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Abstract: Majority of the research in multilevel secure database management systems (MLS/DBMS) focuses 
primarily on centralized database systems. However, with the demand for higher performance and higher 
availability, database systems have moved from centralized to distributed architectures, and the research in 
multilevel secure distributed database management systems (MLS/DDBMS) is gaining more and more 
prominence. Concurrency control is an integral part of database systems. Secure concurrency control 
algorithms proposed in literature achieve correctness and security at the cost of declined performance of 
high security level transactions. These algorithms infringe the fairness in processing transactions at different 
security levels. Though the performance of different concurrency control algorithms have been explored 
extensively for centralized multilevel secure database management systems but to the best of author’s 
knowledge the relative performance of transactions at different security levels using secure concurrency 
control algorithm for MLS/DDBMS has not been reported yet. To fill this gap, this paper presents a detailed 
simulation model of a distributed database system and investigates the performance price paid for 
maintaining security with concurrency control in a distributed database system. The paper investigates the 
relative performance of transactions at different security levels. 

1 INTRODUCTION 

In applications such as military, data and 
transactions (users) are classified into different 
levels of security. For these applications security can 
be implemented by using a database system that can 
control the access to data based on the security level 
of users submitting the transactions and the security 
level of data. This is in-contrast to the traditional 
database systems where all data in the database and 
all users who access it belong to the same security 
level. Database system that can store and manage 
data with different classifications in a single system 
is called a multilevel secure database (MLS/DB) 
system. 

In a Multilevel secure database system 
(centralized or distributed) a security level is 
assigned to each transaction and data. A security 
level for a transaction represents its clearance level 
and the security level for a data represents its 

classification level. A multilevel secure database 
management system (MLS/DBMS) restricts 
database operations based on the security levels. 

Concurrency control is an integral part of the 
database systems. It is used to manage the 
concurrent execution of operations by different 
transactions on the same data item such that 
consistency is maintained. One of the most 
important issues for concurrency control in MLS 
database system is the covert channel problem 
(Lampson, 1973). It naturally comes due to the 
contention for the shared data items by transactions 
executing at different security levels. The most 
common instances of totally ordered security levels 
are the Top-Secret(TS), Secret(S), Confidential(C), 
and Unclassified(U) security levels encountered in 
the military and government sectors. In this paper, 
we use two security levels: high and low. A primary 
concern in multilevel security is information 
leakage, by a high security level transaction-to-
transaction executing at a low security level. Covert 
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channels are paths not normally meant for 
information flow. In multilevel secure databases, a 
low security level transaction can be delayed or 
aborted by a high security level transaction due to 
shared data access. Thus, by delaying low security 
level transactions in a predetermined manner, high 
security level information can be indirectly 
transferred to the lower security level. This is called 
a covert channel. Direct leakage can be prevented by 
mandatory access control policies such as the Bell-
LaPadula (BL) model (Bell & LaPadula, 1976) but 
handling of covert channel needs modifications in 
conventional concurrency control schemes such as 
two-phase locking (2PL) and timestamp ordering 
(TO).  

Most of the research efforts in the area of secure 
concurrency control are focused on centralized 
databases. Several approaches have been proposed 
for centralized secure concurrency control in 
MLS/DBMSs.  Most of these are either extension of 
the 2PL protocol or of timestamp-based protocols 
(Atluri, Jajodia & Bertino, 1997). The performance 
of secure concurrency control algorithms has also 
been studied (Son & David, 1994 and Sohn & 
Moon, 2000.). However, to the best of author’s 
knowledge the performance study of MLS/DDBS 
has not been yet reported. 

The problem of covert channel makes secure 
concurrency control algorithms more complex than 
conventional concurrency control algorithms.  In this 
paper, we concern ourselves with concurrency 
control algorithm that has to satisfy both security 
and consistency requirements and compare the 
performance of secure 2PL with non-secure 2PL for 
secure distributed database via simulation.  

The remainder of the paper is organized as 
follows. The next section presents MLS distributed 
database model. Section 3 presents the secure two-
phase locking concurrency control algorithm that 
implemented in our simulation model.  Section 4 
gives the details of the simulation model. The results 
of simulation experiments are discussed in Section 
5. Section 6 concludes the paper. 

2 MLS DISTRIBUTED DATABASE 
MODEL 

We use the MLS distributed database model given in 
(Ray, Mancini,  Jajodia & Bertino, 2000). It consists 
of a set N of sites, where each site N є N is an MLS 
database. Each site has an independent processor 
connected via secure (trusted) communication links 
to other sites. Thus no communication between two 
sites is subject to eavesdropping, masquerading, 
reply or integrity violations.  

The MLS distributed database is modeled as a 
quadruple < D, T, S, L >, where D is the set of data 
items, T is the set of distributed transactions, S is the 
partially ordered set of security levels with an 
ordering relation ≤, and L is a mapping from D ∪ T 
to S. Security level Si is said to dominate security 
level Sj if Sj ≤ Si. For every x є D, L(x) є S, and for 
every T є T, L(T) є S. Every data object x, as well as 
every distributed transaction T, has a security level 
associated with it. 

 Each MLS database N is also mapped to an 
ordered pair of security classes Lmin(N) and Lmax(N). 
Where Lmin(N), Lmax(N) є S, and Lmin(N) ≤ Lmax(N). 
In otherwords, every MLS database in the 
distributed database has a range of security levels 
associated with it. For every data item x stored in an 
MLS database N, Lmin(N) ≤ L(x) ≤ Lmax(N) Similarly, 
for every transaction T executed at N, Lmin(N) ≤ L(T) 
≤ Lmax(N). A site Ni is allowed to communicate with 
another site Nj only if Lmax(N)i = Lmax(N)j. The 
security policy used is based on the Bell-LaPadula 
model and enforces the following restrictions: 

Simple Security Property: A transaction 
T(subject) is allowed to read a data item(object) x 
only if L(x) ≤ L (T). 

Restricted *- Property: A transaction T is 
allowed to write a data item x only if L (x) = L (T). 

Thus, a transaction can read objects at its level or 
below, but it can write objects only at its level. In 
addition to these two requirements, a secure system 
must guard against illegal information flows through 
covert channels. 

3 SECURE TWO PHASE 
LOCKING PROTOCOL  

Two-phase locking is the most widely used 
concurrency control algorithm in database systems 
for synchronizing accesses to shared data and has 
been realized in most of the commercial systems 
(Bernstein, Hadzilacos, & Goodman, 1987 and Mohan, 
Lindsay, & Obermarck, 1986). As the name indicates, 
two-phase locking (2PL) consists of two phases. The 
first phase is called expanding phase during which 
new locks can be acquired but none can be released. 
The second phase is called shrinking phase during 
which locks held by a transaction are released but no 
new locks can be acquired. For strict execution, 
strict two-phase locking additionally requires that all 
locks held by a transaction be released only after the 
transaction commits or aborts (Ceri & Pelagatti, 1984). 
If a transaction Ti is holding a lock on shared data 
item x, no other transaction Tj can get access to x if 
their operation on x conflict. As a result, the 
isolation of transactions is enforced.  
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In 2PL, the current lock holder is never aborted 
due to a conflicting request from another transaction. 
The new request is blocked until the current holders 
release their locks. Therefore, two-phase locking is 
not suitable for MLS databases because a low 
security level transaction can be delayed by a high 
security level transaction due to shared data access. 
Thus, by delaying low security level transactions, 
high security level transaction can indirectly transfer 
the information to lower security level transaction by 
establishing a timing covert channel. If low security 
level transactions are somehow allowed to continue 
with there execution in spite of the conflict with high 
security level transactions, covert channel can be 
prevented. 

Let Tl denotes the low security level transaction 
and Th denotes the high security level transaction, 
i.e., L(Tl) < L(Th). x and y are data items with low 
and high security level respectively. Read down is 
the only conflicting operation between Tl and Th that 
can create covert channel 

The security model allows a transaction (or sub-
transaction) to issue read-equal, read-down and 
write-equal operations. This is sufficient to prove 
that security is not violated through data access 
(Sandhu, 1990). 

Table 1 shows all permitted operations in MLS 
database system.  

 
Table 1: Permitted Operations in MLS Databases 
                Data Items 
Transactions 

 
L( l) 

 
L( h) 

L(Th) r[x] r[y], w[y] 
L(Tl)  w[x] ,r[x] - 

 
Based upon these permitted operation following 
conflicts may occur: 
1. (Read-down conflict among different levels): 
Read-down conflict occurs between L(Th)'s read 
operation, r[x], and L(Tl)'s write operation, w[x]. 
2. (Read-write conflict at same level): Read-write 
conflict occurs between L(Tl)i's read operation, r[x], 
and L(Tl)j's write operation, w[x]. Where L(Tl)i  , 
L(Tl)j and x are at the same security level. 
3. (Write-write conflict at same level): Write-write 
conflict occurs between L(Tl)i's write operation, 
w[x], and L(Tl)j's write operation, w[x]. Where L(Tl)i  
, L(Tl)j and x are at the same security level. 

To close all covert channels, read-down conflict 
is the only case that needs to be treated differently 

from the conventional conflict in MLS database 
systems. 

In this paper we extend the two phase locking 
high priority (2PL-HP) algorithm given in (Abbott & 
Molina., 1992) for distributed databases and study the 
performance of secure distributed 2PL. The rules 
according to which the algorithm manages its locks 
and operations are as follows: 

 Every transaction in S2PL must obtain a read 
lock before reading a data item and a write lock 
before writing a data item. A transaction cannot 
request additional locks once it has issued an unlock 
action. 

 A transaction holds on to all its locks (read or 
write) until it completes.  

A high security level transaction must release its 
read lock on a low data item when a low security 
level transaction requests a write lock on the same 
data item and the aborted high security level 
transaction is restarted after some delay. 

4 SIMULATION MODEL 

To evaluate the performance of the concurrency 
control algorithms, we developed a detailed 
simulation model of MLS distributed database 
model. The model consists of MLS database that is 
distributed, in a non-replicated manner, over N sites 
connected by a network. Each site in the model has 
six components: a source which generates 
transactions workload of the system; database which 
models the data and its organization; a transaction 
manager which models the execution behavior of the 
transaction; a concurrency control manager which 
implements the concurrency control algorithm; a 
resource manager which models the physical 
resources (CPU and I/O); and a sink which collects 
statistics on the completed transactions of the site. In 
addition to these per site components, the model also 
has a network manager which models behavior of 
the communications network. Figure 1 shows 
detailed view of these components and their key 
interaction. 

Source: The source is responsible for generating 
the workload for each data site. Transactions are 
generated as a Poisson stream with mean equal to 
ArrivalRate. Each transaction in the system is   
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Figure 1: Simulation model of the DDBMS 
 
distinguished by a globally unique transaction id. 
The id of a transaction is made up of two parts: a 
transaction number, which is unique at the 
originating site of the transaction and the id of the 
originating site, which is unique in the system. Each 
transaction has an associated security clearance 
level. A transaction is equally likely to belong to any 
of the ClearLevel security clearance levels. We 
assume that the clearance level remains constant 
throughout the life of transaction inside the system.  

Database Model: The database is modeled as a 
collection of DBSize pages. These pages have been 
assigned ClassLevels and are uniformly distributed 
in a non-replicated fashion across all the NumSites 
sites. The database is equally partitioned into 
ClassLevels security classification levels. Table 2 
summarizes the parameters of simulation model. 

Transaction Manager: For each distributed 
transaction; there is one process, called the master or 
coordinator that executes at the originating site of 
the transaction and a set of other processes, called 
cohort that execute at the various sites where the 
required data pages reside. The number of pages to 
be accessed by the transaction is determined by the 
parameter TransSize.If there exists any local data in 
the access list of the transaction, one cohort will be 
executed locally. When a cohort completes its data 
access and processing requirements, it waits for the 
master process to initiate two-phase commit. The 
master process commits a transaction only if all 
cohorts of the transaction are ready to commit (all 
cohorts are voted yes); otherwise it aborts and 
restarts the transaction after a delay and makes the 
same data accesses as before. 

Resource Manager: The resource manager 
manages the physical resources of each site. The 
physical resources at each site consist of NumCPUs 
processors and NumDisks disks.  There is a single 
common queue for the processors whereas each of 

the disks has its own queue. All queues are 
processed in an FCFS order except that the message 
processing is given higher priority than data 
processing at the CPUs. The PageCPU and 
PageDisk parameters capture the CPU and disk 
processing times per data page, respectively. 

Concurrency Control Manager: It is 
responsible for handling concurrency control 
requests made by the transaction manager, including 
read and write access requests, requests to get 
permission to commit a transaction, and several 
types of master and cohort management requests to 
initialize and terminate master and cohort processes. 
Concurrency Control Manager uses strict two-phase 
locking (2PL) protocol. We have implemented non-
secure 2PL and secure 2PL concurrency control 
managers. 

 
Table 2: Simulation model parameters and values 

Parameter  Meaning Value 
NumSites 
DBSize 
ClassLevels 

Number of sites in the database 
Number of pages in the database 
Number of Classification Levels 

8 
4000 
2 

ArrivalRate 
ClearLevel 
TransSize 
WriteProb 

Transaction arrival rate / site 
Number of Clearance Levels 
Average transaction size   
Page write probability 

Varies 
2 
4 
0.2 

NumCPUs 
NumDisks 
PageCPU 
PageDisk 
MsgCPU 

Number of processors per site 
Number of disks per site 
CPU page processing time 
Disk page access time 
Message send / receive time 

2 
4 
5ms 
20ms 
5ms 

 
Network Manager: We assumed a reliable 

system, in which no site failures or communication 
network failures occur. The communication network 
is simply modeled as a switch that routes messages 
without any delay since we assume a local area 
network that has high bandwidth. However, the CPU 

         Message                                     Messag  e
          Received                   Send                    

           Service            Resource                 Service               Resource 
                        Done    Request                     Done   Re             quest    

   CC Request 
 

 
   
    CC Reply 

  Execute                                     Transaction  
Transaction                                 Done

Sink 
Collect Transaction 

Source 
Create Transaction 

CC Manager 
Access Request 
Commit 

  
Blocked Queue  

Transaction Manager 
Load Master /Cohort 
Lock granted 
Unlocked 
Read/Write Page 
Commit 
Abort 

Resource Manager 

                               
             CPU                               Disks

Trusted 
Network 
Manager
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overheads of message transfer, message transfer are 
taken into account at both the sending and the 
receiving sites. This means that there are two classes 
of CPU requests - local data processing requests and 
message processing requests. We do not make any 
distinction, however, between these different types 
of requests and only ensure that all requests are 
served in priority order. The CPU overheads for 
message transfers are captured by the MsgCPU 
parameter. 

Sink: The sink module receives both completed 
and aborted transactions from transaction manager. 
It collects statistics on these transactions of the site. 

5 EXPERIMENTS AND RESULTS 

In this section, we present the performance results of 
our simulation experiments. The aim of the 
experiments was to obtain a measure of the 
performance price that needs to be paid to provide 
security in a distributed database system. This price 
was measured as a comparison between the 
throughput of transactions of non-secure 2PL and 
that of secure 2PL at two security levels, (i.e., high 
and low). The throughput is the number of 
transactions committed per second. 

5.1 Experiment 1: Performance 
under Resource and Data 
Contention 

The workload and system parameter settings taken 
for this experiment ensure that there are both data 
contention (DC) and resource contention (RC) in the 
system. The parameter settings used for this 
experiment are shown in Table 2. There are two 
security levels (classification levels), high and low. 
Correspondingly, there are two transaction security 
levels (clearance levels).  

Graph 1 shows the transaction throughput as a 
function of the transaction arrival rate per site. It can 
be seen that the throughput of both concurrency 
control algorithms initially increases with the 
increase in arrival rate then decreases when arrival 
rate becomes more than 5. However the overall 
throughput of secure 2PL is always less than non-
secure 2PL.We also observes that the throughput of 
high security level transactions is lower than that of 
low security level transactions as arrival rate 
increases. This is because higher priority is given to 
low security level transaction. The high security 
level transaction is aborted and restarted after some 
delay whenever a data conflicts occur between a 

high security level transaction and low security level 
transaction.  
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Graph 1: Throughput Vs Arrival Rate (RC+DC) 

5.2 Experiment 2: Performance 
under Pure Data Contention 

The goal of our next experiment was to isolate the 
impact of data contention (DC) on the performance 
of the concurrency control algorithms. For this 
experiment, the physical resources (CPUs and disks) 
were made “infinite”, i.e., there is no queuing for 
these resources (Agrawal, Carey & Livny, 1987). The 
other parameter values are the same as used in 
Experiment 1.  

Graph 2 shows the transaction throughput as a 
function of the transactions arrival rate per site. With 
infinite physical resources, the throughput should be 
a non-decreasing function of arrival rate in the 
absence of data contention. However, for a given 
database size, the probability of data conflicts 
increases as arrival rate increases. The initial 
increase is due to the fact that there is no resource 
contention. In this experiment the throughput is 
limited only by data contention and transaction 
response times are typically smaller than that of 
under RC+DC. We again observed that the 
throughput of a secure algorithm is less than that of 
non-secure algorithms for all arrival rates. In 
addition, the performance of high security level 
transaction is significantly lower than that of low 
security level transaction at high arrival rate. 
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6 CONCLUSION 

In this paper, we made a preliminary study of the 
performance price paid for ensuring the covert 
channel free security in a multilevel secure 
distributed database system. Using a detailed 
simulation model of a distributed database system, 
we studied the performance of two- level (High and 
Low) secure concurrency control algorithm against 
an equivalent non-secure concurrency control 
algorithm. Within secure concurrency control 
algorithm, our experiment show that the 
performance of high security level transaction is 
significantly worst than that of the low security level 
transaction, highlighting the price that has to be paid 
for ensuring that there are no covert channels. In our 
future work, we plan to investigate the schemes by 
which the performance of high security level 
transactions can be improved without compromising 
security. 
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