
BUILDING WEB APPLICATIONS WITH XQUERY
Integrating technologies in web development

Javier J. Gutiérrez, María J. Escalona, Manuel Mejías, Jesús Torres
Department of Computer Languages and Systems.University of Seville.

Keywords: XQuery, web development, web engineering, portal strategies, XML, Data management, technologies
integration.

Abstract: Today, it is needed to apply a set of heterogeneous technologies to implement every layer or element in a
web application. These technologies must be combined and must work together. This one implies the need
for heterogeneous development teams with heterogeneous formation and high costs in tools and formation.
This work shows how XML with XQuery could be a valid technology to unify the technologies used in web
development. This works shows how XML and XQuery is a valid selection to unify the used technologies in
web development. Thus, it is possible decrease costs in tools and formation applying only one technology in
web development. To justify why XML with XQuery is a valid technology to implement a whole system
this work shows, at first time, the main characteristics of XQuery focused in web development. At second
time, this work shows how to apply those characteristics in a web development and how to implement every
layer or component of a web application with XQuery. Finally, this work exposes a brief overview about the
open-source tools available to implement a web application with XQuery.

1 INTRODUCTION

This section exposes the problem described in this
work and solution proposed. Next sections describe
how to apply this solution, its advantages and
inconveniences, open-source tools to apply it and
conclusions and future work.

1.1 The land of 1,000 technologies

The song “The land of 1,000 dances” enumerates a
long list of modern dances in the 60s. Now, in 21th
century, we still have 1,000 dances and maybe more,
and we also have 1,000 technologies and maybe
more, to build a web application.

Web software systems have become more
important and complex software. Web software is
based on novel computing technologies.
Sophistication of web systems has increased rapidly.
First web systems were static set of information
stored into static HTML pages. Second generation
were simple applications that accepted data from
HTML pages and process or stored these data.
Today, web systems are sophisticated, interactive
programs with complex user interfaces and large

amount of integrated back-end software (Offutt,
2002), (Ye-Wu, 2004).

This fact brings the need for using a
heterogeneous set of technologies and tools to
develop a web system. Web software is build with
many different technologies like: scripting languages
that run on the client, interpretive languages that run
on the server, general purpose programming
languages, data manipulation languages and
databases (Ye-Wu, 2002). Table 1 shows an
example of these technologies.

Table 1: An overview of technologies used in web
development.

Clients MS Internet Explorer, Opera, Firebird,
Amaya, Safari, etc.

User Interface HTML, XHTML, DHTML, CSS,
Macromedia Flash, XML-XSLT, etc.

User
components

JavaScript, VBScript, ActiveX, Java
Applets, etc.

Server
components

Java Servlets, PHP, ASP, ASP.NET, Perl,
Webservices, etc.

Data
components

Access, SQL Server, Oracle, MySQL,
PostgreSQL, etc.

This heterogeneous set of technologies (and many
more) have to cooperate together to implement a

363
J. Gutiérrez J., J. Escalona M., Mejías M. and Torres J. (2005).
BUILDING WEB APPLICATIONS WITH XQUERY - Integrating technologies in web development.
In Proceedings of the First International Conference on Web Information Systems and Technologies, pages 363-372
DOI: 10.5220/0001234403630372
Copyright c© SciTePress

Figure 1: Web application layers

web application. So, a web application results in a
multi-platform software environment. This fact
brings many problems:

– Many experts in several technologies are
needed.

– Bigger cost in personal and formation.
– Heterogeneous technologies make hard

testing process (Offutt, 2002).
These problems can be avoided unifying the

technologies of web development. Next section
introduces the pair XML and XQuery as an
integrated tool to built web applications.

1.2 An integration solution

Classic layers of a web application are: user
interface, business logic and data management.
Figure 1 shows these layers and the communications
among them.

Many of technologies are focused in one of the
layers in figure 1, as showed in table 1.

A first integrator effort has been made with XML
(World, 2004). Although originally designed for
large-scale electronic publishing, XML plays an
increasingly important role in data exchange on the
Web. Some authors expect that XML will become
the lingua franca of the Web, eventually replacing
HTML (Mignet, 2003). In this way, there is a
proposal to apply web syntactical rules over HTML
called XHTML (XHTML, 2004).

XML is good to store information and to describe
the semantic of that information. In web systems,
XML can be used to describe the information,
business rules, user interfaces, configuration of the
application, etc. Although data is stored in a
relational database, it can be extracted in an XML
structure (Marchal, 2001).

However, XML cannot describe the active parts
of a web application. XML resolves the half of the
problem only. We still need technologies to
manipulate and process XML. Another problem is
that, nowadays there is also a heterogeneous set of
technologies to manipulate XML. Table 2 shows and
example of open-source tools for Java technology
(McLaughlin, 2002).

Table 2: Techniques and tools to XML process
Techniques Tools
APIs DOM, SAX
XML-Binding JAXB, XML-Beans
Dynamic Beans Apache Betwixt, Codehaus XStream
Others Apache Digester, Apache XMLIO

Each one of these technologies is oriented to a
concrete scenario. For example, to create objects
from XML when XML-Schemas or DTDs are
available, XML-Binding tools use to be the best
option. But, if the task is to load a simple
configuration file described with XML tags, lighter
tools are a better options. Light tools are Apache
XML-IO or SAX API.

A modern technology that might unify the
process of XML in the different layers of a web
application is XQuery (W3C1, 2002). Next section
introduces XQuery and shows how to built every
layer of a web system.

2 AN INTRODUCTION TO
XQUERY

XQuery is a powerful query language for XML data.
Some of its strong points are: it has native support
for handling over forty built-in data types, powerful

2: Execution

3: Result

4: Answer

Client Server
Code

Code

Data

1: Request

WEBIST 2005 - WEB INTERFACES AND APPLICATIONS

364

constructs for bulk data processing, like expressing
joins, aggregation, and so on, support for text
manipulation, and a notion of document ordering
that provides a foundation for a variety of interesting
document-oriented queries (Brundage, 2004).

After several years of development in the W3C,
XQuery is starting to gain significant traction as a
language for querying and transforming XML data.
Though the W3C XQuery (W3C1, 2002)
specification has not yet attained recommendation
status, and the definition of the language has not
entirely stabilized, it is already beginning to appear
in a variety of commercial and open-source
products. Examples include XML database systems,
XML document repositories, and XML-based data
integration offerings.

An XQuery expression is composed of a
maximum of 5 different sections, each one with its
own mission. All sections are showed and described
in figure 2.

An XQuery program or script is a just an
expression with some optional function and other
definitions. So 3+4 is a complete, valid XQuery
program that is evaluated to the integer 7.

Next section describes the main characteristics of
XQuery language that might be applied to web
systems development.

2.1 Main characteristics to web
development

This section does not want to be a complete
description of XQuery. Nowadays there are many
good books to learn all characteristics of XQuery
and how to apply them, like (Brundage, 2004),
(Katz, 2003) and the documents of the standard in
(W3C1, 2002).

The main goal of this section is to expose a
resume of the characteristics presented in XQuery
that makes itself adequate to web development.
Characteristics studied in this section are listed in
table 3.

Table 3: XQuery characteristics to web development.

– Queries in XML.
– XML transformation in HTML or XML.
– Functions.
– External functions.
– Open-source tools available.

Figure 2: Sections in a XQuery expression

For y Let Create tuples

Where Filtrate tuples

Order by Order the tuples

Return Transform the tuples

BUILDING WEB APPLICATIONS WITH XQUERY - Integrating technologies in web development

365

Figure 3: Transform an XML structure into HTML.

Characteristics in table 3 are described in sections

below.

2.2 XML search

XQuery is a concise but flexible query language for
XML. So, its main goal is to specify queries and to
perform it over a XML dataset. XQuery is based on
the structure of XML and leverages this structure to
provide query capabilities for the same range of data
that XML stores.

It is possible to include many search parameters
in a query. It is possible to search for tags without
matter their location into XML structure, or to
search for tags inside a concrete XML structure. It is
also possible to obtain new XML structures from
exiting XML structures. For example, from a XML
structure containing books with the editorial of each
book, it is possible to generate a new XML structure
with editorials, and all books edited by each
editorial.

2.3 XML transformation

XSLT allows to describe XML transformations, that
is, operations that take an XML structure and
generates one or several XML structures as output
(Robert, 2001). Some authors estimate that probably
80 percent of the actual usage of XSLT is for
transforming XML to HTML. This might be handled
by treating the result document as a well-formed
XML tree, with the transformation being followed
by a serialization phase that translates this tree into
an HTML or XHTML output file (Katz, 2003).

Figure 3 shows an XQuery expression that

transform a XML structure into an HTML structure.
Figure 3 also shows how is rendered that HTML
structure into a web browser.

One of the main problems until now is that
HTML does not satisfied XML syntactical rules.
This problem makes hard to transform an XML
structure in HTML, and does not allow using all
possibilities offered by HTML. As seen before, there
is a new standard called XHTML (XHTML, 2004)
that satisfied XML syntactical rules. This standard is
been rapidly implemented with main browsers and,

<libro año="1994">
 <titulo>TCP/IP Illustrated</titulo>
 <autor>

<apellido>Stevens</apellido>
<nombre>W.</nombre>

 </autor>
 <editorial>Addison-Wesley</editorial>
 <precio> 65.95</precio>
 </libro>

 <libro año="1992">
 <titulo>Programming for Unix env.</titulo>
 <autor>

<apellido>Stevens</apellido>
<nombre>W.</nombre>

 </autor>
 <editorial>Addison-Wesley</editorial>
 <precio>65.95</precio>
 </libro>

<html><head><title> </title>
<body>
 <table>
 <tr><td><I>TCP/IP Illustrated</I></td></tr>
 <tr><td><I>Advan Programming for Unix environment</I></td></tr>
 <tr><td><I>Data on the Web</I></td></tr>
 <tr><td><I>Economics of Technology for Digital TV</I></td></tr>
 </table>
</body>
</head></html>

<html> <head> <title> </title>
<body> <table>
{

for $b in doc("libros.xml")/bib/libro
return
<tr> <td> <I> { string($b/titulo) }
 </I> </td> </tr>

}
</table> </body>
</head> </html>

WEBIST 2005 - WEB INTERFACES AND APPLICATIONS

366

nowadays it is possible to use it in web
development.

XQuery is more easy and intuitive than XSLT.
Transforms described with XQuery expressions are
easier to understand, maintenance and modify than
transform expressions written in XSLT.

2.4 Functions

When an XQuery expression becomes large and
complex, it is often much easier to understand if it is
divided into functions. These functions can be
reused in other parts of the expression. Functions
can be recursive, which is a good help for processing
the recursive structure of XML (Brundage, 2004).

It is possible to organize functions in library
modules. These modules can be used and imported
by any query. Every module in XQuery is either a
main module, which contains a query body to be
evaluated, or a library module, which has a module
declaration but no query body. A library module
begins with a module declaration, which provides a
URI that identifies the module for imports.

Functions defined in library modules are
namespace-qualified. This means that functions with
same name can exist into different namespaces. Any
module can import another module using a module
import, which specifies the URI of the module to be
imported. It may also specify the location where the
module can be found.

2.5 External functions

XQuery allows calls to external functions
implemented in the same language than the
environment under XQuery engine is in execution,
such as Java or C#. The environment can provide
external functions and variables to XQuery. To
access to external elements, a query must declare
them in its prologue. The mechanism by which this
is done varies from one implementation to the next.
XQuery itself provides only the syntax to use when
declaring these externals, shown in table 4.

Table 4: External function definition.

define function out($v as xs:integer)

as xs:integer external

External functions are equal to ordinary user-
defined functions except that the external keyword is
used instead of a function body. XQuery does not
specify how such functions and variables are made
available by the external environment, or how

function parameters and arguments are converted
between the external environment and XQuery, so it
depends of the vendor implementation.

3 APPLYING XQUERY IN WEB
DEVELOPMENT

XML is one of the most important technologies in
web development. One of the main objectives in
design of XQuery is to allow that XQuery can be
applied like a XML manipulation and transformation
language. Thus XQuery offers tools to work with
XML. Moreover, XQuery can be successfully
applied in environments where XML works. Some
of the most important applications in web
environments are showed in table 5.

Table 5: XQuery in web development

- Management XML native databases in the same

way than SQL manages relational databases.
- Generate web interfaces in the same way than

XSLT.
- Call web-services.
- Syndication with RSS.

In section 2, main characteristic of XQuery to
web development have been defined. This section
shows how to apply those characteristics to
implement each layer showed in figure 1.

3.1 User interface

This work has described, in sections before, how it is
possible to build web user interfaces using XQuery
in a similar way than XSLT. This generation
interface technique has been improvement with the
inclusion of XHTML and CSS in web browsers.

The main differences between XSLT and XQuery
are of two kinds. First, they have different
requirements, and therefore a design decision that
was appropriate for XSLT would not necessarily be
right for XQuery, and vice versa. The second kind of
difference results from their being designed by
different people from different communities and
computing traditions, with different beliefs about
what constitutes good design, and different
experiences as to what works well and what doesn't.
There is one important difference between XQuery
and most template systems: With XQuery, it is also
possible to define functions that return HTML
fragments, and to pass those fragments though to
other functions. With most template systems, it is

BUILDING WEB APPLICATIONS WITH XQUERY - Integrating technologies in web development

367

only possible to create output fragments as strings,
and pass them around as strings.

3.2 Business logic

Functions and external functions are the main tools
to build business logic with XQuery. Although
XQuery main objective is to process XML, it also
has a complete type system

The type system of XQuery is the same than
schema type system (Robert, 2001). There are two
sets of types in XQuery. First are the built-in types
that are available in any query or function. Second
are the types imported into a query from a specific
XML-Schema or DTD.

Not all data in XQuery must be XML structures.
It is possible to write expressions that return an
<xs:integer> or define parameters in a function like
<xs:char>. XQuery can also works with untyped
data, strongly typed data, or mixtures of the two.
When XQuery has not information to know the type
of the data is processing, XQuery applies a set of
rules to infer an appropriate type

This one allows writing business logic in a
similar way that, for example, PHP, without object
orientation.

3.3 Data layer

To implement data layer, it is possible to use a
database server which supports recovering of data in
XML structures. However use of SQL statements
will be mandatory. Nowadays XQuery has no direct
integration with SQL and, furthermore, the objective
is to minimize the number of different technologies
applied. By this reason, we suggested to implement
data layer with native XML databases.

The concept of native XML database is not a
precise technical term. Essentially, this concept
refers to a database designed specifically for the
storage and retrieval of XML documents, and the
term is used to contrast such a system with a
database that merely provides an XML interface to
data whose intrinsic data model is something
different (Katz, 2003).

Main characteristic of a native XML database is
the use of the XML data model at the query
language interface to the system, and in all its other
interfaces. We have reviewed some of these
interfaces and seen how XQuery represents only a
small part of the facilities that a real system needs to
offer.

Native XML databases, in the same way than
classic relational databases, cannot be applied to all
kind of systems. Native XML databases are
designed for use in systems when information can be
expressed with XML structures in an easy and
natural way.

An example of a native XML database with
XQuery support can be found in (Exist, 2003)

3.5 Web architecture based in
XQuery

Architecture of a web system developed with XML
and XQuery is showed in figure 4 and detailed in
next paragraphs.

Data is stored into several XML structures. These
structures are stored and indexed in a native XML
database or in a collection of XML files.

A set of XQuery expressions selects data needed
for business logic and builds new XML structures
with selected data.

Then, selected data is sent to business layer. In
this layer, a set of XQuery functions or external
functions is applied over these XML structures to
add new elements, for example totals or special
offers. A final XML structure contained all
information to display to the user is built and sent to
user interface layer.

Finally other XQuery expressions are applied
over final structure to transform it into a browser-
compatible structure, for example HTML or
XHTML, and it is sent to the client to be displayed.

Table 6 describes an application of this
architecture implemented in a book on-line
catalogue similar to Amazon.

Table 6: A brief description of an on-line catalogue in
XQuery.

First, an XQuery expression selected XML
structures of books that will be showed in the
browser. Later, this structures are processed to a set
of functions to add special offers (like 2x1), special
prices of to add similar books. A final XML
structure is generated with this information. Another
XQuery expression transforms the final XML
structure into HTML or XHTML.1

Next section describes open-source tools
available to develop web applications with XQuery.

WEBIST 2005 - WEB INTERFACES AND APPLICATIONS

368

Figure 4: Web architecture with XQuery.

4 A BRIEF COMPARATIVE OF
OPEN-SOURCE TOOLS

Open-source community has developed very
important tools in web engineering. Some examples
are web servers like Apache or Tomcat (Tomcat,
2003), or languages like PHP or PERL. One of the
factors of rapid and wide diffusion of open-source
tools is the available of high quality tools that have
became into a standard in web engineering. Thus,
this section shows a brief overview of XQuery web
tools

First fact to notice is the number of open-source
XQuery tools is limited. Open-source XQuery
engines found are (Qexo, 2003), (Qizx, 2003),
(Saxon, 2003) and (XQEngine, 2003). It is out of the
scope of this work to perform a complete analysis
and comparative among them. This section analyzes
the characteristics of each tool focused on web
development.

A first analysis reveals that XQEngine and Saxon
do not allow any web integration. Thus both are
discarded.

Next section studies web integration capabilities
of Qizx and Qexo. Both engines can be added as a
module into a web server. Both generate web pages
when requested by a browser. However, the process
to generate output is different.

4.1 Compiling XQuery to Servlets

Qexo includes a tool to compile an XQuery
expression into a Java Servlet. This Servlet can be
executed in any server that supports Servlets, like
Tomcat (Tomcat, 2003)

Qexo allows performing the compilation
dynamically or by anticipation. Dynamic
compilation is performed when an XQuery
expression is compiled only when server receives
the first request for that expression. Before answer,
Qexo compiles expression to a Servlet if that Servlet
does not exit. Then, Servlet is executed and its
output is sent to client.

Anticipate compilation means that all XQuery
expressions are compiled to Servlets. Then those
Servlets are uploaded to the server.

for $b in doc("books.xml")//book
let $c := $b//author
where count($c) > 2
order by $b/title
return $b/ titulo

Código

Bussiness layer

Transform
functions

Presentation layer

<html> <head> <title> </title>
<body> <table>
{

for $b in doc("libros.xml")/bib/libro
return
<tr> <td> <I> { string($b/titulo) }
 </I> </td> </tr>

}
</table> </body>
</head> </html>

Data layer

BUILDING WEB APPLICATIONS WITH XQUERY - Integrating technologies in web development

369

4.2 Inserting XQuery into HTML
pages

Qizx offers a different solution from Qexo. It is
possible to include XQuery expression directly into
HTML files. Qizx also offers a proprietary extension
to manipulate elements from the web execution
environment. This extension allows to read HTTP
headers and to access to GET and POST values.

Web server has to be configured to mapping
HTML files with XQuery included. When a request
for a file of this type is received, server must to
execute Qizx with requested file. Qizx process
XQuery expressions and includes their result into
HTML code.

Table 7 shows an example of a HTML file with
XQuery expressions. Figure 5 shows how this file is
rendered into a browser.

Table 7: Example of HTML file with XQuery expressions.

(::pragma qizx:serialization

 media-type=text indent=no include-content-type=yes method=XML ::)

declare namespace session = "java:javax.Servlet.http.HttpSession"

<html> <body>

<h2>Echo of your request:</h2>

<hr/>

<p>Received on { request:get-server-name() } from {

 request:get-remote-host(), " address: ", request:get-remote-addr()

}</p>

method: { request:getMethod() }

protocol: { request:getProtocol() }, { request:getScheme() }

request-uri: { request:getRequestURI() }

locale: { request:getLocale() }

content-length: { request:getContentLength() }

session: {

 let $s := request:getSession() return

 ("id=", session:getId($s),

 ", last access=", session:getLastAccessedTime($s),

 ", timeout=", session:getMaxInactiveInterval($s),

 session:setMaxInactiveInterval($s, xs:int(10)))

 }

 <hr/>

source code

</body> </html>

WEBIST 2005 - WEB INTERFACES AND APPLICATIONS

370

Figure 5: HTML file with XQuery expressions.

The possibility to merge HTML with XQuery
makes development of web applications easy and
intuitive. However with this strategy it is possible to
acquire bad habits presents in other languages like
PHP. These bad habits drive to spaghetti scripting,
where all layers are merged in a few big and
monolithic scripts. This makes the development
process hard and the maintenance process a titanic
task.

Adequate strategy, in our opinion, is neither
inserts XQuery into HTML, nor inserts HTML into
XQuery. An application must be completely
generated with XQuery and, final HTML, must be
generated with XQuery expressions.

5 CONCLUTIONS

XQuery has several characteristics that allow to
apply it in web development. This work has
described these characteristics, how to apply them to
web development, and existing open-source tools to
realize them.

Thus, we conclude that today XQuery and its
open-source tools can be used to build a real web
system.

Two main advantages using XQuery in web
development are: in first place, it is a W3C standard
with mature open source tools. This open sources
tools, as showed in section 4, are adaptable to web
environments. In second place, XQuery is a
technology that might replace a set of heterogeneous
technologies. This means less human, formation and
development tools costs and resources.

XQuery standard is not closed yet. It is a draft
since 2002. However it is a stable draft and big
changes are not expected. There are an important

number of tools based in XQuery, not only open-
source, but commercials too.

However XQuery draft does not included all
elements needed to web development. First lack is
absence of mechanism to manipulate web elements,
like URL or forms. This one obligates tools to
implement proprietary solutions incompatibles with
other tools. There is also not a standard to define
calls to external functions. Different tools are
incompatible among them again.

Is XPath a valid alternative?. We do not think so.
XPath (W3C, 1999) is a language for addressing
parts of an XML document. XPath does not include
the same flexibility than XQuery. For example,
XPath returns what it found, not allowing to
transform results. XPath does not support functions.
Thus, XPath is one of the pillars of XQuery, but
XPath, by itself, is not enough to build web
applications.

We suggest a set of actions to improve XQuery as
web development tool. First action will be the
definition of a communication mechanism between
XQuery expressions and web environment. This
mechanism has to be proposed like a standard o like
a section of the actual standard. Second action will
be the development of new tools and the adaptation
of exiting tools to this standard.

Actually, the market of web development has
grown up very fast in a short time. Today there are
several technologies and tools very matures.
Frameworks like Struts have become in a standard
and development tools like Rails over Ruby are
changing the way to built web application. Thus, we
suggest a third additional action. XQuery has to
develop and offer to web community frameworks
similar to exiting. These frameworks will allow,
first, to facility the transition process to XQuery and,

BUILDING WEB APPLICATIONS WITH XQUERY - Integrating technologies in web development

371

second, to avoid implementation the same basic
concepts once and another.

REFERENCES

Brundage, Michael. 2004. XQuery: The XML Query
Language. Addison Wesley.

Exist. 2003. http://exist.sourceforge.net/
Katz, Howard; Chamberlin, Don, et-al. 2003. XQuery from

the Experts: A Guide to the W3C XML Query
Language. Addison Wesley

Marchal, Benoît. 2001. XML by Example. QUE.
McLaughlin, Brett. 2002. Java and XML Data Binding.

O'Reilly.
Mignet L, et-al. 2003. The XML Web: a First Study. Proc.

of International World Wide Web Conference.
WWW2003. Budapest. Hungary.

Offutt, Jeff. 2002. Web Software Applications Quality
Attributes. Quality Engineering in Software
Technology (CONQUEST 2002), pages 187-198,
Nuremberg, Germany.

Qexo. 2003. http://www.gnu.org/software/qexo/
Qizx/open. 2003. http://www.xfra.net/qizxopen/
Robert Gardner, John; Rendon, Zarella L. XSLT and

XPATH: A Guide to XML Transformations. 2001.
Prentice Hall.

Saxon. 2003. http://saxon.sourceforge.net/
Apache Tomcat 4.1. 2003.

http://jakarta.apache.org/tomcat/
W3C. 2004. The sixth public Working Draft of XHTML

2.0. http://www.w3c.org/TR/2004/WD-xhtml2-
20040722/

XQEngine. 2003. http://xqengine.sourceforge.net/
W3C XML Path Language (XPath) Version 1.0. 1999.

http://www.w3.org/TR/xpath
W3C XQuery Drafts. 2002.

http://www.w3.org/TR/XQuery/
W3C. 2002 XML Query Use Cases.

http://www.w3.org/XML/Query, August 2002.
World Wide Web Consortium. 2004. eXtensible Markup

Language (XML) 1.0. http://www.w3.org/XML/.
Ye Wu and Jeff Offutt. 2002. Modeling and Testing Web-

based Applications. ISE Technical ISE-TR-02-08.
Ye Wu, Jeff Offutt, Xiaochen Du. 2004. Modeling and

Testing of Dynamic Aspects of Web Applicationsy.
Submitted for journal publication.

WEBIST 2005 - WEB INTERFACES AND APPLICATIONS

372

