
SERVICE BROKERAGE IN PROLOG

Cheun Ngen Chong, Sandro Etalle, and Pieter Hartel
University of Twente

P.O. Box 217, 7500 AE Enschede, The Netherlands.

Rieks Joosten and Geert Kleinhuis
TNO Telecom Groningen

P.O. Box 15000, 9700 CD Groningen, The Netherlands.

Keywords: Service brokerage, rights expression language, conceptual modelling, service management.

Abstract: Service brokerage is a complex problem. At the design stage the semantic gap between user, device and system
requirements must be bridged, and at the operational stage the conflicting objectives of many parties in the
value chain must be reconciled. For example why should a user who wants to watch a film need to understand
that due to limited battery power the film can only be shown in low resolution? Why should the user have to
understand the business model of a content provider? To solve these problems we present (1) the concept of
a packager who acts as a service broker, (2) a design derived systematically from a semi-formal specification
(the CC-model), and (3) an implementation using our Prolog based LicenseScript language.

1 INTRODUCTION

A service is a combination of an application and its
maintenance. The application implements the func-
tionality required, e.g. making available a communi-
cation channel, playing a song. The maintenance en-
sures availability e.g. fast delivery, high bandwidth,
24 hour access. Services are characterized by a wide
variety of parameters, for example the capability of
the service delivery (e.g. bandwidth), and the restric-
tions on the service usage (e.g. device limitation).
These parameters make service brokerage a complex
problem.

Users have a wide variety of service demands (e.g.
to use their services anywhere and anytime); on the
other hand, service providers have their own require-
ments (e.g. to control user’s access rights). We present
the concept of a packager who acts as a service broker,
and we present an implementation as part of theResi-
dential Gateway Environment (RGE) project (Joosten
et al., 2003). Our contribution is two-fold: (1) Dur-
ing the design stage, we show how to derive the com-
plex infrastructure for the service management from
a semi-formal high-level description: the “Calculat-
ing with Concepts” (CC) method (Dijkman et al.,
2001). We encode all aspects of service brokerage
in LicenseScript (Chong et al., 2003). (2) During the
operational stage, we show how LicenseScript han-
dles the diverse requirements of all parties involved.

LicenseScript is based on Prolog and multiset
rewriting and allows one to expresslicenses, i.e. con-
ditions of use on dynamic data. Prolog has the advan-
tage of combining an operational semantics (needed,
e.g., in negotiations) with a straightforward declara-
tive reading. Our addition of multiset rewriting to
Prolog allows to encode in an elegant and semanti-
cally sound way thestate of a license. The semantics
of LicenseScript is given in terms of traces (Chong
et al., 2003).

Section 2 introduces the overall infrastructure of
the RGE service management and its CC model. Sec-
tion 3 derives LicenseScript from the CC model. The
last section concludes and presents future work.

2 CC MODEL OF RGE

We present the overall infrastructure of RGE service
management together with the CC method. The RGE
architecture supports three main roles: the residen-
tial gateway (RG), the packager (P) and the service
providers (SP). Service providers provide services
(S), e.g. access to music, videos, but also bandwidth.
The packager behaves as a service broker, being able
to manipulate and integrate the services provided by
the various SPs. The residential gateway is where the
services actually run. A power user (PU) of the RG
is allowed to (un)subscribe to services. All users (U)

409
Ngen Chong C., Etalle S., Hartel P., Joosten R. and Kleinhuis G. (2005).
SERVICE BROKERAGE IN PROLOG.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 409-412
DOI: 10.5220/0002517804090412
Copyright c© SciTePress



are allowed to use the services.

RG


C


LD


s
u
p


i
p
 o


P


r
e
q


hbrw2
 S


h
a
s
1


c
p
l


p


PU

has2


r
u
n
 i
s

t


U


SP


a
p
t


u
s
e


p
r
o
v


hbrw1


Service Model


Contract Model


Service

Provisioning Model


Figure 1: Three of many CC models of the RGE service
management infrastructure.

To develop the RGE infrastructure, den Hartog et
al. (den Hartog et al., 2004) use theCalculating with
Concepts (CC) method, which can be seen as an
extension of Entity-Relationship diagrams. The ba-
sic ingredients of a CC model are (a) entities, (b)
relations and (c) restrictions. The rationale behind
the CC-method is that every engineer involved in a
project has a different interpretation of the system re-
quirements. The CC method is then used in group
discussions to iron out these differences, and thus help
to develop a consistent frame of reference. Figure 1
presents a simplified CC-model for the RGE architec-
ture centered on service brokerage. There are many
other, similar models centering on other, relevant as-
pects. The models are related through the use of a
common vocabulary for entities, relations and restric-
tions.

Table 1: The CC entities of the Service Model
Entity

C Service characteristic, e.g. the quality, etc

LD List of demands, which a service must comply with

P Packager

RG Residential gateway

S Service

SP Service provider

U Normal user who uses the service

PU Power use who possesses the administrative power on RG

The roles of the RGE service management in-
frastructure are represented by the CC entities (see
Table 1). These roles interact through the entities ser-
vice (S), characteristics (C), and list of demands (LD).

Relationships and restrictions are described in further
detail in 2 and 3, respectively. The restrictions listed
in Table 3 largely determine the semantics of the CC
model (Joosten et al., 2003).

Table 2: The relations between the entities of the Service
Model

Abbr. Relation

apt Power user assigns permission(s) to user.

cpl Service complies with list of demands.

has1 Service has characteristic.

has2 Residential gateway has (is owned by) power user.

hbrw1 Packager has a business relation with service provider.

hbrw2 Packager has a business relation with residential gateway.

ipo Characteristic is part of list of demands.

ist Power user has subscribed to service.

p Packager permits service.

prov Service provider provides service.

req Packager requires list of demands.

run Service runs on residential gateway.

sup Residential gateway supports characteristic.

use User uses service.

Table 3: The CC restrictions of the Service Model
Restrictions

Every user is created by one and only one power user.

Every user has been assigned permissions by one and only one power user.

Every residential gateway has one and only one power user.

Every packager permits at least one service.

Every packager has a business relation with at least one service provider.

Every packager has a business relation with at least one residential gateway.

Every service is provided by at least one service provider.

Every service has at least one characteristic.

For every list of demands, there is at least one characteristic that is part of

that list of demands.

Every packager requires at least one list of demands.

3 LICENSESCRIPT DERIVATION

We now briefly introduce the LicenseScript language,
then we will show how to derive a LicenseScript spec-
ification from the CC model just presented. Licens-
eScript (Chong et al., 2003) is a formalism that can
be used to specify access control and manipulation
of licenses on digital content like music, video, soft-
ware etc. The unique feature of LicenseScript is that
licenses actually carry Prolog code (representing ac-
cess and usage conditions) together with bindings,
that can be used to store thestate of the license.

In LicenseScript we work withobjects (licenses)
andrules. Objects have the form:

object_name(Content,Clauses,Bindings)

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

410



Here object name is the name of the object;
Content is a content identifier which is associated
to this object;Clauses is a set of Prolog clauses,
andBindings is a set of attributes pertaining to the
object. Rules have the form:

rule_name(arguments):

lhs -> rhs <== Condition

Here, lhs and rhs are multisets of objects.
Condition is a logical formula that may refer to
the clauses defined in the objects contained inlhs.
Because of this, rules are second-order constructs; ob-
jects are first order.

Intuitively, objects are pieces of enhanced (mobile)
Prolog code, while rules are there to manipulate the
objects and to query the code they carry. Rules arenot
mobile, and can be thought of as being the interface
between the devices and the mobile code. The use
of multiset rewriting allows us to model in a logical
yet effective way the presence of mutable resources
that not only can be modified, but also created and
destroyed.

We now show how to derive LicenseScript code
from the CC model. We propose a set of informal
derivation rules to map the various CC components
onto LicenseScript objects and rules, and/or the con-
tent, clauses and bindings of the objects:

1. We start from the service (entityS, inside the inner-
most circle of Figure 1) because this is the central
entity in RGE service management. Each instance
of S is then mapped onto thecontent part of an ap-
propriate LicenseScript object.

2. Entities are split into two groups:

• Objects, i.e., the entities on which actions are be-
ing performed (C andLD in the middle circle).
These are mapped onto LicenseScriptobjects.

• Subjects, i.e., the entities that perform actions
upon the objects (RG, P, SP, U, andPU in the
outer circle). These are mapped onto License-
Scriptbindings.

3. Relations between the entities are mapped onto Li-
censeScriptclauses, the body of which must reflect
the cardinality restrictions of the relation.

4. Restrictions are captured by LicenseScriptmultiset
rewrite rules.

Objects LD becomesdemands(S,C,B) while C
is mapped ontocharacteristics(S,C,B). In
addition, to communicate with the external world,
(Contract Models and Service Provisioning Models,
in Figure 1), we use the objectslicense(S,C,B)
andcontracts(S,C,B), whereS represents the
service;C denotes a set of clauses; andB is a set of
bindings.

Clauses In principle, derivation rule #3 maps each
CC relation onto a separate clause. To improve ef-
ficiency, we map more than one CC relation onto
a single clause. For instance, we use the clause
cangrant(·) to capture both relationshas2 and
apt. This clause allows the power user to assign the
license (i.e. grants the usage permissions) to normal
users:

cangrant(Blic1,Blic1’,Blic2,Poweru,User) :-

get_value(Blic1,power_user,Pu),

authenticate(Pu,Poweru),

set_value(Blic1,user,User,Blic1’).

HereBlic andBlic1’ arebindings. To ac-
cess these bindings we use the primitives below to
get (resp. set) the value associated withName in
Bindings:

get_value(Bindings,Name,Value)

set_value(Bindings,Name,Value,NewBindings)

As a second example, the clausecanuse(·) al-
lows to capture the relationsrun anduse. canuse
authenticates and checks that the service actually runs
on the residential gateway (the bindingenabled):

canuse(Blic,Blic’,User) :-

get_value(Blic,user,U),

get_value(Blic,enabled,E),

E == true, authenticate(U,User).

We conclude this part by showing a more complex
example. canpermit(·) authenticates the pack-
ager to ensure its genuineness, before enabling the
service to the residential gateway; relationsp andist
are captured here.

canpermit(Bdem,Bdem’,Blic,Clic,Pack) :-

get_value(Bdem,packager,P),

get_value(Bdem,service_provider,S),

get_value(Bdem,license_clauses,Clic),

authenticate(Pack,P),

set_value(Bdem,enabled,true,Blic).

Rules Rules provide the necessary interface be-
tween the outside world and the LicenseScript ob-
jects. The simplest example of rule isuse, which
is invoked by the user to actually use a service. The
rule just has to check for the presence of a license:

use(Service,U) :

license(Service,Clic,Blic1)

-> license(Service,Clic,Blic2)

<= Clic |- canuse(Blic1,Blic2,U)

canuse(Blic1,Blic2,U) is queried inClic
(a failure of the query would indicate that the license
is no longer valid; e.g. it might have expired); after
successful completion of the query, the license is re-
placed by another one with a the new set of bindings
Blic2.

A more complex rule isgrant, which duplicates
a license. The power user would executegrant to
grant some permissions/rights to a normal user:

SERVICE BROKERAGE IN PROLOG

411



grant(Service,U1,U2) :

license(Service,Clic,Blic1),

-> license(Service,Clic,Blic1’),

license(Service,Clic,Blic2)

<= Clic |- cangrant(Blic1,Blic1’,Blic2,U1,U2)

This rule generates a newlicense(·) for the
user.

Finally we present the rulepermit, with which
the packager generates a license for some service to
be run on the residential gateway:
permit(Service,P,S) :

demands(Service,Cdem,Bdem),

characteristics(Service,nil,Bcha)

-> demands(Service,Cdem,Bdem’)

characteristics(Service,nil,Bcha’),

license(Service,Clic,Blic)

<= Cdem |- canpermit(Bdem,Bdem’,Blic,Clic,P),

Cdem |- cancomply(Bdem,Bdem’,Bcha,Bcha’)

The objectdemands(Service,Cdem,Bdem)
indicates that a user has requestedService; Cdem
andBdem are respectively a set of clauses and a set
of bindings that – combined – specify extra side con-
ditions such as the maximum bandwidth, the price the
user is willing to pay, etc. By callingcanpermit,
the packager checks if permission can be granted.
canpermit also returns the clauses that will be used
in the new license. On the other hand,cancomply
validates the service request (See below).

3.1 Service Requirements Validation

We now define how the packager validates a ser-
vice request, first using a simplified version of the
cancomply(·) clause:
cancomply(Bdem,Bdem’,Bcha,Bcha’) :-

get_value(Bdem,bandwidth,X1),

get_value(Bcha,bandwidth,X2),

get_value(Bdem,quality,Y1),

get_value(Bcha,quality,Y2),

get_value(Bdem,billing,Z1),

get_value(Bcha,billing,Z2),

X1 >= X2, Z1 = Z2, Y1 =< Y2.

The last line shows the use of constraints to en-
sure that the maximum bandwidth of the user’s de-
vice meets the minimum bandwidth required for the
service; that the billing status of the user meets the re-
quirement of the service provider; and that the quality
measure required by the user does not exceed the of-
fered quality.

Alternatively, one can use a parametric approach,
in which the list of requirements to be complied with
is stored in the license:
cancomply(Bdem,Bdem’,Bcha,Bcha’) :-

get_value(Bcha,requirements,Reqs),

meets_requirements(Reqs).

meets_requirements([]).

meets_requirements([[Reqn,Reqv]|Reqs]):-

check_requirement(Reqn,Reqv),

meets_requirements(Reqs).

Recall that (see rulepermit above) the
query cancomply is fired in the set of
clauses Cdem specified in the user’s demand
demands(Service,Cdem,Bdem). Therefore
cancomply can check that the service specification
meets the the constraints set out in the user’s demand.

4 CONCLUSIONS AND FUTURE
WORK

We present one of the central concepts of the
LicenseScript-RGE demonstrator, i.e. thepackager,
which acts as a service broker. We derive its im-
plementation in our Prolog based LicenseScript lan-
guage, using a systematic derivation from a semi-
formal specification (the CC-model).

The combination of Prolog and multiset rewriting
proves to be a very suitable platform for implement-
ing a complex broker such as the one we have pre-
sented, in particular: (1) To represent complex ser-
vices in a flexible and efficient manner one needs to
employ executable (mobile) code of some kind. (2)
To manipulate services it is therefore necessary to em-
ploy a second-order system. Prolog is perfect for this.

REFERENCES

Chong, C. N., Corin, R., Etalle, S., Hartel, P. H., Jonker,
W., and Law, Y. W. (2003). LicenseScript: A novel
digital rights language and its semantics. In Ng, K.,
Busch, C., and Nesi, P., editors,3rd International
Conference on Web Delivering of Music (WEDEL-
MUSIC), pages 122–129, Los Alamitos, California,
United States. IEEE Computer Society Press.

den Hartog, F. T. H., Baken, N. H. G., Keyson, D. V.,
Kwaaitaal, J. J. B., and Snijders, W. A. M. (2004).
Tackling the complexity of Residential Gateway in an
unbundling value chain. InProceedings of XVth In-
ternational Symposium on Services and Local AccesS
(ISSLS 2004), page Published Electronically. IEE.

Dijkman, R. M., Pires, L. F., and Joosten, S. M. M. (2001).
Calculating with Concepts: a technique for the de-
velopment of business process support. In Evans,
A., France, R., Moreira, A., and Rumpe, B., editors,
Proceedings of the UML 2001 Workshop on Practi-
cal UML-Based Rigorous Development Methods, vol-
ume 7 ofLecture Notes in Informatics, pages 87–98.
GI-Edition.

Joosten, R., Knobbe, J.-W., Lenoir, P., Schaafsma, H., and
Kleinhuis, G. (2003). Specifications for the rge secu-
rity architecture. Technical Report Deliverable D5.2
Project TSIT 1021, TNO Telecom and Philips Re-
search, The Netherlands.

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

412


