ)
If QP ∩ SiP = QiP then { //** QP ^ ¬ SiP=0

Execute Qi in Si and area Ii
PQR PQR ∪ QiR
X X + Ii
ReorgSeg (Q, Ii, Si) }

Else (QP ∩ SiP ≠ QiP) {
AQSiP (QP ^ ¬ SiP) and area Ii
Send to server AQSi
PQR PQR ∪ AQSiR
Execute Qi in Si and area Ii
PQR PQR ∪ QiR
X X + Ii
ReorgSeg (Q, Ii, Si) } }

If X <> QJ then send to server RQ = Q ∧ ¬X
QR = RQR ∪ PQR
Create a new semantic for QR }

Algorithm 2: Query processing in segments candidate set

For each segment in CjSC the following steps are

applied. First, is defined the intersection area
between the query window (QJ) and the segment
geographic area (SiA). Following, the algorithm
verifies the relationship between the segment (SiP)
and the query predicate (QP). If the segment Si
satisfies the query, it is not required data from the
server. The query is executed over Si and its results
contribute with the probe query.

When a semantic segment Si answer partially the
query, a partial sub-query named amending query is
sent to the server. This amending query issues only
the predicate that is not in Si.

The intersection area Ii that it has already
researched in cache is stored in the vector X. Last of
all, if X <> QJ, the algorithm executes the reminder
query in the server. The reminder query, represented

by QJ ∧ ¬X, returns all tuple that are inside the
window query and that are not in X. We illustrate
the algorithm 2 with the following example.

Example 3: With the query described in
Example 2, suppose that S1 and S3 contribute with
the query answer. Assume that the segment S3 stores
hotels with price lower than U$ 50 and the segment
S1 stores hotels with any price. In this case, S3P
satisfies partially QP and S1P satisfies totally QP.

Note that for the segment S3, all its contents
contribute to the result of Q and the remaining data
(hotel with price between U$ 50 and U$100) are
requested to the server (amending query AQS3).
Otherwise, S1 has the complete predicate to answer
Q and the amending query is not required.

We use the vector X that stores the rectangle of
the areas already searched in cache. In Example 3,
the reminder query is executed as follows:
“SELECT * FROM Hotel WHERE Hotel.price <
100 AND ((Hotel.geometry IN QJ) AND
(Hotel.geometry NOT IN X))”.

3.3 Semantic Segment Reorganization

The previous sections described our SC model as
well as the query processing. In this section, we deal
with the scenario after query processing and
semantic segment reorganization.

To avoid redundant data, we cannot keep both S
and Q in the cache. When a query is executed, if it is
completely answered by the server, the complete
answer is stored in a new segment. However, when a
portion of the query answer is already in cache, only
the data brought into the cache as the result of the
remainder query should be stored in a new semantic
segment. Therefore, the semantic segments can be
modified dynamically based on the queries that are
executed at the client.

The way that semantic segments are formed has
a significant effect on the performance of the
semantic cache (Jónsson, 1998). In addiction, this
model considers the geographic relationship between
Q and S to reorganize the semantic segments. The
algorithm 3 executes the segment reorganization.

Procedure ReorgSeg (Q, Ii, Si)
Input: Q, Ii and Si
{ If Ii < > SAi then {

SAi SAi - Ii
If SAi < > rectangle form then {

Adjust SiA with a rectangle representation } }
Si Si – ((Si ∩ Q) in Ii ^ (Si ^ ¬ Q) in Ii)
If Si ^ ¬ Q < > null then {

Create a new segment Si’
Si’ (Si ^ ¬ Q) in Ii } }

Algorithm 3: Semantic segment reorganization procedure

S6

S1

S3 QJ

 S7

S2

S5 S4

Legend:
SR = Hotel

SR <> Hotel

AN ARCHITECTURE FOR LOCATION-DEPENDENT SEMANTIC CACHE MANAGEMENT

323

Given a query Q, a semantic segment Si and the
intersection area between Q and Si named Ii, the
segment reorganization is given as follows. Firstly,
the procedure verifies if Ii is different from SAi.
When a window query Qj covers totally SA (figure 1
- segment S1), it is not necessary to actualize SAi
because the intersection area Ii is the same of Si.

On the other hand, when SAi ∩ Qj is different
from SAi (figure 1 - segment S3), it is necessary to
reduce from SAi the intersection area Ii. If the
remaining geographic area has a complex form, it
must be adjusted as a rectangle shape.

After geographic area verification, the semantic
segment content should be updated. The data used to
answer Q must be removed from S, and if it remains
data, these remaining data should form a new
semantic segment Si’. The complete result of Q
always will generate a new segment. We illustrate
this procedure with the following example.

Example 4: Consider the query “Give me all
hotels within 5 miles with price higher than U$
100”. Suppose that the segment S3 stores hotels with
diary price higher than U$ 50. In this case, S3P
satisfies QP and also S3A intersects partially with QJ.
After query execution in S3, this segment must be
reorganized (Figure 2).

Note that SA3 ∩ QJ is different from SA3, then SA3
 SA3 - I3. The resulting area has a complex form,

and then it is adjusted as a rectangle shape. The data
used to answer Q (S3 ∩ Q) must be removed from S3
(that is, Hotel.price > 100 in I3). The remaining data
S3 ^ ¬ Q (that is, Hotel.price > 50 and Hotel.price
< 100 in I3) is not null, then a new segment S3’ is
created with these remaining content.

Figure 2: An example of Segment Reorganization

4 LOCATION DEPENDENT
CACHE ARCHITECTURE

In this section we propose a Location Dependent
Semantic Cache Management – LDSCM (figure 3),
an architecture that support LDQ and provides
semantic cache management based on spatial

property. In the server, placed at the fixed network,
an object-relational database system stores and
manages the LDD. The mobile clients communicate
to the server through a wireless link and are
responsible for storing and managing its semantic
cache. Next section details the LDSCM components.

The component LDQ Query Generator generates
location dependent queries according to the database
scheme in the server. This module is responsible for:
(1) to elaborate a query; (2) to bind the user current
location and to send the query to the component
LDQ Query Processor; (3) to receive the complete
answer from LDQ Query Processor and to send it to
the application.

Initially, an application won't be represented for
user interface because the main objective of this
prototype is to test the proposed solutions. Once
proved the benefits of this new model, this will be
able to be implemented according to the
characteristics of different mobile devices, such as
notebook, palm, PDA and so on.

The component LDQ Query Processor is
responsible for the following tasks: (1) to determine
and execute the probe query, amending query and
reminder query, according to relationship with the
semantic segments in cache; and (2) to combine the
results obtained in cache with the results shipped
from the server and return the complete answer to
the component LDQ Query Generator. To
accomplish these tasks, the LDQ Query Processor is
composed by the following modules: Segments
Candidates Selector and Query Divisor and
Executor. The module Segments Candidates
Selector is responsible for determining the set
(CjSC) of semantic segments that are candidates to
answer the query Q. This process is executed using
the algorithm 1, as described in section 3.

Once defined the CjSC, the Query Divisor and
Executor component defines and execute the probe
query for each segment in CjSC as shown in
algorithm 2. This module also sends to the server the
remaining and amending queries when necessary.
The server receives queries from the client,
processes them, and sends the results back.

The complete probe query is composed by one or
more sub-queries. The reminder query result is
combined with the probe query to compose the
complete answer.

The portion of the answer that is not in cache
(reminder query) must be sent to the component
Cache Structures Manager. This component
reorganizes the semantic segments, as described in
algorithm 3.

The Cache Structures Manager is also
responsible for semantic caching replacement. If
necessary, the replacement is performed using the
ASCR policy (Manica et al., 2004).

Q

 New
S

S3P ∩ QP in Ii

 S3P-(S3P ∩QP) in Ii

 I3

S3 S3S3 - I3 with complex
shape adjust

S3’

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

324

5 CONCLUSIONS AND FUTURE
WORK

Semantic caching is a new client caching
architecture, which focuses on reducing network
traffic and improving data availability in case of
disconnection.

We proposed a new semantic caching model for
location dependent information systems. The
characteristics of the SC architecture, SC query
processing strategy and practical issues of client
caching management were described. One of the
main contributions of this work is the use of
geographic information on cache management.

Here we describe the design of our prototype, the
next step is to study its performance and compare
with other proposals.

Future studies also will explore semantic cache
management issues for complex location-dependent
queries.

REFERENCES

Dar, S., Franklin, M. J., Jónsson, B. T., Srivastava, D., and
Tan, M., 1996. Semantic Data Caching and
Replacement. In: Proceedings of the 22th International
Conference on Very Large Data Bases, Mumbai
(Bombay), India, pp. 330-341.

Gaede, V. and Graefe, V., 1998. Oversize Shelves: A
Storage Management Technique for Large Spatial
Data Objects. International Journal of Geographical
Information Science (IJGIS), 11 (1): 5-32.

Jónsson, B. T., 1998. Application-Oriented Buffering and
Caching Techniques. Dissertation submitted to the
Graduate School of the University of Mayland.

Lee, D. L., Xu, J., Zheng, B., and Lee, W., 2002. Data
Management in Location-Dependent Information
Services, IEEE Pervasive Computing. 1(3):65-72.

Lee, K. C. K., Leong, H. V., and Si, A., 1999. Semantic
Query Caching in a Mobile Environment, ACM
Mobile Computing and Communications Review.
3(2):28-36.

Manica, H., Camargo, M. S., Ciferri, R. R., and Ciferri, C.
D. A, 2004. A New Model for Location-Dependent
Semantic Cache Based on Pre-Defined Regions. In:
Proceedings of the 30th Conferencia Latinoamericana
de Informática, Arequipa, Peru, pp. 533-542.

Manica, H., Camargo, M. S., Ciferri, R. R., and Ciferri, C.
D. A, 2004-b. Processamento de Consultas Espaciais
Baseado em Cache Semântico. In: Proceedings of the
6th Brazilian Symposium on GeoInformatics, Campos
do Jordão, Brazil, pp. 423-435.

Ren, Q., and Dunham, M. H., 2000. Using Semantic
Caching to Manage Location Dependent Data in
Mobile Computing. In: Proceedings of the 6th Annual
International Conference on Mobile Computing and
Networking, Boston, MA, USA, pp. 210-221.

Ren, Q., Dunham, M. H., and Kumar, V., 2003. Semantic
Caching and Query Processing, IEEE Transactions on
Knowledge and Data Engineering. 15(1):192-210.

Xu, J., Tang, X., and Lee, D. L., 2003. Performance
Analysis of Location-Dependent Cache Invalidation
Schemes for Mobile Environments, IEEE
Transactions on Knowledge and Data Engineering.
15(2):474-488.

Zheng, B., Xu, J., and Lee, D. L., 2002. Cache
Invalidation and Replacement Strategies for Location-
Dependent Data in Mobile Environments, IEEE
Transactions on Computers, Special Issue on Database
Management and Mobile Computing. 51(10):1141-
1153.

Wired
Network

Wireless Link

SGBD
Objeto-

Relacional

Semantic Cache

DB

C
ache Structures M

anager

LDQ Query Processor

LDQ Query Generator

Qi QRi

AQi / RQ

AQiR / RQR
 RQ

Query Result

Database
Scheme

Segments Candidates Selector

Query Divisor and Executor

CjSC

 Mobile Client

Figure 3: LDSCM Architecture

Server

AN ARCHITECTURE FOR LOCATION-DEPENDENT SEMANTIC CACHE MANAGEMENT

325

