
DEVELOPING A WEB CACHING ARCHITECTURE WITH
CONFIGURABLE CONSISTENCY: A PROPOSAL

Francisco J. Torres-Rojas and Esteban Meneses and Alexander Carballo
Computing Research Center - Costa Rica Institute of Technology

Escuela de Ingenierı́a en Computación, Instituto Tecnoĺogico de Costa Rica,
POBox 159-7050 Cartago, Costa Rica

Keywords: Web Caching, Consistency Protocols, Timed Consistency.

Abstract: In recent years, Web Caching has been considered one of the key areas to improve web usage efficiency.
However, caching web objects proposes many considerations about the validity of the cache. Ideally, it would
be valuable to have aconsistent cache, where no invalid relationships among objects are held. Several alter-
natives have been offered to keep consistency in the web cache, each one being better in different situations
and for diverse requirements. Usually, web cachers implement just one strategy for maintaining consistency,
sometimes giving bad results if circumstances are not appropriate for such strategy. Given that, a web cacher
where this policy can be adapted to different situations, will offer good results in an execution with changing
conditions. A web caching architecture is proposed as a testbed for consistency models, allowing bothtiming
andordering issues to be considered.

1 INTRODUCTION

The most important traffic carried by today networks
certainly belongs to world-wide-web. Every second
millions of users exchange gigabytes of information
by browsing, downloading, buying, playing, talking,
etc. Much of the current efforts aim to alleviate the
delay experienced by users when surfing the web.
While increasing the bandwidth available to users
helps reducing latency, bottlenecks are found every-
where, user preferences and events (natural, econom-
ical, social, etc.) also rule the behavior of network
congestion. One solution is to upgrade the congested
network components or even performing load balanc-
ing techniques on them. However finite speed nature
of signals crossing transoceanic or even satellite links,
package queuing due finite processing time and stor-
age, etc. impose limits on the expected response time.

Information been locally accessible will clearly im-
prove the user experience while imposing reduced
load on the external network. Many of the web ob-
jects exhibit access locality meaning that once re-
quested they are most likely to be requested in the
near future. So instead of visiting the source server,
they could be locally stored and locally served. A
large group of users with overlapping interests may
request those locally stored objects without the bur-

den of long delays.

However, caching and replication of web objects
can produce inconsistencies, as it is known from the
distributed systems literature. For example, consider
a client requesting two pages: one from ESPN about
the NBA playoff final game (which has not yet fin-
ished) and another from CNN with a link to the ESPN
one (cached on the CNN site). After the match is over,
suppose the ESPN page is changed so the result is pre-
sented, but the CNN one is using the cached version,
thus offering a stale information about the game and
making inconsistencies in the whole caching system.
On the other side, there are some applications where
such requirements are not needed and a more relaxed
consistency policy is sufficient.

Several caching strategies have been published
mostly based on the distributed nature of web ob-
jects (Wessels and Claffy, 1998; Cao and Liu, 1997;
Yu et al., 1999; Tewari et al., 2002; Kawash, 2004;
Shim et al., 1999). While previous work is mostly
based on timing requirements for consistency, to our
knowledge, only (Bradley and Bestavros, 2002) ad-
dresses bothordering and timing, fundamental con-
cepts on distributed objects consistency (Ahamad and
Raynal, 2003). Our aim in this paper is to present a
proposal for an infrastructure allowing several consis-
tency models to be tested, considering time and order.

110
J. Torres-Rojas F., Meneses E. and Carballo A. (2005).
DEVELOPING A WEB CACHING ARCHITECTURE WITH CONFIGURABLE CONSISTENCY: A PROPOSAL.
In Proceedings of the First International Conference on Web Information Systems and Technologies, pages 110-116
DOI: 10.5220/0001231801100116
Copyright c© SciTePress



Section 2 introduces the web caching problem,
while in section 3 some approaches for this problem
are presented. In section 4 the main consistency pro-
tocols are reviewed and some useful techniques are
presented. Section 5 presents a proposal to introduce
consistency models in web caching. Finally, conclu-
sions and future work are left for the last section.

2 WEB CACHING CONSISTENCY

As already mentioned, information being accessible
in the cache will improve the user experience. Ac-
cording (Wang, 1999) there are several advantages for
using web caching: it reduces bandwidth consump-
tion so network traffic decreases and lessens network
congestion; it reduces access latency due frequently
accessed objects are fetched by a near proxy and non-
cached objects are fetched in a relatively faster net-
work; it reduces the work load of the remote server;
if the remote server is no available, a copy of the re-
quested object could be retrieved from a local proxy;
it provides an option to monitor web access patterns.

The increased performance or efficiency of intro-
ducing some caching level could be measured by
counting how many objects were locally accessed
(from the cache) among the total number of requested
objects, the cache hit rate. Another useful indicator
of cache efficiency is the byte hit rate, the number of
byte actually provided from the cache as a percentage
of the total number of bytes transferred. The higher
the byte hit rate the less traffic is injected on the ex-
ternal network or the backbone saving bandwidth.

Nevertheless, some disadvantages emerge as web
caching is implemented (Wang, 1999). One of these
is cache consistency. This issue has been considered
in previous work (read section 3). Those schemes
can be categorized into three different philosophies
(Kawash, 2004):

• Expiration Protocol A client p requests objectX
from its ownerq at time t, q sends a copy of the
value ofX with a time-to-livevalue∆. So, every
requests forX could be satisfied by the local cache
of p during the interval[t, t+∆]. After that interval,
the copy ofX in the cache expires and the next
request must be transmitted into the remote server.

• Polling Protocol A client p must be checking ob-
jectX from its owner periodically in order to see if
X has changed.

• Invalidation Protocol The ownerq of X remem-
bers all the clientsp of object X so whenX
changesq sends an invalidation message to all its
users. The next read forX at a specific clientpi

suppose downloading a fresh value forX from q.

These policies have several performance and scal-
ability implications (Kawash, 2004; Gwertzman and
Seltzer, 1996; Cao and Liu, 1997). But, more im-
portant, it is often obviated what order protocol these
models induce. Particularly, expiration and polling
protocols implementcoherence(a relaxation of se-
quential consistency model) and invalidation protocol
implementsSequential Consistencyor SC (read sec-
tion 4).

Dilley et al (Dilley et al., 1999) recognize four
levels where caching plays an important role in the
web information infrastructure: (1) at the browser
level, catching user preferences as to aid the render-
ing process of web contents; (2) at LAN level, collect-
ing requested objects of a community of users; (3) at
ISP or carrier level, reducing the injection of unneces-
sary traffic on the backbone; (4) at the source site, re-
ducing the server load by caching the most requested
objects avoiding unnecessary delays recomputing al-
ready served data. Figure 1 depicts those scenarios.

Figure 1: Web caching levels

The HTTP/1.0 specification (Berners-Lee et al.,
1996) comes with basic features helping web caches.
For example the uniform resource locator (URL ) pro-
vides a mean of object identification, when a client
issues aGET command the cache server easily ver-
ifies the object existence using URL as key in a flat
or a hash table. Thetime-to-live(TTL ) value estab-
lished a simple mechanism of object freshness and if
coupled with theIf-Modified-Sinceheader more con-
sistent results could be achieved.

Figure 2 clarifies the use of the TTL value in web
caching. The client issues an objectX read r(x)
which is attended by the proxy, since no cached ver-
sion ofX exists then the proxy issues the request to
the source server returning a copy of the web object
valid through the TTL value. Future requests from
the client will be served from the proxy server until
the expiration of the TTL when a new read operation

DEVELOPING A WEB CACHING ARCHITECTURE WITH CONFIGURABLE CONSISTENCY: A PROPOSAL

111



to the source server is issued, thus TTL establishes a
basic level of consistency.

Proxy

Server
Time

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

������
������
������
������
������

������
������
������
������
������

r(x) r(x)

get(x) get(x)x x

TTL TTL

Figure 2: Basic consistency by means of TTL values

3 RELATED WORK

In the last 10 years, several models have been
proposed for consistent web caching (Bradley and
Bestavros, 2002; Cao and Liu, 1997; Cate, 1992;
Duvvuri et al., 2000; Gwertzman and Seltzer,
1996; Mikhailov and Wills, 2003; Rabinovich and
Spatscheck, 2002; Tewari et al., 2002; Yin et al.,
1999; Yu et al., 1999), some of them are presented in
(Kawash, 2004). In this section some ideas of these
models are briefly reviewed.

Adaptive TTLis one of the first models, introduced
in the Alex file system (Cate, 1992) was favored by
the results of Gwertzman and Seltzer (Gwertzman
and Seltzer, 1996). They found this protocol reduces
network bandwidth consumption and server loads in
comparison to other protocols. On the other hand,
Cao and Liu (Cao and Liu, 1997) advocate a con-
sistency protocol based on invalidations of outdated
cached web documents initiated at the server side.

Yu, Breslay and Shenker (Yu et al., 1999) offer a hi-
erarchical architecture for web caching which is scal-
able and that uses an invalidation approach. Yinet al
(Yin et al., 1999) developed a different technique by
offering objectleases. If a client p request an object
X from a serverq thenq grants a lease to this request
for X. The lease duration denotes the interval of time
during which the server agrees to notify the client if
the object is modified. After the lease expires, it must
be renewed. Volume leases groups some objects with
the same lease. Based on this idea, Duvvuri, Shenoy
and Tewari (Duvvuri et al., 2000) developedadap-
tive leasesthat improves the efficiency by adapting
the lease duration considering some characteristics of
the network.

Basis token consistency, developed by Bradley and
Bestavros (Bradley and Bestavros, 2002) is a mech-
anism that attach a header to each object in order to
keep consistency in the cache. Finally, Tewari, Niran-
jan and Ramamurthy (Tewari et al., 2002) developed
WCDP, a protocol where several levels of time con-
sistency are permitted.

4 CONSISTENCY MODELS

Although web applications have very different re-
quirements than other areas of distributed comput-
ing, there is still room to introduce some ideas born
in distributed objects consistency protocols. In this
section, basic notions for consistency in distributed
systems, including time and order considerations, are
presented.

4.1 Order Models

A distributed system consists ofN user processes and
a distributed data storage. Because of caching and
replication, several, possibly different, copies of the
same data objects might coexist at different sites of
the system. Thus, a consistency model, understood
as a contract between processes and the data stor-
age, must be provided. There are multiple consis-
tency models (Ahamad et al., 1995; Ahamad and Ray-
nal, 2003; Herlihy and Wing, 1990; Lamport, 1978;
Torres-Rojas et al., 1998; Torres-Rojas et al., 1999).

Theglobal historyH of this system is the partially
ordered set of all operations occurring at all sites.Hi
is the total ordered set or sequence of operations that
are executed on sitei. If a occurs beforeb in Hi we
say thata precedesb in program order, and denote
this asa <PROG b. In order to simplify, we assume
that all operations are eitherread or write , that each
value written is unique, and that all the objects have
an initial value of zero. These operations take a finite,
non-zero time to execute, so there is a time elapsed
from the instant when aread or write “starts” to the
moment when such operation “finishes”. Neverthe-
less, for the purposes of this paper, we associate an
instant to each operation, called theeffective timeof
the operation. We will say thata is executedat timet
if the effective time ofa is t. If a has an effective time
previous to the effective time ofb we denote this asa
<E-T b. LetHi+w be the set of all the operations inHi
plus all thewrite operations inH. The partially or-
deredhappens-beforerelationship “→” for message
passing systems as defined in (Lamport, 1978) can be
modified to order the operations ofH. Let a,b andc
∈ H, we say thata → b, i.e., a happens-before (or
causally precedes) b, if one of the following holds:

1. a andb are executed on the same site anda is exe-
cuted beforeb.

2. b reads an object value written bya.

3. a→ c andc→ b.

Two distinct operationsa andb areconcurrentif
none of these conditions hold between them.

If D is a set of operations, then aserializationof
D is a linear sequenceS containing exactly all the
operations ofD such that eachread operation to a

WEBIST 2005 - INTERNET COMPUTING

112



particular object returns the value written by the most
recent (in the order ofS ) write operation to the same
object. If≺ is an arbitrary partially ordered relation
overD, we say that serializationS respects≺ if ∀ a,
b ∈ D such thata≺ b thena precedesb in S .

Intuitively, one would like that anyread on a data
item X returns a value corresponding to the results
of the most recentwrite on X. In some systems this
could mean that after making an update, all other
processes may be notified about the change as soon
as it is required. Assuming the existence of absolute
global time, this behavior can be modeled withlin-
earizability(Herlihy and Wing, 1990):

Definition 1 History H satisfies Linearizability
(LIN ) if there is a serializationS of H that respects
the order<E-T (Herlihy and Wing, 1990).

A weaker, but more efficient, model of consistency
is sequential consistencyas defined by Lamport in
(Lamport, 1978):

Definition 2 History H satisfiesSequential Consis-
tency (SC) if there is a serializationS of H that re-
spects the order<PROG for every site in the system
(Lamport, 1978).

SCdoes not guarantee that aread operation returns
the most recent value with respect to real-time, but
just that the result of any execution is the same as if
the operations of all sites were executed in some se-
quential order, and the operations of each individual
site appear in this sequence in the order specified by
its program.

An even weaker model of consistency iscausal
consistency(Ahamad et al., 1995).

Definition 3 History H satisfiesCausal Consistency
(CC) if for each site i there is a serializationSi of the
setHi+w that respects causal order “→” (Ahamad
et al., 1995).

Thus, ifa,b andc ∈ H are such thata writes value
v in objectX, c reads the same valuev from objectX,
andb writes valuev’ into objectX, it is never the case
thata → b → c. CC requires that all causally related
operations be seen in the same order by all sites, while
different sites could perceive concurrent operations in
different orders.

CC is a model of consistency weaker thanSC,
but it can be implemented efficiently (Ahamad et al.,
1995; Torres-Rojas et al., 1998). Such implementa-
tion requires keeping track of which processes have
seen whichwrite events. In fact, there is dependency
graph for determining which operation is dependent
on which other operations. So, this data structure
must be built and maintained. For fulfilling this need,
vector clocks (Torres-Rojas et al., 1998) can be used.

4.2 Time Models

In neitherSCnorCC real-time is explicitly captured,
i.e., in the serializations ofH orHi+w operations may
appear out of order in relation to their effective times.
In CC, each site can see concurrentwrite operations
in different orders. On the other hand,LIN requires
that the operations be observed in their real-time or-
dering. Ordering and time are two different aspects
of consistency. One avoids conflicts between opera-
tions, the other addresses how quickly the effects of
an operation are perceived by the rest of the system
(Ahamad and Raynal, 2003).

Timed consistency(TC) as proposed in (Torres-
Rojas et al., 1999) requires that if the effective time of
awrite is t, the value written by this operation must be
visible to all sites in the distributed system by timet +
∆, where∆ is a parameter of the execution. It can be
seen that when∆ = 0, thenTC becomesLIN . So,TC
can be considered as a generalization or weakening of
LIN .

In timedmodels, the set of values that aread may
return is restricted by the amount of time that has
elapsed since the precedingwrites. A read occurs
on timeif it does not return stale values when there
are more recent values that have been available for
more than∆ units of time. This definition depends
on the properties of the underlying clock used to as-
sign timestamps to the operations in the execution.
Let T(a) be the real-time instant corresponding to the
effective time of operationa.

Definition 4 Let D ⊆ H be a set of operations and
S a serialization ofD. Let w, r ∈ D be such that
w writes a value into objectX that is later read byr ,
i.e.,w is the closestwrite operation into objectX that
appears to the left ofr in serializationS . We define
the setWr , associated withr , as:Wr ={w’ ∈ D | (w’
writes a value into objectX) ∧ (T(w) < T(w’ ) < T(r ) -
∆)}. We say that operationr occurs or reads on time
in serializationS , if Wr = ∅. S is timed if every
read operation inS occurs on time.

Definition 5 Leta, b ∈ D ⊆ H with effective timest1
andt2, respectively, be two operations over the same
objectX. We say thata <∆ b if:

1. Botha andb arewrite operations andt1 < t2, or

2. a is a write operation,b is a read operation and
t1 < (t2 − ∆).

Definition 6 History H satisfiesTimed Consistency
(TC) if there is a serializationS of H that respects
the partial order<∆ (Torres-Rojas et al., 1999).

Now, we combine the requirements of well-known
consistency models such asSC andCC with the re-
quirement of reading on time.

DEVELOPING A WEB CACHING ARCHITECTURE WITH CONFIGURABLE CONSISTENCY: A PROPOSAL

113



Definition 7 History H satisfiesTimed Sequential
Consistency (TSC) if there is a serializationS of H
that simultaneously respects the partial order<PROG

and the partial order<∆ (Torres-Rojas et al., 1999).

Definition 8 History H satisfiesTimed Causal Con-
sistency (TCC) if for each sitei there is a timed se-
rialization Si of Hi+w that simultaneously respects
causal order→ and the partial order<∆ (Torres-
Rojas et al., 1999).

Figure 3 presents the hierarchy of these sets. If an
execution satisfiesLIN , it satisfiesSCas well, but the
contrary is not always true. If a set of operationsD
satisfiesLIN , then it is always possible to produce a
serializationS of D such that all the operations are
ordered by the real-time instants when each operation
was executed. In turn,S satisfies Definition 4, even
for ∆ = 0. Then,LIN is a case ofTSC where∆ = 0,
and thereforeLIN ⊂ TSC. It is easy to see thatSC⊂
CC.

TSC

LIN
SC TCC

CC

Figure 3: Consistency Criteria Hierarchy

4.3 Lifetime based model

This technique (Torres-Rojas et al., 1998) provides
consistency across different but related set of objects.

Let Ci denote the cache of sitei, which stores
copies of objects that have been accessed recently. If
a cache miss occurs when accessing objectX, some
server provides a copy of its current version ofX.
Once this copy is stored inCi, we denote it asXi.
Thestart timeof Xi, denoted asXi

α is the time when
the value ofXi was written. The latest time when the
value stored inXi is known to be valid is itsending
timeand it is denoted asXi

ω. The interval[Xi
α,Xi

ω]
is the currently knownlifetimeof the value stored in
Xi.

The values ofXi andYi (cached inCi) are mutu-
ally consistent ifmax(Xi

α, Yi
α) ≤ min(Xi

ω, Yi
ω),

i.e., their lifetimes overlap and, thus, they coexisted
at some instant.Ci is consistent if themaximumstart
time of any object value inCi is less than or equal to
the minimumending time of any object value inCi,
i.e., every pair of object inCi is mutually consistent.

In general, the lifetime of arbitrary object values is
not known. When sitei updates object versionXi at
time t, timestampt is assigned to bothXi

α andXi
ω.

It must be discovered as it goes that no object copyXj

(i 6= j) has been overwritten and use this information
to advanceXi

ω.
A local timestamp variable calledContexti is asso-

ciated withCi. Its initial value is 0, and it is updated
with the rules:

1. When a copy of objectX is brought intoCi (be-
comingXi): Contexti := max(Xi

α, Contexti)

2. When object copyXi is updated at timet:
Contexti := Xi

α := t

Contexti keep the latest start time of any object
value that is or has been stored inCi. When a copy of
objectX is brought intoCi, its ending time must not
be less thanContexti, if necessary, other servers or
client sites are contacted until a version ofX that sat-
isfies the condition is found. Furthermore, any object
Yi ∈ Ci such thatYi

ω < Contexti is invalidated. It is
proved in (Torres-Rojas et al., 1998) that this protocol
inducesSC on the execution.

5 PROPOSED WORK

This proposal attempts to modify an existing web
cache software in order to implement an architecture
able to consider several consistency models by intro-
ducing timing and ordering requirements. It emerges
as part of the SPREAD research project, which is un-
der development in the Computing Research Center
at Costa Rica Institute of Technology. SPREAD is
oriented in applying consistency techniques and prop-
erties to areas as collaborative software, mobile com-
puting, distributed databases, web caching and others.

We selected the Wesselset al SQUID software for
several reasons. SQUID is one of the most widely
used caching solutions deployed in several huge net-
works. It supports a simple yet hierarchical cache
protocol allowing a testbed for research (for example
(Dilley et al., 1999; Wessels and Claffy, 1998; Shim
et al., 1999; Bradley and Bestavros, 2002; Duvvuri
et al., 2000)). It is Open Source, distributed under
GNU-GPL terms, meaning access to source code and
to a large community of programmers maintaining
this project.

Regarding consistency protocols of section 2,ex-
piration approach is achieved via adaptive time-to-
live or ATTL (Cate, 1992; Gwertzman and Seltzer,
1996). The ATTL, where the life-span of an ob-
ject is approximated to better reflect its behavior in
time, is implemented in most browser level caches
and in proxy cache servers, including SQUID, for it
is easy to implement using HTTP headers.Polling
consistency level, also handled in SQUID, is eas-
ily implemented by issuing conditional HTTP GET
commands with theIf-Modified-Sinceheader field,

WEBIST 2005 - INTERNET COMPUTING

114



here the server is expected to respond mainly with
the “OK” code (200) with the updated object (when
changes were made) or the “Not Modified” code (304)
when object data is still valid. Recent SQUID ver-
sions support the HTTP/1.1 specification introduces
enhanced directives for caching (“Cache-Control” di-
rective): age and expiration calculation, freshness re-
quirements, stale control, cache extensions, cacheable
objects, etc. Although theinvalidation approach is
not inherent to SQUID, several invalidation alterna-
tives (Bradley and Bestavros, 2002; Duvvuri et al.,
2000) have been implemented.

All these three approaches induce some level of
consistency, but they take into account only the time
axis. Our objective in this proposal is to introduce in
SQUID the lifetime based consistency of section 4,
which can be modeled to offer several levels of con-
sistency, using the order of events. These levels can
be selected among: sequential consistency (SC), co-
herence, causal consistency (CC) and no ordering at
all.

Finally, the evaluation criteria to be used is not in-
creasing SQUID performance, but permitting several
levels of consistency to be applied dynamically ac-
cording to web usage requirements.

6 CONCLUSIONS

Several strategies for maintaining cache consistency
have been proposed, but they do not considerorder
and time, so it is difficult to analyze the properties
such strategies offer.

Different web applications require different web
cache consistency protocols. More agile web en-
vironments need stronger consistency models, while
weaker models of consistency are sufficient for less
changing systems.

Our attempt is to build a web caching architec-
ture where several consistency models can be used in
order to satisfy the needs for different web environ-
ments.

REFERENCES

Ahamad, M., Neiger, G., Burns, J. E., Kohli, P., and Hutto,
P. W. (1995). Causal memory: definitions, imple-
mentation and programming.Distributed Computing,
9(1):37–49.

Ahamad, M. and Raynal, M. (2003). Ordering and timeli-
ness: Two facets of consistency? InFuture Directions
in Distributed Computing, Lecture Notes in Computer
Science, pages 73–80.

Berners-Lee, T., Fielding, R., and Frystyk, H.
(1996). Hypertext transfer protocol – HTTP/

1.0. RFC 1945, Internet Engineering Task Force.
http://www.ietf.orf/rfc/rfc1945.txt.

Bradley, A. and Bestavros, A. (2002). Basis token consis-
tency: Extending and evaluating a novel web consis-
tency algorithm.Proceedings of the Second Workshop
on Caching, Coherence, and Consistency (WC3 ’02).

Cao, P. and Liu, C. (1997). Maintaining strong cache con-
sistency in the world wide web.Proceedings of the
17th International Conference on Distributed Com-
puting Systems (ICDCS ’97).

Cate, V. (1992). Alex - a global file system.Proceedings of
the 1992 USENIX File System Workshop, pages 1–11.

Dilley, J., Arlitt, M., and Perret, S. (1999). Enhancement
and validation of the Squid cache replacement pol-
icy. Proceedings of the 4th International Web Caching
Workshop.

Duvvuri, V., Shenoy, P., and Tewari, R. (2000). Adaptive
leases: A strong consistency mechanism for the world
wide web.Proceedings of INFOCOM 2000.

Gwertzman, J. and Seltzer, M. (1996). World-wide web
cache consistency.Proceedings of USENIX Annual
Technical Conference.

Herlihy, M. and Wing, J. (1990). Linearizability: A
correctness condition for concurrent objects.ACM
Transactions on Programming Languages and Sys-
tems, 12(3):463–492.

Kawash, J. (2004). Consistency models for internet
caching. InWISICT ’04: Proceedings of the Winter
International Symposium on Information and Com-
munication Technologies, ACM International Confer-
ence Proceedings Series, pages 1–6.

Lamport, L. (1978). How to make a multiprocessor com-
puter that correctly executes multiprocess programs.
IEEE Transactions on Computer Systems, 28(9).

Mikhailov, M. and Wills, C. (2003). Evaluating a new ap-
proach to strong web cache consistency with snap-
shots of collected content.WWW ’03: Proceedings
of the twelfth international conference on World Wide
Web, pages 599–608.

Rabinovich, M. and Spatscheck, O. (2002).WEB caching
and replication. Addison-Wesley.

Shim, J., Scheuermann, P., and Vingraleki, R. (1999). Proxy
cache algorithms: Design, implementation, and per-
formance. IEEE Transactions on Knowledge and
Data Engineering, 11(4):549–562.

Tewari, R., Niranjan, T., and Ramamurthy, S. (2002).
WCDP: A protocol for web cache consistency.Pro-
ceedings of the 7th International Workshop on Web
Content Caching and Distribution.

Torres-Rojas, F. J., Ahamad, M., and Raynal, M. (1998).
Lifetime based consistency protocols for distributed
objects. InProceedings of the 12th International Sym-
posium on Distributed Computing, DISC’98, pages
378–392.

Torres-Rojas, F. J., Ahamad, M., and Raynal, M. (1999).
Timed consistency for shared distributed objects. In

DEVELOPING A WEB CACHING ARCHITECTURE WITH CONFIGURABLE CONSISTENCY: A PROPOSAL

115



Proceedings of the Annual ACM Symposium on Prin-
ciples of Distributed Computing PODC’99, pages
163–172.

Wang, J. (1999). A survey of web caching schemes for
the internet. ACM SIGCOMM Computer Communi-
cations Review, 29(5):36–46.

Wessels, D. and Claffy, K. (1998). ICP and the Squid Web
cache.IEEE Journal on Selected Areas in Communi-
cation, 16(3):345–357.

Yin, J., Alvisi, L., Dahlin, M., and Lin, C. (1999). Volume
leases for consistency in large-scale systems.IEEE
Transactions on Knowledge and Data Engineering,
11(4):563–576.

Yu, H., Breslau, L., and Shenker, S. (1999). A scalable web
cache consistency architecture. InSIGCOMM ’99:
Proceedings of the conference on Applications, tech-
nologies, architectures, and protocols for computer
communication, pages 163–174.

WEBIST 2005 - INTERNET COMPUTING

116


