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Abstract: In order to avoid catastrophic situations when the dynamics of a physical system (entity in a M.A.S 
architecture) are evolving toward an undesirable operating mode, particular and quick safety actions have to 
be programmed in the control design. Classic control (PID and even state model based methods) becomes 
powerless for complex plants (nonlinear, MIMO and ill-defined systems). A more efficient diagnosis 
requires an artificial intelligence approach. We propose in this paper the design of a Fuzzy Pattern 
Recognition System (FPRS) that solves, in real time, the main following problems: 

 Identification of an actual state, 
 Identification of an eventual evolution towards a failure state, 
 Diagnosis and decision-making. 

1 INTRODUCTION 

There is an increasing interest in the development of 
intelligent fault detection and diagnosis in industrial 
systems because of increasing requirements for 
reliable, safe and efficient operation of the plant and 
for maintaining quality of the products.  

Many variables, unknown or not directly 
measured, have to be included in the state vector to 
better describe the plant behaviour: model accuracy, 
a very difficult task, is necessary for the effective 
processing of unpredictable and imprecise 
information. However, human expert can skilfully 
control plants, localise a fault and in many times 
make a good diagnosis: the human has the ability to 
learn, to manage imprecise data and he acts in terms 
of a complex combination of sensoring signals 
instead of separate information sources. Because of 
complexity in modelling a real plant, we need to 
achieve this sophisticated level of information 
processing that the brain is capable of, to solve the 
difficult task of fault detection and diagnosis. 

Pattern Recognition is a field concerned with 
machine recognition of meaningful regularities in 
noisy or complex environments. It is based upon the 
numerical representation of the kth object observed in 
the process (physical entity such as a DC-motor, 
photograph, etc.) as a vector xk = [xk1, . . . ,xkq]T, 
called the pattern vector or feature vector, where xkj 

the jth characteristic (feature) associated with 
observation k: temperature, pressure, flow, sound 
noise frequency, etc. and q the pattern vector length. 
Fuzzy logic concept is included to better manage 
uncertainty and make useful quantification of hard 
attributes. 

In this paper, a technique for membership function 
approximator design is presented. We discuss some 
classification approaches and apply CUSUM 
algorithm with additional criterions in fault detection 
problem. We propose a general diagnosis and 
decision making scheme and give simulation results 
for a fictive complex system. 

2 FPRS DESCRIPTION 

The pattern vector corresponds to a combination of 
sensoring signals: temperature at point A, pressure 
level at B, incoming flow, etc. It is constructed in 
terms of the human expert point of view about the 
plant, and the effects listed in an FMEA (Failure 
Modes and Effects Analysis). Other mathematical 
techniques like PCA (Principal Component 
Analysis) help to design the pattern vector. 

For each new incoming observation, we need to 
identify and quantify the actual plant status and any 
possible convergence toward an other state: in 
particular, a failure state. We have to estimate the 

347
Bensaadi R., Mouss H. and Mouss N. (2005).
FUZZY PATTERN RECOGNITION BASED FAULT DIAGNOSIS.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 347-356
DOI: 10.5220/0002510403470356
Copyright c© SciTePress



speed evolution and execute the necessary safety 
actions in acceptable delays. A general fault 
detection and diagnosis that meet these requirements 
is presented in figure 1. 

3 MEMBERSHIP FUNCTION 
ESTIMATION 

3.1 Fuzzy Clustering 

This first step of unsupervised learning is necessary 
to produce a logic initialisation of the fault detection 
and diagnosis system. 

Given the training set X = {x1, x2, … xn}, where xk 
= [xk1, . . . ,xkq]T the pattern vector, the problem of 
fuzzy clustering in X is to assign to the objects {xk} 
labels that identify ‘natural subgroups’ in X. The 
membership degrees, are computed as U = [uik] by 
the Fuzzy c-Means (FCM) algorithm with the 
following considerations: 
 A class, set of observations that have similar 

properties, corresponds to one operating or 
failure mode, the number of clusters c is assumed 
to be known. It is also initialised in terms of the 
expert point of view, 

 The training set is considered, as representative 
of the whole possible clusters, when its size is 
large enough. It is obtained by causing the plant 
to operate under different modes. 

Initialise c, number of known 
operating modes 

Membership functions 
estimation 

 Fuzzy Clustering 
 Training a nonlinear 
membership function 
approximator 

Read zk, a new observation, 
sequence mean/prototype value

k

Store

Mo 

F

ICEIS 2005 - ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS

348
Label z
Low 
membership

 as rejected data 

ax reached

 

Classify zk 

State change detection 

 M
 L  

No

s 

Y s 
Update c with a higher
estimation
igure 1: A general FPRS design stra
onitoring update 
aunch safety actions
Ye
e

N

tegy



The FCM algorithm converges from any 
initialisation to a local minimum. The prototypes 
and membership degrees are iteratively updated by 
[3]: 
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uik = f (xk, vi, {vj}, m) 

where, 
uik: the membership degree of object xk to class i, 
vi: prototype of class i, 
m ∈ [1, ∞): weight exponent on each fuzzy 
membership, 

until an error threshold is reached. 
Expression (1) is intuitively understood when we 
observe the similarity with the ‘centre of gravity’ 
concept. 

3.2 Nonlinear Approximator Design 

At this step, X = {xk} and U = [uik] feed the input of 
a nonlinear approximator optimisation algorithm. 
Let’s consider the structure of a Radial Basis Neural 
Network (RBNN) as shown in figure 2. The hidden 
layer is typically comprised of p radial basis 
activation functions with an associated Euclidean 
input mapping. The output is taken as a linear 
activation function with an inner product  

Figure 2: RBNN based nonlinear approximator. 
 

The input-output relationship, with x = [x1,. . . , 
xq]T, is given by 

∑
=

−−=
p

j
jjjwF

1

22
)/exp(),( γcxθx  (2) 

where,  

θ = [w1, . . . ,wp]T: the weight vector to be 
adjusted during learning, 

cj = [cj1, . . . ,cjn]T: the centres of Gaussian 
functions. 

Now, it is desired to cause Fi(x, θ) to match a 
membership function of class i at the data points (xk, 
{uik}) for i = 1,. . , c, previously estimated by the 
FCM. The Conjugate Gradient method, chosen 
because of its good convergence properties, is 
applied for training the approximator. It is based 
upon the minimisation of: 
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where, 

ek = (uik) – Fi(xk, θ), for i = 1,. . . , c 

The algorithm is given as follow [10,11]:  
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direction equal to d(k) = –ζ (k). 

2) Find θ(k+1) which minimises Ji(θ) along d(k), 
iteratively, by the Secant method: 

a) Initialise σ < 1, set θ = θ(k) 
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d) σ = α 

e) If | α⋅d(k) | < tolα then return θ (k+1) = θ else 
go to b Hidden 
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update) 
6) Set k = k+1 and goto 2. 

c RBNNs are trained to estimate a membership 
function for each corresponding class. Note that 
Fi(x, θ) may be outside [0,1] by a very small amount 
for the first training, because (2) doesn’t include a 
saturation factor. The few false measures must be 
corrected (a value that is negative or greater than 1 is 
taken, respectively, as 0 or 1) to be processed 
correctly for fault detection. An other procedure, that 
adds a sigmoid stage to the structure of figure 2, can 
be tried in the future. 

4 PROCESSING A NEW 
OBSERVATION 

Once the membership approximator is well defined, 
a new observation z is labelled and classified: 

The membership value of z to class i is 

µi(z) = Fi(z, θ) (3) 

We define a hard classifier on ℜq as a decision 
function D imaged in the canonical (unit vector) 
basis of Euclidean c-space so that D(z) = ei means 
that z belongs to class i. This hard attribution is 
quantified by (3) to explain how much z is 
considered as ith fault type and is useful to identify 
the actual operating/failure mode. There are many 
choices for classifier design: 

Criterion 1:  

z ∈ i ⇔ µi(z) = max { µj(z) }j = 1, ⋅⋅⋅ c. (4) 

Criterion 2: crisp nearest prototype rule (NP rule) 

z ∈ i ⇔ DNP,v(z) = ei ⇔ || z – vi || ≤ || z – vj || 

for j = 1, ⋅⋅⋅ c. (5) 

Criterion 3: fuzzy k-nearest neighbor (k-NN) rule 

Compute and rank the distances d(z, xi) as {d1≤ d2≤ 
⋅⋅⋅ dk≤ dk+1≤ ⋅⋅⋅ dn}. Find the columns in U 
corresponding to the k nearest neighbor indices {1, 
2, ⋅⋅⋅ k}. Calculate the vector u(*|z) = [u(1|z) u(2|z) 

⋅⋅⋅ u(c|z)]T with the NN labels: ∑
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1, ⋅⋅⋅ c.  

And finally decide 

z ∈ i ⇔ DNN,k(z) = ei ⇔ u(i|z) = max { u(j|z) }j = 1, ⋅⋅⋅ c.
 (6) 

For a long training set and an efficient 
approximator, the first criterion is the most adequate. 
NP and k-NN may be used as a redundant alternative 
to solve ambiguous situations like the example 
illustrated in figure 3: it is easy to see that (z1<z* ∈ 
class 1) and (z2>z*∈ class 1), but we need an 
additional/other criterion to classify (z2 ≈ z*) 
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Figure 3: Example of an ambiguous classification 
problem. 

We add the constraint 
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to reject observations with low membership degrees, 
uth is a small nonzero number taken lower than 0.5. 
When a sufficient number of similar (low variance 
for a Gaussian pdf approximation) observations are 
reached, a new cluster is created. Prototype and 
membership function parameters are computed 
individually (partial FCM with c=1) or by restarting 
a global membership function estimation process. 

5 FAULT DETECTION AND 
FORECASTS 

This is a more ambitious and potentially useful task 
in maintenance monitoring. The detection of an 
actual or future operating/failure mode requires 
getting and processing, in real time, the signals z(t) 
and µi(z,t), and taking advantage of their stochastic 
properties. If the plant status is efficiently described 
by the pattern vector, we note by µi(t) the 
membership degree of the plant state to class i at 
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time t, and we develop our approach through the 
following steps: 
1) CUmulative SUM (CUSUM) algorithm is 

involved in change detection by processing a 
sequence of independent random variables with 
probability density function pΘ(z) depending 
upon one parameter Θ. It relies on a fundamental 
concept: the log-likelihood ratio of an 
observation z: 
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ps  (8) 

before an unknown change time k0, Θ is equal to 
Θ0. At time k0, it changes to Θ = Θ1 ≠ Θ0. The 
problem is to detect the change time. 
The cumulative sum 
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(where, {z(j)} j = 1, ⋅⋅⋅ k a sequence of independent 
random variables) is expected to exhibit a 
negative drift before change, and a positive drift 
after change. CUSUM algorithm is derived under 
this idea and given as follow: 

At each sample time, 

a) Acquire the new data z(k), 

b) Compute the decision function  

g(k)=max{0, g(k-1)+s(z(k))}, 

c) Compute the number of successive 
observations for which the decision function 
remains strictly positive: 

N(k) = N(k-1) 1{g(k-1)>0}+1, 

where 1{x}=1 when x is true and 1{x} = 0 
otherwise. 

d) If g(k) > h, issue an alarm, (h is a threshold 
chosen to meet either a specified mean time 
for detection or a specified mean time 
between false alarms) 

Find the change occurrence time: k0 = ka – 
N(ka), where ka is the alarm time, 

Reinitialise the decision function to 0, 

In many practical cases, Θ is taken as the mean 
value of a Gaussian distribution pΘ(z). In our 
problem, each typical value Θi indicates a class 
prototype vi, and the problem of change 
detection between failure modes will require a 
prior knowledge about the class-statistical 

properties. We only own a membership function 
database! 

2) Because of the fact stated above, CUSUM will 
be applied with the following modification: 
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where i and j are class-indexes. A membership 
value doesn’t have the same meaning as 
probability, but the ratios reflect the same 
information, so the ability to apply CUSUM with 
taking 
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is intuitively concluded. 

3) Change time detection between two states is 
presented. If the target class prototype remains 
far, k0 may be considered as an evolution 
detection occurrence and safety decisions are 
executed in acceptable delay. When the radius of 
target class membership function is very small, 
the safety task will be more difficult, so we need 
an other tool to better quantify the evolution 
between states and make an earlier alarm. 
An evolution towards a fault is described by 

dt
td i )(µ : A negative value means that the plant is 

leaving state i, a positive value means that it is 
evolving towards this state. The evolution speed 
attributes ‘quick’ or ‘slow’ are quantified by 

2

2 )(
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td iµ : the change in evolution speed is said to 

be ‘quick’ for 0)(
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>
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td iµ , an observation may 

leave quickly state i while converging slowly to 
state j. Information about the fault evolution 
direction are extracted from a 3×c matrix defined 
by:  
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The corresponding alarme time ke is computed 
in terms of constraints on the elements of E. For 
example, ke may be defined as the delay time for 
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remain positive, and this corresponds to the 
alarm time ka computed by CUSUM. Other 
conditions may be added to make an earlier 
alarm (optimisation problem). 

Because of external disturbances, a noise is 
added to z when reading. We’ll consider mean 
values instead of instantaneous values: the 
problem is solved by a digital FIR filter, the 
frequency bandwidth and sampling time are 
chosen in terms of the noise properties and the 
response time of all the mechanical/electrical 
plant parts considered in the diagnosis design. 

6 DIAGNOSIS AND DECISION 
MAKING 

We completely described a fault detection scheme. 
The ith fault type effects (symptoms) may be caused 
by more than one physical entity, and this fact is 
described by conditional probabilities. Diagnosis is 
to decide that element ej (a valve, transistor, heater, 
etc) is (or will be) the cause of the detected (or 
expected) fault. Previous fault events feed a 
statistical database with class-conditional pdf(s) 
{p(ith fault | ej-fault)}, used to compute p(ej-fault | ith 
fault) by Bayes’ rule. The corresponding safety 
actions are made according to the diagnosis 
conclusion, the fault severity and the decision 
making scheme. One powerful solution is built upon 
an Inference Engine: this is a software or hardware 
system, which gives a conclusion (output) from a 
fact (input) and knowledges (production rules). If 
knowledges include fuzzy linguistic terms, it is 
referred to as Fuzzy Inference Engine (FIE). 
A conclusion may deal with: 

• A new reference tracking (fuzzy control), the 
knowledge base includes rules of the form: 
if (mode2) and (low inflow), then (tank 3 
temperature should be low) 

• Diagnosis / binary logic instructions, a production 
rule may be: 
if (water outflow > 0.24m3/s) and (valve 21 
closed), then (shut-off and repair/change element 
e2), 

if (d2µ3/dt2 >0.12) or (input control u1 not set), then 
(3rd fault type in the next 3 minutes). 

Beyond the construction/generation of production 
rules, one difficult task when implementing a fuzzy 
control algorithm is the accuracy of meaningful 
membership functions for all the fuzzy linguistic 

terms considered in the knowledge base. We’ll 
present later, through an example of temperature 
control, the different steps involved in fuzzy control 
implementation. 

7 SIMULATION RESULTS 

For the demonstration of the proposed diagnosis 
method, we consider a fictive complex process. We 
assumed that a human expert was supervising the 
plant state by observing three variables: v1 (pressure 
at point A1), v2 (temperature at point A2) and v3 
(sound noise frequency). He makes detection and 
diagnosis upon two complex combinations: x1=f1(v1, 
v2, v3) and x2= f2(v1, v2, v3) (PCA). We want to apply 
the designed FPRS to act with a similar reasoning 
faculty. 

Simulation is run, by causing the plant to operate 
during a sufficient time, under one normal (typical) 
operating mode and two failure modes (plant 
parameters randomly affected). PCA has reduced the 
pattern vector to [x1, x2]T. The unsupervised learning 
step is applied with a training set of 100 data points. 
Samples are labelled; and the prototypes identified 
as shown in figure 4.  
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Figure 4: Fuzzy clustering with c=3, q=2. The prototypes 
are marked as red stars: v1=[1.823, -0.935]T, v2=[9.006, 

2.151]T, v3=[6.297, 5.078]T 

The method of Conjugate Gradients is successfully 
applied to train an RBNN based membership 
function approximator for each class (figure 5). 

For classification and fault detection test, we 
caused the system to evolve towards mode 3 by 
generating a linear path sequence {zk=[zk1, zk2]T}, 
each observation is well labelled and classified 

(Figure9-a). CUSUM is applied with )(
)(ln)(

1

3

z
zz µ

µs =  

(figure 6). Evolution towards fault 3 is detected 
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The fuzzy linguistic term ‘mode i’ is described by 
the corresponding membership function Fi(x,θ). The 
membership function for each other fuzzy linguistic 
term is initialised as shown but may be modified by 
learning to update the shape form and parameters. 

earlier when membership function derivatives are 
considered (figure 7-b). 

Temperature control problem is presented to 
describe an exemple of a fuzzy inference engine 
(figure 8). A part of the knowledge base is given as 
follow: The basic operators, involved in fuzzy control, are 

defined as follow: R1: if (mode1) and (quick evolution toward mode3),  
then (T5 should be low) 

R2: if (P5 ≈ 0.4 bar) or (slow evolution toward mode3) 
, then (T5 should be around 15°C) 

R3: if (mode2) and (high sound noise frequency), 
 then (T5 should be high) 

….. 

Fact: z=[7, 3.7]T, P5 = 1.27 bar, dµ3/dt  
= 0.2 /sec, d2µ3/dt2 = -0.18 /sec2, fsn= 15 kHz 

Conclusion: T5 should be ? 

AND: µA∩B = MIN(µA, µB) (12) 

OR: µA∪B = MAX(µA, µB) (13) 

NOT: AA 1 µµ −=  (14) 
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Figure 5: membership approximator, p=25, γ = 2.5. (a) Plant status membership functions. (b) Projection of (a) on 
x1-x2 plane, the similarity with the plot of figure 4 is proved. (c) Cost function during learning. There is a trade-off 
between the learning time and accuracy requirements. (d) F1(x, θ) matches the data pairs considered in training the 

RBNN. 
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Figure 7: Future fault detection strategy with additional derivative based criterions. (a) Criterion 1-classification. (b) 
1st and 2nd derivatives of µ1(t) and µ3(t), the filled circle indicates an earlier change detection. 
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For each rule, the compatibility of the fact to the 
antecedent is obtained by projecting the fact to the 
corresponding membership function. The resulting 
membership degrees are combined by a conjunction 
‘AND’ (rules 1, 3) or ‘OR’ (rule 2). An individual 
conclusion is obtained by truncating (minimising) 
the consequent membership function. All the rules 
are combined by conjunction ‘ALSO’ (maximisation 
of individual conclusions) to construct a relatively 
complicated membership function ‘µ’ characterising 
the final conclusion. The final step is 
defuzzification: the new reference  that must be 
tracked, given the fact: (z=[7, 3.7]T, P5=1.27 bar, 
dµ3/dt = 0.2 /sec, d2µ3/dt2=-0.18 /sec2, fsn=15 kHz), 
is computed by the center-of-gravity method: 

*
5T

( )
( )

C8.34
 

  

55

555*
5 °==

∫
∫

dTTµ

dTTµT
T        (15) 

and T5 remains continuously under this control. 

8 CONCLUSION 

We have proposed a general FPRS design scheme 
for fault detection and diagnosis in industrial 
systems. This approach involves fuzzy clustering as 
a first partition of the training set into a number of 
classes initialised by the known operating/failure 
modes, and the conjugate gradient method as the 
learning tool for training membership function 
approximators. Incoming observations will be 
classified and new created classes are taken into 
account. 

Fault detection efficiency is first tested by 
applying CUSUM with modified expression of the 
log-likelihood ratio: membership degrees are 
considered instead of probabilities. Then, an other 
proposed method that takes advantage of 
membership function derivatives is investigated, 
evolution towards a fault type target is quantified 
and safety actions will be executed in acceptable 
delays. 

There are many ways to design the decision 
system, we proposed a knowledge based approach 
and presented a ‘temperature fuzzy control’ as an 
example of a safety action based on information 

about fault change forecasts, extracted from the 
matrix E. 

The designed FPRS is successfully tested for a 
fictive plant. Its proficiency will be more proven 
when tested in a real environnement, this involves 
additional hardware and software implementation 
and will be the subject of a future work. 
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