
DECOUPLING MVC: J2EE DESIGN PATTERN INTEGRATION

Francisco Maciá-Pérez, Virgilio Gilart-Iglesias, Diego Marcos-Jorquera, Juan Manuel García-
Chamizo

Departamento de Tecnología Informática y Computación, Universidad de Alicante , AP. 99, 03080, Alicante, Spain

Antonio Hernández-Sáez
Servicio de Informática de la Escuela Politécnica Superior, Universidad de Alicante, AP. 99, 03080, Alicante, Spain

Keywords: Enterprise platforms, design patterns, J2EE, frameworks

Abstract: In this paper we propose a model based on the Model-View-Controller design paradigm and built over the
integration of open source frameworks, which are widely supported by the software architect community.
The main contribution of this model lies in that it provides a true decoupling of the MVC paradigm’s model,
view and controller elements. This approach eases the horizontal development and maintenance of large-
scale distributed network applications. In order to concretize our model, we have based our prototype
application in the following three frameworks. First, the Struts framework in which the controller element
resides. Second, the Cocoon framework which serves as the basis for the view. And, finally, the J2EE
business components that constitute the model. This led us to integrate these three frameworks so as to
decouple the referred MVC elements, through the use of the Cocoon-Plugin (as the View-Controller tie) and
Struts-EJB (which links the Model and the Controller elements).

1 INTRODUCTION

The Internet has changed the way in which business
is understood. Nowadays, organizations can find in
the Internet’s environment new models to compete
which were previously targeted only by the largest
corporations, due to its high operation costs
(Harmon, 2001). These transformations imply new
requirements that are not satisfied by traditional
software models, therefore forcing to adopt new
strategies so as to adapt the business and software
processes – this is referred to as process
reengineering.

In most cases, organizations resistance to take
over these changes is high and sometimes traumatic,
due to various facts: the effort necessary to give up
the former business culture, the complexity of
integrating inherited systems which hold critical
enterprise information, the changes needed in the
established infrastructures and the learning process
required for the organization’s personnel. In spite of
these difficulties, new enterprises that rapidly adapt
to the new technologies are arising, forcing older
companies to evolve towards these environments
(Harmon, 2001).

The traditional architectures do not provide a
global solution to the new business models
requirements, since many of these were not in their
initial design: standards that support integration
between applications and different devices
(Hansmann, 2003), scalability to allow applications
growing as the business grows (Weaver, 2004),
flexibility towards new technologies and ubiquitous
computing systems (Hansmann, 2003), security in
not reliable environments prone to assaults (Sing,
2002), and portability over different systems (Cade,
2002). To fill in this architectural gap, a new
generation of software platforms based on
components over distributed (n-tier) architectures
has been developed, in order to provide a complete
solution allowing organizations to approach the new
business models and to take advantage of the
technological environment introduced by the
Internet (Harmon, 2001).

Among these platforms there is J2EE, which has
acquired, during the last years, a relevant role in
software development based on the new business
models (Sing, 2002). Its success probably resides in
its specification, which is based on an open process
participated by prestigious companies in the

280
Maciá-Pérez F., Gilart-Iglesias V., Marcos-Jorquera D., Manuel García-Chamizo J. and Hernández-Sáez A. (2005).
DECOUPLING MVC: J2EE DESIGN PATTERN INTEGRATION.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 280-287
DOI: 10.5220/0002524102800287
Copyright c© SciTePress

technological sector that have contributed with their
particular point of view about the new models needs
(Allamaraju, 2002). This process has given birth to
an infrastructure that supports the requirements
demanded by enterprise applications in the new
environments – diverse information needs, complex
economic processes, diversity of applications, rapid
developments that produce lasting designs,
reliability, availability and security – (Weaver,
2004). For most organizations, creating such an
infrastructure by their own means would be
unfeasible due to its high costs in effort, time and
budget. Besides, in case of achieving its creation,
this custom infrastructure would probably lack
J2EE’s capabilities for integration with other
distributed computing models (Weaver, 2004).

J2EE defines a programming model and supplies
a set of associated services that provide the
necessary elements in order to develop enterprise
applications: transactions, security, administration,
standard communication protocols,
internationalization, scalability, integration,
availability, maintenance capabilities and flexibility
(Cade, 2002).

Nevertheless, while the foundations of the
platform are relatively easy to describe and
understand, applying them to outline an architecture
for the design of distributed applications is not a
trivial problem: it requires a deep understanding of
the platform and a careful decision-making process.

Thus, having the platform’s technical knowledge
– about components, services and communications –
is not enough in order to design good quality
applications (Johnson, 2003). We also need to know
when to use a particular solution for certain problem,
and the reasons that motivate this choice; this can
only be achieved through experience, which
necessarily requires time. There are also solutions
and advices – patterns, best practices, bad practices
– based on third party developers that share their
experience, pointing when and how to use each
technology (Berry, 2002).

In this article we propose a framework that
provides a true decoupling of the MVC paradigm’s
model, view and controller elements. This approach
eases the horizontal development and maintenance
for this type of applications, based on the J2EE
platform. To begin with, we will introduce the
current works related to the proposed model.
Secondly, we will describe the research tasks
performed in order to obtain our framework’s
general model. In the next stage, we will explain the
model’s integration and implementation process.
Finally, we will present the corresponding
conclusions and future research lines.

2 BACKGROUND

In B2C (business to customer) J2EE applications,
clients have access to the business logic through the
World Wide Web by means of the Web tier, which
manages the communication between the Web client
and the mentioned business logic (Sing, 2002).

For this type of applications, it is recommended
to use the Model-View-Controller (MVC) pattern
(Stelting, 2002). This pattern divides applications in
three parts, decoupling the specific responsibilities
for each one: the model represents the business
information and defines the business rules or
operations that manage the access to this
information, and its modification; the view takes
charge of the information presentation and allows
the interaction between the user and the model;
finally, the controller manages the requests in order
to update the model (Moczar, 2003). MVC is
therefore a generic design pattern oriented to
systems architecture, which is widely spread in
object-oriented programming. It provides ease of
maintenance, component reutilization and adaptation
capabilities (Stelting, 2002). It is also one of SUN’s
main recommendations for designs using the J2EE
platform (Johnson, 2003).

In (Sing, 2002), SUN defined a model (Model 2)
that establishes the design guides for J2EE
components on the MVC.

SUN introduces two recommendations
considered to be best practices:
 In first place, the use of frameworks in order to
develop applications based on the proposed
models. A framework is a generic architecture that
provides the basis for applications development. It
is an implementation of a set of patterns by means
of a particular technology.
 In second place, SUN recommends developers to
use existing frameworks instead of designing and
building one of their own, since developing a
framework incurs a large time cost, and it might
take several years to reach the required
technological maturity (Sing, 2002). Frameworks’
main advantage consists in providing an
infrastructure and a set of functionalities to the
development team, so as to let them concentrate in
the application’s implementation, abstracting them
from the design aspects. A good framework should
incorporate the following characteristics:
- The precise degree of flexibility
- The support of a wide, solid community.
- It should be easily learned
- It should contribute with power and robustness

to the applications developed on its base.
There are different implementations

(frameworks) of Model 2, each one having its own

DECOUPLING MVC: J2EE DESIGN PATTERNS INTEGRATION

281

degree of recognition in the Java community.
Among these, the most representative are Struts,
Maverick, WebWork, Spring, WAF and JSF. In
SUN’s Blueprints, it is proposed a model for Web
applications which is sustained on the Model 2. This
paradigm describes the patterns and best practices
that should be used in the design of such
applications.

Besides, in order to solve model 2’s limitations,
there has been an evolution towards Model 2X
described in (Mercay, 2002). The last model
replaces JSP pages with XML documents and XSLT
transformation sheets as the technology used for
view presentation, allowing developers to truly
separate the business logic’s results from the
presentation code.

Following the same line, we reach the scenario
proposed in (Giang, 2003), where the business
model resides in an EJB container, therefore
achieving a complete decoupling of the three parts
that form the MVC paradigm.

In the next point we describe the proposed model
for the development of J2EE enterprise applications,
based on the MVC paradigm. Unlike the MVC, our
goal is not to obtain a generic model. Instead, our
model points where to place the J2EE components in
a typical scenario of Web applications that interact
with the end user – similarly to Model 2’s
proceeding –, while establishing a design based on
patterns and best practices so as to ease the
development in real production environments. In
contrast to the mentioned models, our model seeks
for a complete independence of the view from the
rest of the MVC components. In order to achieve
this independence, our model is based on standards
(XML and XSLT), similarly to Model 2X but in a
more generic way, and focusing on providing a
complete solution to integrate the controller in a
distributed model, thus improving the scenario
proposed in (Giang, 2003).

3 MODEL

The primary target of the proposed model is to
simplify the development of large applications based
on the J2EE platform (Gilart-Iglesias, 2005), thus
providing a well structured architectural design,
which allows for a complete decoupling of the

system’s main elements and synthesizes existing
models, patterns and frameworks in the best way.

In this model, the controller serves as the
application’s entry point. It is implemented using
only two patterns: the Intercepting Filter and the
Service To Worker.

The Intercepting Filter is used in our model to
implement the requests pre-processor; this system
initially manages the entry requests from clients in
the presentation layer. There are different types of
requests, each one needing a particular processing
scheme. Therefore, when a request arrives to the
application, it should pass through a set of
verifications before reaching the main processing
phase – called the Front Controller –: authentication,
session validation, client IP address checking,
request authorization, data codification, auditory or
browser type used (Alur, 2001). The Intercepting
Filter pattern is a flexible and highly decoupled way
to intercept a request, applying a set of filters, thus
rejecting or allowing the request to arrive to the
initial process (Berry, 2002).

This initial process plays the controller’s role: it
analyzes each request to identify the operation to
perform, thus invoking the business logic associated
to each particular request and controlling the flow to
the following view (Sing, 2002). In the proposed
model (see fig 1), our controller is designed
following the Service To Worker pattern (see fig 2),
which combines a set of smaller patterns that
provide a complete and flexible solution to fulfil the
requirements for an MVC controller while allowing
the separation between actions – the model –, the
view and the controller (Crawford, 2003).

The Front Controller pattern (Alur, 2001)
describes a central point that manages the requests.
In order to reach a greater flexibility and
independence between the view and the model, the
Front Controller assumes only the request analysis
task, delegating in the Request Dispatcher the
selection of the view and the action to perform.
After the analysis phase, the Request Dispatcher will
be in charge to select the command that encapsulates
the operation to perform. Once this command has
generated the result, the Request Dispatcher will
select the next view to be shown to the user
(Crawford, 2003). Delegating these tasks in the
RequestDispatcher gives our model a greater
flexibility since we can introduce new views or
models in the scenario by altering the component’s
behaviour.

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

282

Figure 1: Model architecture

The Command pattern represents each request
by means of an object, therefore providing a very
simple way to introduce new operations (Berry,
2002). In our model, the Command pattern is
responsible for encapsulating the request
information, parameters and the current state into a
command object that contains the business logic.
This command is then sent through the network to
the model, where it is finally executed
(EJBCommand). By using this approach, we
achieve a complete decoupling between the
controller and the model, which represents the
business data and implements the rules to operate
them (Sing, 2002). Following the same approach, in
the model shown in figure 1, we introduce the
business layer as a set of patterns that completely
disconnect the controller and the view from the
model, thus achieving MVC paradigm’s objective.
On the other hand, we define another set of patterns
in order to integrate our model with inherited
systems or other business models.

In the first case we apply the Business Delegate,
Session Facade and EJBCommand patterns. The
EJBCommand pattern (Marinescu, 2002) is a special
case of the Command pattern (Berry, 2002), where
the business logic is encapsulated into a serializable
object created by a remote client – the controller’s
Command – and sent through the network to the EJB
container where it will be executed – by invoking its
execute method (Johnson, 2003). This scheme
provides the advantages of the Command pattern in
an environment where the business logic is
distributed, therefore allowing the execution of
business rules without overloading the application
by a massive usage of EJBs. The EJBCommand’s
only requirement for its execution is a distributed
component that processes it. The other two patterns

– the Business Delegate and the Session Façade –
jointly provide a good solution in order to decouple
the model from the view and the controller. These
patterns also hide the business rules’ implementation
details and allow the execution of commands in the
Session Facade (Alur, 2001).

For the second case, we have defined two
patterns to ease the integration between the business
model and the inherited systems or other business
models. The Data Object Access pattern supplies a
mechanism to abstract and encapsulate access to the
data sources, therefore achieving warehouse
independency (Alur, 2001). It also achieves a clear
separation between the business logic and the data
logic, increasing the applications’ maintenance
capabilities (Berry, 2002). The Service Activator
pattern describes a way to access other business
models and services in an asynchronous manner.
When a message is received, the Service Activator
locates and invokes the business methods necessary
to resolve the request asynchronously (Alur, 2001).

The view is responsible for showing the data
output by the MVC model. One of our models’ goals
is to decouple the presentation from the controller
and the model, and to achieve this the model’s
output is first produced in XML format, for its later
transformation by XSLT sheets into the final
presentation shown to the client. XML/XSLT is an
elegant way to separate the data from the
presentation and to free it from any particular
technology (Johnson, 2003). In this scheme, the
Request Dispatcher returns the data initially output
by the model, as an XML document. In the next
step, at the view stage, the XML data is transformed
by XSLT. Since XSLT can return any format, it is a
notably flexible technology, supporting multiple
types of clients (Mercay, 2002). Besides, it provides

DECOUPLING MVC: J2EE DESIGN PATTERNS INTEGRATION

283

a simple way to modify the view without changing
the model, and facilitates parallel application
development.

In the next point we describe the implementation
of the proposed model, based on SUN's
recommendations (Sing, 2002) –use of existing
frameworks in the market–. We will detail the
process of framework selection and the integration
tasks carried out, finalizing with the advantages and
the power offered by the obtained implementation.

4 IMPLEMENTATION

We can find in the market different frameworks
based on Model 2 that facilitate the development of
J2EE applications. Some of these are integrated with
servers and tools specific of their corresponding
J2EE providers. There are also open source
frameworks supported by a solid community and
widely spread in the last years (Sing, 2002). In order
to select the most appropriate framework for our
purposes, we carried out a survey which focused on
open source frameworks, due to its inexpensive
costs and the technological maturity reached by
some of them.

A suitable framework must achieve the
following two objectives: first, it must adapt to our
model’s specifications, and second it must be a good
framework – as described in the background. After
analyzing the most used, widely spread open source
frameworks in the Java community (Struts, Cocoon,
Maverick, SOFIA, Spring, WebWork, Tapestry,
Turbina and JSF), we observed that none of these
completely satisfied the established requirements. So
we decided to use a different framework for each of
the model’s parts (the Model, the View and the
Controller): we chose Struts as the Controller,
Cocoon for the View and StrutsEJB for the Model.
In the next point, we describe each of these
frameworks and how they fit into our model.

4.1 Struts

Struts is a framework that implements a powerful
and flexible controller based on the Service To
Worker pattern. Struts’ main advantages are:

Integration flexibility: Struts’ architecture
provides flexibility for choosing the view and the
model to be used. The view is based on the plug-ins
concept. A plug-in is a dynamic mechanism by
means of which a component or set of components
that implement certain functionality in our
application can be replaced by another ones, by
simply modifying the application’s configuration.

This model is implemented through JavaBeans, thus
allowing its integration with other frameworks.
 It is supported by a solid community: Struts is a
project from the Apache Software Foundation
which has been consolidated as one of the most
important organizations in the open source scope.
In (Sing, 2002), SUN recommends using Struts as
the framework for the Web tier.
 Performance: Struts is a lightweight and mature
framework, recommended for production
environments.

For these reasons, Struts is the ideal choice in
order to implement our model.

Struts is composed of three main components:

CONTROLLER – SERVICE TO WORKER

Figure 2: Struts’s class diagram

 The ActionServlet (the model’s Front Controller),
which is responsible for the application
configuration and for receiving and analyzing the
clients’ requests. This component extracts from the
configuration file (strut-config.xml) the general
configuration parameters, the set of components
that defines its behaviour (plug-ins) and the
properties of each request. After performing these
tasks, it delegates the control in the
RequestProcessor.
 The RequestProcessor (Request Dispatcher in the
model), that creates an instance of the action
(Command pattern) associated to the received
request and executes it.
 The Action (Command in the model). For each
operation or use case, the developer creates an
action (object) that inherits from the Action
component. Each action is associated to a request
type in Struts’ configuration file.

4.2 Cocoon

Cocoon is a framework that performs
transformations on XML documents using XSLT

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

284

stylesheets. It is a mature technology (from 1999),
created and maintained by the Apache Software
Foundation. It is considered as one of the most
powerful and robust frameworks in the
transformation of XML documents.
When Cocoon receives a request, it is analyzed
based on the configuration parameters stored in the
site-map.conf file. These parameters point to the
steps that Cocoon’s engine must follow in order to
present the final view. Generally, this process will
consist of three steps:
 The first step is to generate the XML document
associated to the request. For this purpose, Cocoon
uses the Generator (Moczar, 2003) interface,
which allows specifying different source types to
get the XML document from (a static file, JSP
page, Servlet, data stream, session variable or
request parameter). It also provides a simple
mechanism in order to develop our own
generators.
 The second step consists in defining the XSLT
sheet that will guide the transformation. To
achieve this, Cocoon uses the Transformer
(Moczar, 2003) interface, which is implemented
depending on the desired transformation type –like
in the generators’ case. By default, the XSLT sheet
is obtained from a static file.
 The third, final step consists in formatting the final
output. Cocoon invokes the Serializer (Moczar,
2003) interface, which is responsible for applying
a format based on the client’s needs (for example
FOP, XML, HTML or WML). It is also possible to
create new serializers based on the application’s
needs.

4.3 Cocoon plug-in for Struts

In order to generate the view, Struts uses the Tiles
framework (Sam-Bodden, 2004), which is based on
the JSP technology. To replace this framework we
must substitute the associated plug-in for a new one.
In (Brown, 2003), Cocoon Plug-in for Struts is

described as a framework that allows the integration
between Struts and Cocoon. In order to use the
mentioned plug-in, we must replace the Tiles plug-in
with it (this can be configured in the struts-
config.xml file).
Cocoon plug-in for Struts consists of three
components:
 The CocoonPlugin: this component replaces
Struts’ RequestProcessor with the
CocoonRequestProcessor, thus modifying the
behaviour so that the view is generated by Cocoon.
 The CocoonRequestProcessor: this component
inherits from Struts’ RequestProcessor object
class, implementing the functionality required to
generate the view in Cocoon. Like the
RequestProcessor, it creates and executes the
corresponding action. After obtaining the action’s
result, it delegates in the CocoonHandler
component.
 The CocoonHandler is responsible for
communicating with Cocoon’s engine, which
starts the view generation process.

CONTROLLER – SERVICE TO WORKER

Cocoon plugin for Struts

Figure 4: Integration between Cocoon and Struts

4.4 StrutsEJB

StrutsEJB is a mini-framework that implements the
patterns specified in our model (Business Delegate,
Session Façade and EJBCommand), therefore
completely decoupling the model from the view and
the controller (Yoshikawa, 2003). This framework
provides the architecture and design necessary to
integrate Struts with a distributed model based on
EJBs.

Figure 3: Cocoon’s class diagram

StrutsEJB’s main components are:
 DefaultAction: it is a Struts Action that represents
a generic action which avoids creating an action
for each operation in the Web tier. Its function

DECOUPLING MVC: J2EE DESIGN PATTERNS INTEGRATION

285

consists in creating an instance of the StrutsEJB
command (EJBCommand) associated to the
request and to store in this command the
parameters and session variables required to run its
business logic.

 BusinessDelegate: this component implements the
BussinessDelegate pattern. It resides in the Web
tier and acts as a model abstraction at the client’s
side, hiding the details of the business services
implementation, the search for these services and
the access to the EJB architecture. The
ServiceLocator is the helper component – an
implementation of the Service Locator pattern –
used to look for services.
 StatelessFacade and StatefulFacade: these
components implement the Session Facade
pattern, providing a facade to access the business
components, thus offering a uniform
communications system to clients. Usually, a
particular SessionFacade is created for each set of
use cases. Since StrutsEJB is based in the
EJBCommand pattern, this function is transferred
to the commands sent from the Web tier. In this
way, SessionFacade provide a distributed
environment in order to execute such commands.
The BusinessDelegate will invoke the
corresponding SessionFacade, passing the
command to this façade, which will in turn execute
the given command inside the EJBs container. The
StatefulFacade is to be used in applications where
it is necessary to maintain the state; otherwise, the
StatelessFacade will be used.
 EJBCommand: this component implements the
EJBCommand pattern, jointly with
BusinessDelegate and SessionFacade. It is an
abstract component that encapsulates the business
logic for each use case (or set of use cases).
Therefore, it is necessary to extend this component
for each operation (or set of related operations),
creating a new command. In this way, developers
do not need to use EJBs in their applications

(although they can still use them voluntarily), but
the business logic is kept inside the EJBs
container. EJBCommands are created from the
Web tier by means of an action (DefaultAction),
which sends them to the model where they will be
executed by a SessionFacade.

StrutsEJB was designed for its integration with
the Struts controller, but using JSP as the view
generator technology. In the proposed model we
base the view generation on XML/XSLT, which
implied modifying StrutsEJB in order to adapt it to
Cocoon. To achieve this task, we created a new
generic action that extended StrutEJB’s
DefaultAction’s functionality, DefaultActionGM.
This modification solved the problem of passing the
XML document generated in the model to the
CocoonRequestProcessor, as well as other
internationalization, multiple devices support and
error managing problems. Figure 5: StrutsEJB class diagram

4.5 Filters

In the model’s specification we commented the
Intercepting Filter pattern’s importance. In order to
implement this pattern, we have not used any
framework. We have used the J2EE Filter, which
provides a mechanism similar to a Servlet. The Filter
is controlled by a Web container and can be inserted,
in a declarative way, into the request-reply HTTP
(Allamaraju, 2002) process. For each Filter needed,
the developer creates a new class that extends the
Filter interface and incorporates it to the application
adding the corresponding directives to the
configuration file, web.xml

Figure 6: Intercepting Filter class diagram

5 CONCLUSIONS

It is advisable for organizations to face changes in
the business processes with caution. These changes
are introduced mostly by the Internet’s evolution.

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

286

The enterprise platforms are complex and their
learning curves are really steep. The amount of time
and the effort required in order to use them correctly
are seldom available in most projects’ planning,
often submitted to strong time constraints. In the
present work, we have analyzed these problems and
revised the main models, platforms and frameworks
that seek to facilitate the convergence towards the
new business models. The main conclusion derived
from this study is that there is no proposal that
satisfies all the requirements demanded by these
models. However, there are partial solutions for
them, which can be of great value. For this reason,
we propose a model based on the integration of
design patterns and standard technologies, a model
that keeps the independence proposed by MVC,
facilitating the analysis and development of complex
applications, focusing on the developers’ effort in
the implementation stage and allowing a progressive
learning of the technology involved.

We are currently applying this model and its
associated methodology to our own developments,
therefore allowing us to validate the proposal, to
refine the model and finally to take into account new
aspects. For example, we are currently working on
the integration of a security infrastructure called
Single Sign-On, called JOSSO. In future research
lines we would like to improve our proposal so that
it supports other business models and technologies,
and to extend our model in order to use Web
Services to further decouple the MVC elements.

REFERENCES

Allamaraju, S., Beust, C., Davis, J., Jewell, T., Johnson,
R., Longshaw, A., Nagappan, R., Dr. Sarang, P.G.,
Toussaint, A. Tyagi, S., Watson, G., Wilcox, M.,
Williamson, A., O’Connor, D., 2002. Programación
Java Server con J2EE Edición 1.3. Anaya
Multimedia.

Alur, D., Crupi, J., Malks, D., 2001. Core J2EE patterns,
best practices and design strategies. Prentice Hall.

Berry, A. C., Carnell, J., Juric, M.B., Moidoo
Kunnumpurath, M., Nashi, N., Romanosky, S., 2002
J2EE design patterns applied, real world development
with pattern frameworks. Wrox press

Brown, D., 2003. Cocoon Plugin For Struts 1.1.
http://struts.sourceforge.net/struts-cocoon.

Cade, M., Roberts, S., 2002. Sun certified enterprise
architecture for J2EE technology, studie guide.
Prentice Hall.

Crawford, W., Kaplan, J., 2003. J2EE design patterns.
O’Reilly.

Giang. Z., 2003.

 http://www2.tw.ibm.com/developerWorks/tutorial/Sel
ectTutorial.do?tutorialId=77.

Gilart-Iglesias, V., Maciá-Pérez, F., Hernández-Sáez, A.,
Marcos-Jorquera, D., García-Chamizo, J. M. A model
for developing J2EE applications based on design
patterns. Proceedings of IADIS International
Conference on Applied Computing 2005. Algarve,
Portugal, 2005.

Gong, L., 1999. Inside Java 2 paltform security. Addison-
Wesley.

Harmon, P., Rosen, M., Guttman, M., 2001. Developing
E-business Systems and Architectures: A Manager’s
Guide. Morgan Kaufmann Publishers.

Hansmann, U., Merk, L., Niklous, M. S., Stober, T., 2003.
Pervasive Computing, second edition. Springer.

Johnson, R, 2003. Expert one-on-one, J2EE design and
development. Wrox press.

Marinescu, F., 2002. EJB design patterns, advanced
patterns, processes and idioms. Wiley.

Mercay, J., Bouzeid, G., 2002. Boost Struts with XSLT and
XML.

 http://www.javaworld.com/javaworld/jw-02-2002/jw-
0201-strutsxslt.html

Moczar, L., Aston, J., 2003. Cocoon, Developer’s
handbook. Developer’s Library.

Sam-Bodden, B., Judd, C. M., 2004. Enterprise java
development on a budget, leveraging java open source
technologies. Apress.

Sing, I., Stearns, B., Jonson, M., 2002. Design Enterprise
Applications with J2EE Plantaform, Second Edition.
Addison-Wesley.

Stelting, S., Maassen, O., 2002. Patrones de diseño
aplicados a java. Prentice Hall.

Weaver, J.L., Mukhar, K., Crume, J., 2004. Beginning
J2EE 1.4, from novice to professional. Apress

Yoshikawa, K., 2003. StrutsEJB.
https://strutsejb.dev.java.net/

DECOUPLING MVC: J2EE DESIGN PATTERNS INTEGRATION

287

