
DESIGN AND IMPLEMEMTATION OF DATABASE
INTERFACE FOR LOGIC LANGUAGE BASED

MOBILE AGENT SYSTEM

Jingbo Ni, Xining Li, Lei Song
Computing and Information Science, University of Guelph, Guelph, Ontario, Canada, N1G 2W1

Keywords: Database Interface, Connection Management, Remote DBMS, Mobile Agent system, IMAGO system

Abstract: Mobile Agent system creates a new way for sharing distributed resources and providing multi-located
services. With the idea of moving calculations towards resources, it occupies less network traffics than the
traditional Client/Server model and achieves more flexibilities than the Remote Procedure Call (RPC)
architecture. In order to endow agents with the ability of accessing remote data resources, in this paper we
present the design strategies of the Database Interface between a logic programming language based Mobile
Agent system and a remote DBMS.

1 INTRODUCTION

The Mobile Agent system creates a new idea of thin-
client design by moving calculations to resource
servers. Benefiting from deductive abilities of logic
programming languages, complex calculations can
be represented by compact logic forms, which make
agents more suitable for migrating around. The
IMAGO system (Li 2001a & 2001b) is a typical
Mobile Agent system based on the IMAOG Prolog
(Liang & Li 2003).

Given that the database is one of the most
commonly used ways of sharing remote data, this
encourages us to discuss possible design strategies
of Database Interface between these two systems.

Recently great emphasis has been placed on the
relationship between logic programming languages
(such as Prolog) and relational databases. Specific
SQL string (Applied Logic Systems Inc. 1999;
Wielemaker 2002; Bueno et al. 2000), meta-
knowledge predicates (Ceri et al. 1989), and variable
binding and projection (Draxler 1992) are the three
major methods of representing database queries in
logic program languages. They are classified as
logical loosely, half tightly, and tightly coupled
system by Draxler (1992).

Because the evaluations in database systems are
set-oriented, as compared to tuple-oriented in logic
programming systems, single tuple and set retrieval
are the two ways of integrating database relations
into logic programming systems. For the single tuple

retrieval, results from the database are returned one
tuple at a time usually by maintaining a cache or
result relations (Mckay et al. 1990), or by using the
builtin cursors (Quintus Computer Systems Inc.
1987). For the set retrieval, the entire searching
result set is loaded into the program workspace (Ceri
et al. 1989) or the running memory layout (Draxler
1992). Educe System (Bocca 1986) offers both of
these two strategies.

The searching results can be maintained in the
logic language workspace together with other logic
facts (Cuppens & Demolombe 1988). Other coupled
systems maintain them in local caches (Ceri et al.
1989), temporary buffers or builtin cursors (Quintus
Computer Systems Inc. 1987). Also they can be
integrated into the running memory in the form of
logic lists (Ceri et al. 1989).

Two levels of system efficiency have been
introduced: the technical level and the logic level.
On the technical level, the Database Connection
Management (Mckay et al. 1990) and the Local
Cache Management (Sheth & O’Hare 1991) are
commonly used. On the logic level, the methods of
Delayed Evaluation are presented by Cuppens &
Demolombe (1988). Jarke et al. (1984) employed an
intermediate language called DBCL between the
Prolog and the SQL query for optimising the
database search evaluations. Other approaches deal
with the logic level efficiency by focusing on the
Query Assumption (Nurcan et al. 1990 & 1991).

461
Ni J., Li X. and Song L. (2005).
DESIGN AND IMPLEMEMTATION OF DATABASE INTERFACE FOR LOGIC LANGUAGE BASED MOBILE AGENT SYSTEM.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 461-464
DOI: 10.5220/0002508604610464
Copyright c© SciTePress

Till now many coupled systems have been
developed and among them PROSQL (Chang &
Walker 1984), PRIMO (Gozzi et al. 1990), KB-
Prolog (Bocca et al. 1989), Nussbaum System
(Nussbaum 1988), EKS-VI (Vieille 1990), and the
Prolog-SQL coupled by Danielsson & Barklund
(1990) are those typical ones.

In this paper we focus on the efficiency issues of
the Database Interface design and separate this
efficiency problem into three parts: the database
connection management, the result memory
allocation mechanism and the system memory
releasing strategies.

The remaining of the paper is organized as
follow. In section 2 we will introduce the IMAGO
system. In section 3 the discussion of the Multi-
threading Database Connection management is
addressed. In section 4 three ways of the Result
Memory Pool organization are presented. In section
5 Manual and Automatic System Memory Release
methods are described. Conclusions and future
works will be given out in section 6.

2 IMAGO SYSTEM

From the computer terminology point of view, the term
IMAGO is an abbreviation, which stands for Intelligent
Mobile Agents Gliding On-line. Each agent appears in the
form of a small logic program written in Prolog and is able
to require certain services through a set of builtin
predicates (such as agent creation, agent migration, and
remote database accessing).

All these intelligent agents will be sent to and
evaluated by the MLVM, which is a multi-threading agent
server framework. The whole MLVM architecture is
designed as a collection of service modules (such as the
creation module, the database module, etc.), and centred
by a Prolog Virtual Machine (the engine).

Agents will be executed by the engine until a
builtin predicate is hit. Then the engine will transfer
the agent to a service module for proper operations.
After finishing the corresponding operations, it will
be returned back to the engine for continuous
executions.

From the logic point of view, the implementation
of Database Interface module is straightforward. But
it is not the case on the technical standpoint. Due to
the heavy-workload nature of database operations,
they may cause serious delays or even permanent
blocks on the system threads. Furthermore,
temporary memories need to be allocated during
certain database operation. In order to solve these
problems, we discuss the following solutions.

3 CONNECTION MANAGEMENT

3.1 Multi-threaded Design

Instead of directly invoking database operations
within system threads, the Multi-threading Database
Connection management creates another bunch of
Database Module threads for carrying database jobs.
A proper module thread will be picked up from the
Database Thread pool for the current operation
under certain thread assignment strategies. Actually
it is a classic “multi-provider/multi-consumer”
problem and many existing algorithms can be
adopted.

By introducing this kind of Database Module
Threads, it is possible to unload those resource
consuming database operations from system threads
and avoid system threads to be delayed or blocked.

3.2 Different Connections Levels

Clearly all the remote database operations require
Physical Database Connection (PDC) provided by
the remote DBMS. In the common sense, both
establishing and maintaining these PDCs are
expensive. Three different levels of PDC assignment
are discussed and compared: Predicate Level, Agent
Level and Module Level.

On the predicate level, PDCs are distinguished
by each database connection predicate. Whenever a
“db_connection” predicate is triggered, a unique
PDC will be established and kept active until the
“db_disconnection” predicate de-actives it or the
current agent moves out or terminates.

Obviously if large amount of agents require the
database operations at the same time, most of
network and memory resources will be occupied by
those operations.

On the agent level PDCs are associated with
agents. A unique PDC will be established and
activated for each agent when it requires database
connection at the first time. All the remaining
database operations within this agent program will
share the same PDC. An agent level PDC terminates
only when the current agent moves out or
terminates. Therefore the total number of concurrent
active PDCs is limited and less resource is occupied
than that in the predicate level. However the
problem still exists if many agents engaged in the
database operations concurrently. Furthermore the
PDC resource seems not evenly distributed among
all database jobs.

A unique PDC Pool is constructed on the module
level. Whenever a Database Module Thread receives
a database operation requirement from an agent, it

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

462

will bind the current operation by a selected PDC
from the PDC Pool and return it back after finishing
the current operation. If there is no available PDC in
the pool, current Database Module Thread will be
blocked until some PDCs are returned by other
database operations.

Because the total number of all active database
connections is pre-defined, network resources
charged by database connections can be anticipated.
Due to this reason we believe that the module level
PDC assignment is more suitable for the Mobile
Agent system.

4 RESULT MEMORY POOL

For those database tuple retrieval operations
(“db_tuple”), temporary caches need to be built for
holding the searching results and these caches can be
organized locally, remotely or both locally and
remotely.

4.1 Local Result Memory Pool

The Local Result Memory Pool design means that
the whole database searching result set will be
downloaded onto the local Mobile Agent server, and
the tuple retrieval operation can consume the
searching the results entirely from the local server.

Because of the local storage of searching results,
random cursor movement can be supported. This
design is suitable for unstable network and offers
reliable database tuple retrieval service. But more
memory resources will be in charged for holding
these temporary results.

4.2 Remote Result Memory Pool

Instead of loading the whole result set onto the local
server, the job of maintaining search results can be
taken by the remote DBMS. By referring to the
position of a remote database cursor, current record
can be located and fetched by database tuple
retrieval operations through the established network
connection.

It is obvious that the memory resources required
by tuple retrieval operations can be decreased
dramatically in this way. But the network connection
between the Mobile Agent server and the remote
database must keep active during those operations,
which makes it suitable for reliable network
environments. Because most of the DBMS systems
do not support random cursor movement, agent
program can only consume the result set in the
consecutive order.

4.3 Combined Result Memory Pool

Different from Remote Result Memory Pool design,
the result records can be stored in a local cache
before being consumed, and a local cursor can be
defined to point to the last record that has been
transferred from remote database if all the records
are consumed in consecutive order.

Under this combined design, the local cache
grows gradually; therefore local memory consuming
will be much less than that in Local Result Memory
Pool design. The damage caused by network failure
will be much less than that in the Remote Result
Memory Pool design, because at least part of the
result set has been locally cached.

5 MEMORY RELEASE

Two kinds of memory release strategies are
introduced and may co-exist in the implemented
Database Interface: Manual Memory Release and
Automatic Memory Release.

The recycling of temporarily charged system
resources can be manually triggered by invoking the
specific predicate: “db_disconnect” in the context of
agent program. For each Physical Database
Connection used by the agent, it will be
disconnected and deleted for the predicate and agent
levels of PDC assignment strategies, or will be
marked free and returned back to the PDC pool for
the module level PDC assignment strategy.
Considering those temporary charged memory
blocks, they will simply freed by the system. In this
way all the resources charged by the database
operations can be released without any problems.

It is possible that these “db_disconnect”
predicates may not be reached because of the
recursive complexity or because that the agent
developers simply forget to invoke these predicates
at all. In these cases, another compromising method,
known as Automatic Memory Release, is developed.
A special memory releasing function handler can be
inserted into the Agent Out module. Whenever an
agent decides to terminate or move out, this function
handler will be trigged by this module for searching
and releasing those temporarily charged resources.

6 CONCLUSIONS

In this paper, a Multi-threaded Database Connection
Management design is proposed, in which the
Database Module Threads are developed for
handling heavy-duty database jobs. Three levels of

THE DESIGN AND IMPLEMENTATION OF DATABASE INTERFACE FOR LOGIC LANGUAGE BASED MOBILE
AGENT SYSTEM

463

Physical Database Connection assignment strategies
are introduced and their characteristics are
compared. For tuple retrieval operations, three
different designs of the result memory pool are
described and their performances are analysed.
Furthermore the temporary resources charged during
the database operations can be released both
manually and automatically to prevent some serious
problems. In the future, we will fully test these
designs on the existing IMAGO system.

REFERENCES

Wielemaker, J. 2002, ‘SWI-Prolog ODBC Interface’,
University of Amsterdam, The Netherlands.

Li, X. 2001a, ‘IMAGO: A Prolog – based System for
Intelligent Mobile Agents’, MATA'01, Springer Verlag
Lectures Notes in Computer Science, pp. 21-30.

Li, X. 2001b, ‘An Alternative Framework for Intelligent
Mobile Agents’, In Proceedings of IC-AI, pp. 29-35.

Liang, H. & Li, X. 2003, ‘IMAGO Prolog and Its
Compilation’, In Proceedings of CCECE.

Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M.,
López, P. & Puebla, G. 2000, ‘The Ciao Prolog
System’, Technical Report CLIP 3/97.1, School of
Computer Science, Technical University of Madrid.

Applied Logic Systems Inc. 1999, ALS Prolog ODBC
Interface, Cambridge, Ma, USA.

Draxler, C. 1992, ‘Accessing Relational and Higher
Databases Through Database Set Predicates in Logic
Programming Languages’, PhD thesis, University of
Zurich.

Sheth, A.P. & O’Hare, A.B. 1991, ‘The Architecture of
BrAID: A System for Bridging AI/DB Systems’, In
Proceedings of the Seventh International Conference
on Data Engineering, pp.570-581.

Nurcan, S. & Kouloumdjian, J. 1991, ‘An Advanced
Knowledge Base Management System Based on the
Integration of Logic Programming and Relational
Databases’, In Proceedings of IEEE, pp.740-744.

Mckay, D.P., Finin, T.W. & O’Hare, A. 1990, ‘The
Intelligent Database Interface: Integrating AI and
Database Systems’, In Proceedings of the 8th National
Conference on Artificial Intelligence, pp.677-684.

Nurcan, S., Li, L. & Kouloumdjian, J. 1990, ‘Integrating
Database Technology and Logic Programming
Paradigm’, In : IAE/AIE 90, The Third International
Conference on Industrial and Engineering
Applications of Artificial Intelligence and Expert
Systems, vol.1, pp.341-349.

Gozzi, F., Lugli, M. & Ceri, S. 1990, ‘An Overview of
PRIMO: A Portable Interface Between Prolog and
Relational Databases’, Information Systems, vol.15,
no.5, pp.543-553.

Danielsson, M. & Barklund, J. 1990, ‘Persistent Data
Storage for Prolog’, In Proceedings of DEXA 90.

Vieille, L., Bayer, P., Kuchenhoff, V. & Lefebvre, A.
1990, ‘EKS-V1, A Short Overview’, AAAI 90
Workshop on Knowledge Base Management Systems,
Boston, USA.

Ceri, S., Gottlob, G. & Wiederhold, G. 1989, ‘Efficient
Database Access from Prolog’, IEEE Transactions on
Software Engineering, vol.15, no.2, pp.153-164.

Bocca, J., Dahmen, M. & Macartney, G. 1989, ‘KB-
Prolog User Guide’, Technical Report, ECRC Munich.

Cuppens, F. & Demolombe, R. 1988, ‘A Prolog-relational
DBMS Interface Using Delayed Evaluation’, In
Proceedings of the 3rd International Conference on
Data and Knowledge Bases, pp.135-148.

Nussbaum, M. 1988, ‘Delayed Evaluation in Logic
Programming: an Inference Mechanism for Large
Knowledge Bases’, Reunión de interesados en el área
de Sistemas Expertos de Suiza.

Quintus Computer Systems Inc. 1987, Quintus Prolog
Database Interface Manual, Mountain View,
California.

Bocca, J.B. 1986, ‘On the Evaluation Strategy of Educe’,
In Proceedings of the 1986 ACM SIGMOD
International Conference on Management of Data, pp.
368 – 378.

Jarke, M., Clifford, J. & Vasiliou, Y. 1984, ‘An
Optimizing Prolog Front-End to a Relational Query
System’, ACM SIGMOD '84 Conference, pp.296-306.

Chang, C.L. & Walker, A. 1984, ‘PROSQL: A Prolog
Programming Interface with SQL/DS’, Expert
Database Workshop, pp.233-246.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

464

