
BENCHMARKING AN XML MEDIATOR

Florin DRAGAN, Georges GARDARIN
PRiSM Laboratory University of Versailles 78035 Versailles Cedex, France

Keywords: XML, mediation, benchmark

Abstract: In the recent years, XML has become the universal interchange format. Many investigations have been
made on storing, querying and integrating XML with existing applications. Many XML-based commercial
DBMSs have appeared lately. This paper reports on the analysis of an XML mediator federating several
existing XML DBMSs. We measure their storage and querying capabilities directly through their Java API
and indirectly through the XLive mediation tool. For this purpose we have created a simple benchmark
consisting in a set of queries and a variable test database. The main scope is to reveal the weaknesses and
the strengths of the implemented indexing and federating techniques. We analyze two commercial native
XML DBMS and an open-source relational to XML mapping middleware. We first pass directly the queries
to the DBMSs and second we go through the XLive XML mediator. Results suggest that text XML is not
the best format to exchange data between a mediator and a wrapper, and also shows some possible
improvements of XQuery support in mediation architectures.

1 INTRODUCTION

As XML capabilities have become more and more
popular, a lot of XML-based products and interfaces
have been proposed. Several XML DBMSs that
have been developed try, on the one hand, to offer
the well known capabilities of a standard DBMS,
and on the other hand, to implement new
functionalities and reach new levels of performance.
In the same time more and more classical DBMSs
add new extensions to store and retrieve XML
documents.
For measuring and comparing their performances, a
lot of XML benchmarks have been proposed that
"stress" different parts of the systems, most often the
storage engine and the query processor, by means of
a generally complex set of queries. Each benchmark
is composed of a test database and a set of queries
trying to be as general and complete as possible.
There are also a few benchmarks specific to a certain
domain that propose a specific format of database
and a set of queries specific to the simulated
applications. The most used metric is the response
time for executing a query, but a few other ones (like
the size on disk to store a certain document) are also
proposed.
The purpose of this paper is to present a simple
general mini-benchmark composed of a few queries
and a variable data set to evaluate some techniques

implemented in the core of the DBMSs under the
pressure of an XQuery mediator. We are mostly
interested in the implemented indexing and
mediation techniques and how they are influenced
by the size of the data set. Using our mini-
benchmark, we test two native XML commercial
DBMSs and one open source XML to relational
mapping middleware and analyze their response
times. Next, we apply our benchmark to an XML
mediator for finding the delays that are introduced
by the mediation operations. The conclusions show
that XML mediation is a time consuming operation
that has to be optimized both in communication and
processing time.
The rest of this paper is organized as follows. In the
next section we give an overview of XML mediation
technology focusing on the XLive full-XML
mediator. Section 3 introduces our mini benchmark
(query set and data set). In section 4, we present the
results of the benchmarking operations using the
mediator and XML DBMSs. In conclusion, we
summarize our results and suggest some
improvements to the mediator architecture.

2 XML MEDIATION

Mediation technology based on XML and XQuery is
under development. Some products are already

191
DRAGAN F. and GARDARIN G. (2005).
BENCHMARKING AN XML MEDIATOR.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 191-196
DOI: 10.5220/0002517701910196
Copyright c© SciTePress

available. In this section, we survey this new
technology and describe our XLive mediator (see
www.xquark.org for an industrial open source
version).

2.1 Basics and Backgrounds

With the advent of XQuery as a standard for
querying XML collections (XQuery, 2003), several
mediator systems have been developed using
XQuery and XML schema as pivot language and
model. Examples of full XML mediators are the
Enosys XML Integration Platform (EXIP
(Papakonstantinou, 2003),), the Software A.G.
EntireX XML Mediator, the Liquid Data mediator of
BEA derived from EXIP, the e-XMLMedia XML
Mediator, a predecessor of our current XLive project
(Gardarin, 2002).
XML Mediators are focused on supporting the
XQuery query language on XML views of
heterogeneous data sources. The data are integrated
dynamically from multiple information sources.
Queries are used as view definitions. During run-
time, the application issues XML queries against the
views. Queries and views are translated into some
XML algebra and are combined into single algebra
query plans. Sub-queries are sent to local wrappers
that process them locally and return XML results.
Finally, the global query processor evaluates the
result, using appropriate integration and
reconstruction algorithms.
XQuery is a powerful language, which encompasses
SQL and much more. Notably, it is able to query
rich and extensible data types; it is a functional
language, so that any valid expression applied to a
valid expression is a valid query; it will soon
incorporate XQuery Text for full text queries.
XQuery Text shall provide functionalities as single-
word search, phrase search, support for stop words,
search on prefix, postfix, infix, proximity searching,
word normalization, diacritics, ranking and

relevance. All these features will make XQuery an
ideal language for querying in an integrated way
heterogeneous data sources.

2.2 Overview of XLive Mediator

In the XLive project, we use a mediation
architecture to support enterprise information
integration shown in Figure 1. It follows the
classical wrapper-mediator architecture as defined in
(Wiederhold, 1992). The communication between
wrappers and mediator follows a common interface,
which is defined by an applicative Java or Web
service interface named XML/DBC. With
XML/DBC, requests are defined in XQuery and
results are returned in text XML format.
Our architecture is composed of mediators that deal
with distributed XML sources and wrappers that
cope with the heterogeneity of the sources (DBMS,
Web pages, etc.). The XLive mediator is a data
integration middleware managing XML views of
heterogeneous data sources. Using XLive mediator
one can integrate heterogeneous data sources
without replicating their data while the sources
remain autonomous.
XLive mediator is entirely based on W3C standard
technology: XML, XQuery, XML-Schema, SAX,
DOM and SOAP. All information exchanges rely on
XML format. XML-Schema is used for metadata
representation. Wrappers provide schemas to export
information about local data structures. XQuery is
employed for querying both the mediator and the
wrappers. Connectivity of mediator and wrappers
relies on the XML/DBC programming interface, an
extension of JDBC to integrate XQuery. More
information about the XLive mediator can be found
in (Dang-Ngoc, 2003).

3 PROPOSED BENCHMARK

Several benchmarks have been developed for XML
DBMSs, among them XMach-1 (XMach-1, 2001),
XMark (XMark, 2001) , X007 (X007, 2002),
XBench (XBench, 2004). They all have their
interests, but are in general too complex for current
mediators, both in functionality and size. In this
section, we introduce our simpler benchmark.

Web
Interface

Java
Application

Java Application

RDB1
Oracle

RDB2
MySQL

XML DB3
Xyleme

Wrapper Wrapper Wrapper

Mediator

Mediator

Mediator

3.1 Presentation

We propose a simple generic benchmark for testing
the basic functionalities of an XML mediator and
evaluating the performances of the different join
algorithms and indexing schemas of the local

Figure 1: XLive architecture

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

192

sources. The existing benchmarks generally propose
a set of complex queries that evaluate many of the
properties of the query processor in the same query.
By appealing at simple operations, our goal is to
stress only certain functions: local indexing, XML
transfer and parsing, join algorithms, etc. Another
reason for proposing only simple queries is that we
used our benchmark to test the XLive mediator that
performs basic XQuery to integrate multiple sources.
Generally, it takes a long time for a mediator to
perform complex join operations (time that depends
on the mediator join algorithms and on other
external parameters as the network delay, the distant
DBMS capabilities, and on the source speed to
transfer the results). Yet another reason to use a
simple XQuery benchmark is that most tested
DBMSs only support the core of XQuery with
realistic performance on the computer we are using.

3.2 Data Set

The data set is composed of 2 document models: one
data oriented and the other text oriented. With a
small depth (of maximum 3) and a small width (of
maximum 5), the two documents have a simple
structure that facilitates the evaluation of different
structural selection queries. The two documents are
logically connected, which gives us the possibility to
perform simple join operations between documents
that are located on different systems. A graphical
representation of the schema of the two documents
is given in Figure 2 and 3. The schema is variable in
the sense that neither the number of "authors" of a
book nor the number of paragraphs in the reviews
are constant. The textual content is generated from
the most popular English words extracted from
Shakespeare’s plays.
In order to evaluate the performances of the XML
systems, we generated 3 data sets with 300/750/1500
documents, each documents having a size less than
2k. We used the utility toXgene (toXgene) and we
started from a provided example for generating our
data set.

3.3 Queries

Our benchmark proposes a representative set of
XML DBMS query functionalities, which can be
grouped as follows:

(i) Simple XPath expressions.
Queries Q1 and Q2 represents XQueries that require
selections on the elements and attributes names:
Q1: for $b in collection("catalog") /catalog/book return $b
Q2: for $currency in collection("catalog")/catalog/book/
price/@currency return $currency
(ii) XPath with predicates.
Q3, Q4, Q5 introduce predicates to perform simple
selections.
Q3 predicate tests for exact equality:
Q3: for $b in collection("catalog") /catalog/book where
$b/price/@currency = "CDN" return $b
Q4 contains a “range” predicate:
Q4: for $b in collection("catalog") /catalog/book where
$b/price < 100 return $b
Q5 contains the two previous predicates:
Q5: for $b in collection("catalog") /catalog/book where
$b/price < 100 and $b/price/@currency = "CDN" return $b
(iii) Recursive Path optimization.
Q6 contains a recursive wildcard "//" expression that
tests for the optimality of the path evaluation :
Q6: for $col in collection("catalog") return $col//price
(iv) Result ordering.
For testing the performances of generating an
ordered result, we have introduced an order-by
XQuery:
Q7: for $col_rev in collection("review"), $rev in
$col_rev/review, $rate in $rev/review/@rating order by
($rate) return $rev
(v) Text search.
Q8 contains the "contains" predicate to stress some
text indexing capabilities:
Q8: for $b in collection("catalog") /catalog/book where
contains($b/author, "Fumio") return $b
(vi) Joins on values.
Q9 and Q10 require joins between the two
documents; Q9 performs join and text searching:
Q9: for $col_cat in collection("catalog"), $col_rev in
collection("review"), $b in $col_cat/catalog/book,
$rev in $col_rev/review, $rev_rev in $rev/review
where $b/@isbn=$rev/book/@isbn and
contains($rev_rev,"dolphins") return $b/@genres.
Q10 performs equality join:
Q10: for $col_cat in collection("catalog"), $rev_cat in
collection("review"), $b in $col_cat/catalog/book, $r in
$rev_cat/review where $b/@isbn=$r/book/@isbn
return $r/review/@rating
(vii) Result generation.
Q11 tests the performances of the "query processor"
to generate new results: Figure 2: Catalog schema

BENCHMARKING AN XML MEDIATOR

193

mailto:$b/@isbn=$r/book/@isbn

Q11: for $col_rev in collection("review"), $rev in
$col_rev/review where $rev/review/@rating <2
return
<lowRateBook>
<title>{$rev/book/title/text()}</title>
 {for $col_cat in collection("catalog"),
 $b in $col_cat/book
 where $b/@isbn=$rev/book/@isbn
 return <price>$b/price/text()</price>}
</lowRateBook>

3.4 Metrics

For evaluating a query processor, we measure the
query execution time and the size (in bytes) of the
result. For running the benchmark and evaluating the
different DBMSs, we have used a PC Intel®
Pentium® M processor 1600MHz with 1 gigabytes
of main memory. All the systems were evaluated
using the provided Java API.

4 MEDIATOR EVALUATION

We run the benchmark queries on top of the XLive
mediator using two native XML DBMSs as data
sources, namely XDBMS1 and XDBMS2. With
multiple data sources, times are sensibly the same as
with one. Thus, we only report the results for the
mediator on top of a unique data source.

4.1 Results of experiments

Tables 1,2 and 3 present the results of evaluating the
query using a mediator on top of XDBMS1 and
XDBMS2 for all the data sets. Most time in the
mediator is taken to iterate on the intermediate
results and construct the final result. As XLive
exchanges data with sources in text XML (as with

Web services), a reparsing of all the partial results is
required, which is costly in Java on a small portable
computer. Better results could be obtained if the
mediator would use a cache for temporary storing
source query results in an easy to serialize format.

Table 1: Mediator results for DS1
Query Time Results
 XDBMS1 XDBMS2 elements
Q1 444,5 524,8 100
Q2 245,4 213,1 100
Q3 504,2 417,8 100
Q4 333,4 264,9 69
Q5 422,2 306,8 69
Q6 206,9 269,1 100
Q7 992,1 2151,8 200
Q8 137,5 4,61 4
Q9 423,3 1939,6 79
Q10 698,6 3293,5 200
Q11 945,5 1527,5 60

Figure 3: Review schema

Table 2: Mediator results for DS2

Query Time Results
 XDBMS1 XDBMS2 elements
Q1 758,9 2378,5 250
Q2 335,7 313,6 250
Q3 879,1 1804,8 250
Q4 652,1 866,0 168
Q5 674,8 893,2 168
Q6 263,9 263,7 250
Q7 1242,7 3412,0 500
Q8 136,8 7,24 10
Q9 508,0 3128,4 212
Q10 997,5 7986,1 500
Q11 2008,4 2854,8 148

Table 3: Mediator results for DS3
Query Time Results
 XDBMS1 XDBMS2 elements
Q1 1106,6 7490,3 500
Q2 388,3 759,5 500
Q3 1144,5 8174,7 500
Q4 759,2 3998,3 339
Q5 739,1 3661,3 339
Q6 933,8 979,3 500
Q7 1887,5 4816,6 1000
Q8 131,8 8,52 15
Q9 829,6 6160,3 428
Q10 1586,4 14962,6 1000
Q11 4411,7 4051,7 285

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

194

4.2 Some Discussions

It is important to mention that the mediator
evaluation time is strongly influenced by the Java
API provided by the mediated DBMSs. The
generated XQuery sub-queries are in general the best
possible, but compliant with the local source
capabilities.
Another important point is that at the mediator level,
it is not always possible to benefit from the best
indexing techniques of each local data source. For
example when evaluating Q8 on XDBMS2, in order
to take advantage of the text indexation, it is
required to use the non-XQuery function
“XDBMS2:fts” of XDBMS2. On the other hand the
mediator supports standard XQuery with no specific
functions. Thus, an optimized translation from
XQuery to XDBMS2 functions would require more
parameters and a constant phasing of the wrapper
with the vendor's different optimal functions.
Another actual problem that penalizes the mediator
evaluation is the translation between the XLive
XQuery to real DBMSs, which are in reality far
from the standards. These points demonstrate the
high importance of compliance to standards for
efficient mediation of XML DBMSs.
For DS1, total time for running the whole
benchmark with XDBMS1 is 499 ms while it is
5353 ms with the mediator on top of XDBMS1. This
shows an average factor of 10, mainly due to data
transfer and parsing. Total time with XDBMS2 is 71
versus 922 with the mediator on top of XDBMS2.
This shows an average factor of 13. The global
difference may come from the quality of the wrapper
(better optimizations have been made with
XDBMS1). Other ratios with the other data sets DS2
and DS3 are a bit better (approximately 7 and 5) for
XDBMS1. The more reduced ratios are caused by
the fact that the query processing time, at XDBMS1
level, grows “faster” than the time required to parse
additional results, at the mediator level.
Figures 4, 5 and 6 gives the detailed ratios between
the response time with mediator versus direct
response time. The ratio for XDBMS2 increases for

bigger data sets. This means that the time required to
analyze more results (due to iteration, parsing, and
serialization) grows “faster” than the additional time
required by XDBMS2 to generate more results.
The same conclusion appears if we consider the
returned result: the first query returns a book (an
element node with many children having a big size)
and has the biggest increasing ratio for XDBMS2;
the second query returns only a text node and the
ratio increases very little (the same happens for Q8).
This means that indeed the mediator overhead
greatly depends on the analysis of the entire result
structure.
Q9 and Q10 (the join queries) have a very reduced
ratio that is caused by the fact that XDBMS2 does
not compute very well the joins.

5 CONCLUSION

In this paper, we introduced a new benchmark
composed of three data sets and 11 queries. It was
designed to evaluate commercial DBMSs behaviors
in a mediation architecture. Data sets are small in
order to make the benchmark fast to run. The data
sets are designed to cover several existing XML
schemas. The set of queries is composed of simple
queries that stress only the most important parts of a
DBMS and give fast results. However our query set
covers the typically used XQuery functionality. We
tried to compose our benchmark according to
previous existing benchmarks and to the

0

5

10

15

2 0

2 5

3 0

3 5

4 0

4 5

X D B M S1 X D B M S2

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11

Figure 4: DS1 Mediator time increasing factor

0

5

10

15

2 0

2 5

3 0

3 5

4 0

4 5

X D B M S1 X D B M S2

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11

Figure 5: DS2 Mediator time increasing factor

0

2 0

4 0

6 0

8 0

10 0

12 0

X D B M S1 X D B M S2

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11

Figure 6: DS3 Mediator time increasing factor

BENCHMARKING AN XML MEDIATOR

195

specifications that are already implemented in the
considered source DBMSs. We tried to design and
run the benchmark without favoring one DBMS
versus another. The results were not post processed
because we wanted to present the real performances
of XML systems.
For presenting the actual “value” of some existing
XML DBMS, we ran our benchmark on two popular
systems and discovered which are their strong points
and weaknesses. Further, we also evaluate the
XQuark XQuery bridge, an open source mapping
XML-XQuery to table-SQL. The behaviour of the
bridge (reported in full paper see www.gardarin.org)
is not very different from that of XDBMS1.
We evaluate the XLive mediator with the goal of
discovering some means of optimization. Our results
can help in the future development of the mediator
versions. It is realistic to say that the best
optimization should be the replacement of XML text
for data exchange by some parsed binary format
encoding XML in a compact way and avoiding
parsing and reparsing.
As part of our benchmark experience, we like to say
that the existence of a mediator facilitates the
evaluation of existing DBMSs offering a general
integrated platform: one single XQuery
implementation with a uniform API, whatever be the
DBMS type and specificities. In the same time the
mediator may add additional functionalities to some
DBMSs that have a weak implementation of the
standard query languages (XQuery in our case).
According to our tests, the mediator can even
accelerate the evaluation of certain queries taking
advantage of its query decomposition module.
The benchmark also shows that XLive can be
improved by changing the exchange format (e.g.,
compressed XML avoiding reparsing would be
great), adding some new modules (e.g.,
parameterized query compilation, a persistent cache
for storing partial results), optimizing existing ones
(e.g., memory allocation techniques, join and sort
algorithms), improving wrappers for specific
DBMSs (e.g., performing distributed index
management for XML sources).

REFERENCES

XQuery, 2004. XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/2004/WD-xquery-20041029/

Papakonstantinou, 2003. Yannis Papakonstantinou et.al.:
XML queries and algebra in the Enosys integration
platform, Data Knowl. Eng. 44(3): 299-322

Gardarin, 2002. Georges Gardarin, Antoine Mensch,
Anthony Tomasic: An Introduction to the e-XML Data
Integration Suite, EDBT 2002: 297-306

Wiederhold, 1992. Wiederhold G.: Intelligent Integration
of Information, ACM SIGMOD Conf. on Management
of data, Washington D.C., USA, 1993, 434-437.

Dang-Ngoc, 2003. Tuyet-Tram Dang-Ngoc, Georges
Gardarin.: Federating Heterogeneous Data Sources
With XML, IASTED IKS 2003: Scottsdale, AZ, USA,
Nov. 2003.

XMach-1, 2001. Rahm, E., Böhme, T.: XMach-1: A Multi-
User Benchmark for XML Data Management, Proc.
VLDB workshop Efficiency and Effectiveness of
XML Tools, and Techniques (EEXTT2002),
Hongkong, Aug. 2002

XMark, 2001. A. R. Schmidt, F. Waas, M. L. Kersten, D.
Florescu, I. Manolescu, M. J. Carey, R. Busse:The
XML Benchmark Project, Technical Report INS-
R0103, CWI, Amsterdam, The Netherlands, April
2001

X007, 2002. Stéphane Bressan, Mong Li Lee, Ying Guang
Li, Zoé Lacroix and Ullas Nambiar: The XOO7
Benchmark, in the Lecture Notes in Computer Science
series (ISBN 3-540-00736-9), Springer-Verlag,
pp146-147.

XBench, 2004. B. B. Yao, M. T. Özsu, and N. Khandelwal:
XBench Benchmark and Performance Testing of XML
DBMSs, In Proceedings of 20th International
Conference on Data Engineering, Boston, MA, March
2004, pages 621-632.

toXgene, 2002. www.cs.toronto.edu/tox/toxgene/

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

196

http://www.gardarin.org/

