
EFFICIENT RSS FEED GENERATION FROM HTML PAGES

Jun Wang
Fujitsu R&D Center Co., Ltd., B306, Eagle Run Plaza No.26 Xiaoyun Road, Beijing 100016, China.

Kanji Uchino
Fujitsu Laboratories, Ltd., 4-1-1 Kami-kodanaka, Nakahara-Kawasaki, Kanagawa 211-8588, Japan

Keywords: RSS, Metadata, Information Extraction, Knowledge Management

Abstract: Although RSS demonstrates a promising solution to track and personalize the flow of new Web
information, many of the current Web sites are not yet enabled with RSS feeds. The availability of
convenient approaches to “RSSify” existing suitable Web contents has become a stringent necessity. This
paper presents EHTML2RSS, an efficient system that translates semi-structured HTML pages to structured
RSS feeds, which proposes different approaches based on various features of HTML pages. For the
information items with release time, the system provides an automatic approach based on time pattern
discovery. Another automatic approach based on repeated tag pattern discovery is applied to convert the
regular pages without the time pattern. A semi-automatic approach based on labelling is available to process
the irregular pages or specific sections in Web pages according to the user’s requirements. Experimental
results show that our system is efficient and effective in facilitating the RSS feed generation.

1 INTRODUCTION

The knowledge workers who strive to keep up with
the latest news and trends in the field have to
frequently revisit specific Web pages containing list-
oriented information such as headlines, "what's
new", job vacancies and event announcements. The
above information can certainly help enterprises and
individuals track competitions and opportunities,
and understand markets and trends, however it
becomes not easy for workers to keep current when
information sources exceed a handful.

Rich Site Summary (RSS), a machine-readable
XML format for content syndication (Hammersley,
2003), allows users to subscribe to the desired
information and receive notification when new
information is available. RSS feeds send information
only to the parties that are truly interested, thereby
relieving the pressure on email systems suffering
from spam (Miller, 2004). Since virtually almost any
list-oriented content could be presented in RSS
format, RSS demonstrates a promising solution to
track and personalize the flow of new Web
information. Furthermore, enterprises can take
advantage of the simplicity of the RSS specification

to feed information inside and outside of a firewall.
Today RSS has become perhaps the most widely
used XML format on the Web. However, much of
the current Web content is not yet enabled by RSS
feeds. For example, in some big enterprises there are
hundreds or even thousands of Web sites belonging
to different departments, and many of these sites are
equipped with old systems which are rigid and
difficult to update for supporting RSS feed. It would
be cumbersome and cost prohibitive to replace or
reconstruct all these legacy service systems. For
small organizations and non-technical individuals,
they are often lack of the expertise and budget to
update their sites to support RSS feed. Even for the
sites providing RSS feeds, only a small fraction of
suitable content is RSS-enabled.

In order to evangelize RSS application and
leverage the Web’s valuable contents, the
availability of convenient approaches to “RSSify”
suitable Web content has become a stringent
necessity. The point is to translate existing semi-
structured HTML pages into structured RSS feeds.
The simplest way is to observe HTML pages and
code extraction rules manually (Hammer, 1997;
Huck, 1998; Sahuguet, 1999). However, writing

311
Wang J. and Uchino K. (2005).
EFFICIENT RSS FEED GENERATION FROM HTML PAGES.
In Proceedings of the First International Conference on Web Information Systems and Technologies, pages 311-318
DOI: 10.5220/0001230103110318
Copyright c© SciTePress

rules requires a certain knowledge of programming.
In addition, it is time-consuming, error-prone and
not scalable. Therefore, we need more efficient
approaches for RSS feed generation, which should
be automated to the largest extent possible, in order
to allow for large scale extraction tasks even in
presence of changes in the underlying sites.

In this paper, we introduce EHTML2RSS, a
system for converting list-oriented information in
HTML pages to RSS feeds. For the information
items with release time, the system provides an
automatic approach based on time pattern discovery.
Another automatic approach based on repeated tag
pattern discovery is applied to translate the regular
pages without the time pattern. At the same time, a
semi-automatic approach based on labelling is also
available to process the irregular pages. Figure 1
shows the component diagram of EHTML2RSS.

Figure 1: The EHTML2RSS Architecture

2 RSS FEED GENERATION

Since core content of different versions of RSS are
very similar in general structure and consistent in
concept and our work is independent of version,
related RSS tags are presented in RSS 2.0 format in
this paper. At the most basic level, a RSS feed
consists of a channel with its own metadata (e.g.
title, link, description, pubDate, language etc) and a
number of items, each of which has its own metadata
(e.g. title, link, pubDate, category etc). The title in
the RSS channel can be easily extracted from the
content of the title in the HTML head. The url of the
HTML page can be treated as the link in the RSS
channel. When the metadata of the HTML head
contain description or keywords, we can convert
them to contents of the description in the RSS
channel. If the HTML page is static, we can convert

the last-modified time in the HTTP head to pubDate
in RSS channel; otherwise we just set current time
as the pubDate. The language of RSS channel can
be extracted from the content-language or charset
metadata of the HTML head.

The primary contents of the information items in
list-oriented pages are the title, url and release time
which are the counterparts of the title, link and
pubDate in the item of RSS specification. The url of
a news item in HTML pages is in the href attribute
of a <a> tag and the corresponding title usually
resides in texts in or near the <a> tag. Therefore, the
primary task of EHTML2RSS is to locate suitable
<a> tags and texts in HTML pages. However, Web
pages often contain multiple topics and a number of
irrelevant pieces of information from navigation,
decoration, and interaction parts (Gupta, 2003). It is
not easy for the machine to automatically locate and
convert target items since HTML is designed for
presentation instead of content description (Berners-
Lee, 2001). EHML2RSS proposes efficient and
effective approaches to solve this problem based on
different features of list-oriented information in
HTML pages.

2.1 Automatic Approach Based on
Time Pattern Discovery

In news or “what’s new” pages, the news item is
often published with the corresponding release time.
This feature is a prominent and useful clue for
locating and extracting the target news items. Figure
2 shows a company press release page and a
conference news page. Since the formats of date and
time are simple and limited, the release time is easily
identified and we can easily construct a database of
time patterns represented in regular expressions. In
our current experiment, only about 20 time patterns
are required to cover almost all the time and date
formats we have met on Japanese and Chinese sites.
In figure 3, there are some typical date and time
formats.

Firstly, we create a DOM tree for the HTML
page. We use the number to represent the address of
nodes in DOM tree. The address consists of numbers
joined by a ‘.’, starting with ‘0’, and followed by the
order (index of the node in its parent’s children
nodes list) of the nodes in the tree that are ancestors
of current node, starting from the top. As a bit of a
special case, the address of the root is simply ‘0’.

Secondly, we need to extract all text nodes
containing the release time of news items in DOM
tree. By pre-order traversing of the DOM tree, each
text node matching the time pattern in the database
is named a time node TN, and its address and
corresponding time pattern are recorded in an

HTML

Pages

Repetitive
Tag

Pattern
Mining

Time

Pattern
Discovery

Labelling

Semi-automatic Automatic

RSS

Feeds

WEBIST 2005 - WEB INTERFACES AND APPLICATIONS

312

Segment (M, <r, c, n>) {
do {

j ← c;
isAllValuesSame ← checkValueInArray(C[j]);
if (isAllValuesSame == TRUE) {

j++;
}

} until (isAllValuesSame == FALSE);
SectSet = {<rp, j, np>|0 ≤ p ≤ k-1} ← splitByValues(<r, j, n>);
if (in ∀<rp, j, np> ∈ SectSet, np == 1) {
 InfoExtract (M, <r, c, n>, j, TPL);
}
else {
 for each <rp, j, np> in SectSet {
 Segment (M, <rp, j, np>);

 }
}

}

Time

Items

 Figure 2: (a) A press release page (b) A conference news page

address list AL and a time pattern list TPL
respectively. In some cases, there are multiple time
patterns in a Web page, and we can output the time
nodes of all time patterns, or just time nodes
belonging to specific patterns selected by a heuristic
rule, or just time nodes matching patterns designated
by the user. It is dependent on the concrete
application requirement.

Figure 3: Examples of the time formats

Figure 4: Example of Address Array M

Since the syntax structure of a HTML page is

usually consistent with its semantic structure, based
on the DOM tree structure, AL can be segmented
into sections in each of which time nodes keep
spatial locality. Each address in AL can be split into
a 1-dimension array based on the separator ‘.’, and
AL finally is converted to a 2-dimension array M.

Figure 4 shows the M corresponding to the release
time listed in figure 2. We can segment AL by
partitioning M. A triple <r, c, n> defines a section in
M. r and c are the row number and the column
number, respectively, of the top left element in the
section. n is total number of rows contained in the
section. R[i] is said to be ith row of M and
corresponds to a TN in DOM tree, and C[j] represent
the jth column of M. M[i, j] is said to be the element
in the ith row and the jth column of M and also
corresponds to a node in DOM tree. Let the total row
number of M be TR and present full section of M as
<0, 0, TR>. Figure 5 shows the recursive
segmentation algorithm.

Figure 5: Segmentation Algorithm

checkValueInArray(C[j]) checks if all the values

0.1.9.0.0.0.2.0.0.0.0.0.4.0.0.1.0.0.0.0.0.0 12 January 2005
0.1.9.0.0.0.2.0.0.0.0.0.4.0.0.1.0.0.0.2.0.0 11 January 2005
0.1.9.0.0.0.2.0.0.0.0.0.4.0.0.1.0.0.0.4.0.0 11 January 2005
0.1.9.0.0.0.2.0.0.0.0.0.4.0.0.1.0.0.0.6.0.0 10 January 2005
0.1.9.0.0.0.2.0.0.0.0.0.4.0.0.1.0.0.0.8.0.0 10 January 2005

0.1.9.0.0.0.2.0.0.0.0.0.6.0.0.1.0.0.0.0.0.0 13 January 2005
0.1.9.0.0.0.2.0.0.0.0.0.6.0.0.1.0.0.0.2.0.0 5 January 2005

Time

Category

Items

2004-06-28 03:26 PM
20040518 14:50
2004/06/28
13 January 2005
Oct. 1, 2004

2003年 5月 1日

EFFICIENT RSS FEED GENERATION FROM HTML PAGES

313

ExtractInMultiLine(NodeSet) {
 LineSets ← divideByLine (NodeSet);
 for each LineSet in LineSets {
 <TITLE, LINK> ← extractTitleLink(LineSet);
 Push(ResultList, <TITLE, LINK, pubDate>);
 }
}

InfoExtract (M, <r, c, n>, j, TPL) {
 TR ← total row number of M
for (i = r, i< r+n, i++) {
 TN ← getTimeNode(R[i]);
 TBN ← getNode (M[i, j]);
 pubDate ← getTime(TN,TPL[i]);
 NodeSetB ← searchInBorder(TBN);

if (NodeSetB ≠ NULL) {
 isInSameLine ← checkPostion(NodeSetB);
 if (isInSameLine == TRUE) {
 <TITLE, LINK> ← extractTitleLink(NodeSetB);
 Push(ResultList, <TITLE, LINK, pubDate>);
 }
 else (isInSameLine == FALSE) {
 ExtractInMultiLine(NodeSetB);
 }
}
else {
 NodeSetL ← searchInLine(TBN);
 If (NodeSetL ≠ NULL) {
 <TITLE, LINK> ← extractTitleLink (NodeSetL);
 Push(ResultList, < TITLE, LINK, pubDate>);
 }
 else {
 if (r+i ≠ TR-1) {
 NextTBN ← getNode (M[i+1, j]);
 }
 else {
 NextTBN ← detectSearchBorder;
 }
 AreaSet ← searchArea (TBN, NextTBN);
 ExtractInMultiLine(AreaSet);
 }
}

}
 }

in the jth column of the M are same or not. If the
values are not same, splitByValues(<r, j, n>) will
segment the section <r, j, n> into k sub-sections in
each which the values in the jth column are the same.
When each sub-section contains only 1 row, the
segmentation process will be stopped and we can
extract the information items in the current section.

Although HTML pages containing the time
pattern have diverse contents and structures, they
can be classified into two types in terms of the
layout. In the first type, each news item has an
individual release time, and the page showed in
figure 2(a) is a typical example. The page in figure
2(b) is an example of the second type, in which
multiple news items follow every release time. The
algorithm in figure 6 describes the details of
information extraction based on the structure and
layout analysis.

getTimeNode(R[i]) returns the time node TN
corresponding to the ith row of M. getNode(M[i, j])
returns a node TBN corresponding to M[i, j], which
defines the border of current TN. getTime extracts
the time information from TN based on the
corresponding time pattern stored in TPL and output
pubDate in the standard format such as ‘Tue, 18 Jan

Figure 6: Algorithm for information item extraction

Figure 7: Information Extraction in multiple lines

2005 07:27:42 GMT’. searchInBorder searches and
outputs all <a> nodes under TBN to a node set
NodeSetB. checkPostion checks if all the <a> nodes
in a set are presented in the same line in a browser or
not. For the list-oriented information, each item is
usually displayed in an individual line. This is an
important layout feature. The line presentation relies
on the DOM tree structure and specific tags such as
, , <tr>, <p>, <div> and
, which
cause a new line in the display. extractTitleLink uses
heuristic rules to select the href attribute of a suitable
<a> node and a proper title text in the current line
as the title and link in RSS feeds. searchInLine
searches <a> nodes in the line in which TBN is
presented, and outputs to a set NodeSetL.
ExtractInMultiline, described in figure 7, extracts
information items from a <a> node set in which the
nodes are displayed in multiple lines. devideByLine
is used to divide a node set into multiple sub-sets in
which all the nodes are displayed in the same line.
For some pages, like the example in the figure 2(b),
we detect the position of two adjacent TBNs and
search target nodes between them by searchArea.
But for last TBN in M there is no next TBN as the
end border detectSearchBorder is used to decide the
end border of search. In general, the structure of
each section is similar, so we can use the structure in
the last section to deduce the current end border.
Obviously, ResultList can be easily translated to a
RSS format.

After recognition of all the items in a section, we
can decide the complete border of this section. In
some pages, such as the page in figure 2(a), each
section has a category title for summarizing content
in the section, which corresponds to the category in
the RSS item. The category data is usually presented
in a line above and adjacent to the first item of the
section, and contained in continuous text nodes on
the left part in the line. If category is presented in an
image, we can use a similar method to check the alt
attribute of the appropriate node. If
necessary, we can also extract this information
automatically.

The idea of the time pattern discovery can be
easily extended to mine other distinct format
patterns, such as price patterns, which can be used to
extract pairs of the product name and price from
pages in e-commercial sites.

WEBIST 2005 - WEB INTERFACES AND APPLICATIONS

314

Instances
Items

Repeated Tag Pattern:

<a><text>
<text>

2.2 Automatic Approach Based on
Repeated Tag Pattern Discovery

Although the approach based on time pattern
discovery can generate RSS feeds conveniently,
there are still many pages containing no time pattern.
In HTML pages containing list-oriented information,
information items are usually arranged orderly and
compactly in a coherent region, with the same style
of presentation and a similar pattern of HTML
syntax. We call this kind of coherent region
InfoBlock. Information items in an InfoBlock usually
share a repetitive tag pattern and have a same parent
node. Figure 8 shows a repeated tag pattern and its
corresponding instances (occurrence of the pattern)
in a music news page. Therefore mining the repeated
tag patterns in HTML pages provides guidance for
the effective extraction of information items and
generation of RSS feed.

Figure 8: Example of repeated tag pattern in HTML page

Since it is more convenient to discover repetitive

patterns by token stream, we generate tag token
stream by pre-order traversing DOM tree. We also
create a mapping table between each tag token in the
stream and the corresponding node in the DOM tree.
We use the<text> tag to represent a text node. A
Suffix Trie (Gusfield, 1997; Ukkonen, 1995) is
constructed for the tag token stream and applied to
induce repetitive patterns. We apply "non-overlap"
(The occurrences of a repeated pattern cannot
overlap each other) and "left diverse" (The tags at
the left side of each occurrence of a repeated pattern
belong to different tag types.) rules to filter out the
improper patterns and generate suitable candidate

patterns and associated instance sets. For RSS feed
generation, the target items are located in the <a>
and <text> nodes, so the patterns containing no <a>
and <text> will also be removed. Finally more than
90% of the repeated patterns are discarded.

By a method similar to that used to segment AL
in section 2.1, we can partition the instance set of
each repeated tag pattern into sub-sets based on
structure of DOM tree. Here the basic unit is a series
of nodes belonging to a repeated pattern instance
instead of one time node. After the partition, the
instances in each sub-set will present spatial locality.
For the instances in a sub-set, we can find
corresponding nodes in DOM tree, and the root node
of the smallest sub-tree containing all these nodes is
called RST (the root of the smallest sub-tree) node,
which represent a page region, i.e. InfoBlock.

Since sometimes a RST node associated with a
specific information item format may correspond to
multiple instance sets belonging to different patterns
discovered previously, each of which represents the
information item format wholly or partly, we need to
assess and select the best qualified set for identifying
the correct border of information items under the
current RST node. We create a series of criteria such
as the frequency of occurrences, length, regularity
and coverage of the repeated pattern for the
assessment. Regularity of a repeated instance set is
measured by computing the standard deviation of the
interval between two adjacent occurrences. It is
equal to the standard deviation of the intervals
divided by the mean of the intervals. Coverage is
measured by the ratio of the volume of the contents
contained by repeated instance set to the volume of
the all contents under the RST node. Each of the
criteria has a threshold that can be adjusted by the
user. An assessment usually applies one or more of
above criteria, either separately or in combination.
Since the each news item usually is displayed in an
individual line, this feature also can be helpful to
identify and information items and their borders.

The desired part i.e. list-oriented information for
the RSS feed generation, usually occupies notable
regions in a HTML page. Therefore, we can select
the pattern whose instance set contains the
maximum contents or occupies the maximum area in
the HTML page. We also can list candidate patterns
and show their corresponding regions in the page,
and let the user to select the pattern compatible with
his requirements. After selecting the right pattern
and identifying the border of each information item,
it is easy to extract the title and link from target
items due to the simple structure of news items. If
necessary, we also can employ the similar method
used in section 2.1 to extract the category
information based on the border of each InfoBlock.

EFFICIENT RSS FEED GENERATION FROM HTML PAGES

315

2.3 Semi-automatic Approach Based
on visual labelling

No automatic approach can process all list-oriented
HTML pages well, and there are always some
exceptions for a fraction of irregular or complicated
pages during automatic RSS feed generation.
Sometimes a HTML page contains several suitable
regions, but user wants to select only one specific
section to generate the RSS feed. In order to solve
above problems, we design a semi-automatic
labelling GUI tool to process pages with
unsatisfying result in automatic approaches.

As shown in figure 9, the GUI tool contains two
part of labelling interfaces: a DOM tree in the left
side and a browser in the right side. The user can
label RSS metadata on appropriate parts of HTML
page directly and intuitively in the browser interface.
When the user clicking the hyperlinks or selecting
the texts displayed in the browser interface, the tool
can help the user to locate the corresponding nodes
in DOM tree automatically and associate RSS
metadata with the nodes conveniently. The user can
also select and mark the nodes in the DOM tree
interface to define a region in the Web page or
associate the nodes with corresponding RSS
metadata. When a DOM tree node is selected, the
corresponding region in the HTML page can be
identified and displayed at the same time. As we
mentioned before, the information items in HTML
pages, as discerned in their rendered views, often
exhibit spatial locality in the DOM tree, and we also
exploit this feature to optimize the labelling
operations. After we label an item in a list, the tool
can automatically deduce other items in this list
based on the structure of the current item in the
DOM tree. After we finish the labelling on an item
list of first category, the tool can automatically
deduce the lists of other categories similarly. During
the deducing process, the user can simultaneously
adjust labelling process and range according to the
result displayed in a visual interface.

Figure 9: GUI interface for labelling

Figure 10: Example of extraction rule

After labelling the page and verifying the

converting result, we can induce an extraction rule
automatically. The rule is represented in a simple
format similar to XPath and can be reused to process
the new contents of current page in the future.
Figure 10 shows a rule example generated from the
asahi.com.

But for some irregular pages whose semantic
structure are not consistent with the syntax structure,
above automatic deducing process will fail, and we
have to mark the items or lists manually one by one,
however, even in this poor situation the tool is still
useful especially for the non-technical, because the
user just need click mouse instead of writing
complicated extraction programs.

Actually, for the above two automatic feed
generation approaches, it is also possible to induce
the reused rule from extraction result, and reduce the
computing work of the RSS feed generation in the
future.

3 EXPERIMENTS

EHTML2RSS has been tested on a wide range of
Japanese and Chinese Web sites containing the news
or other list-oriented information, including country
wide news paper sites, local news paper sites, TV
sites, portal sites, enterprise sites and i-mode (the
most popular mobile Internet service in Japan) sites
for cellular phones. We measure two performance
metrics: precision and recall.

Firstly, we investigated about 200 Japanese and
Chinese sites and found that about 70% of news sites
and almost all “what’s new” or press release pages
in the enterprise sites contain the release time of
news items. We also checked lots of intranet sites in
our company and found 90% of news information
list are provided with the release time. We selected
217 typical pages with time pattern from various
sites as the representative examples. Following table
1 presents the experimental result based on time
pattern discovery. In table 1 each page in the local
news set is collected from an individual Japanese

[Encoding]
Encoding=EUC-JP
[Paths]
Channel_Date_Path=/HTML[0]/BODY[0]/TABLE[1]/TR[4]/TD[2]
Subject_Object_Path1=/HTML[0]/BODY[0]/TABLE[3]/TR[0]/TD[1]/
TABLE[0]/TR
Subject_Title_Path1=/TH[0]/A[0]
Item_Object_Path1.1=/TD[0]/DIV[0]/UL[0]/LI
Item_Title_And_Link_Path1.1=/A[0]
Item_Date_Path1.1=/
[Date Format]

Channel_Date_Format=yyyy年 MM月 dd日 HH時 mm分
Item_Date_Format=HH:mm

WEBIST 2005 - WEB INTERFACES AND APPLICATIONS

316

local news paper site. Since the time pattern has the
distinct feature for the recognition, the extraction of
the pubDate in target items has very high
performance. The time pattern is a useful and
accurate clue for locating the target item, therefore,
as shown in the table 1 the extraction result of other
data is also very good. The errors in pubDate
extraction occur in only very few conditions, for
example, there are multiple occurrences of current
time pattern in one target item. We can solve this
problem by checking the global structure of the item
list in the future. The category extraction depends on
the partitioning information item list into the
appropriate sections, however, in some irregular
cases the syntax structure of the page is not
consistent with its semantic structure and
consequently the partition will be misled. In some
other cases, the partition result is correct, but there
are some advertisements or recommendations
information between the category title and news
items, and the extraction also fails. Therefore the
extraction result of the category is not as good as
title, link and pubDate.

Table 1: Experimental result for the approach based on
time pattern discovery

Table 2: Experimental result for the approach based on
repeated tag pattern discovery

Furthermore we tested another automatic

approach based on repeated tag pattern discovery.
Since most of news-like pages in big sites we
investigated contain time patterns, we selected test

pages without time pattern from the some small
local news paper sites. We also found that some sites
such as nifty.com (one of the top portal sites in
Japan) have many pages containing list-oriented
information without time pattern, so test pages also
selected from them. Most of i-mode pages have no
time pattern associated with target items, so they are
also good test candidates. Table 2 shows the
corresponding experimental result. Compared with
the time pattern based approach the complexity of
this approach is much bigger and the performance is
also lower due to the complicated repeated tag
pattern mining. In some cases, some irrelevant
InfoBlocks share the same repeated pattern with
target items, so the precision decreases. In the future
we plan to analyze the position of each section of the
HTML page in the browser, which can help us to
locate data-rich regions correctly. Since most of the
data-rich sections are usually displayed in the centre
part of the page, and top, bottom, left and right side
of the page are the noise information such as
navigation, menu or advertisement (Chen, 2003).
We can remove the redundant InfoBlocks containing
the same time pattern according to the display
position. Because i-mode page structure is very
succinct and contains the evident repeated pattern,
the corresponding extraction result is very good.

According to the above experiments, we know
the automatic extraction of category is not easy due
to its irregularity. If the target section is small or
displayed in a special position, the automatic
approaches do not work too. Therefore we need
complement our system with a semi-automatic
interactive tool. Since the tool is based on the
manual labelling, the generation result can be under
control and the result is always correct. The point is
the complexity of the operation which is dependent
on the regularity of the target page. Currently, we
need 4-10 clicks to label common pages, but the
operation highly depends on concrete requirements.

4 RELATED WORK

Since RSS feeds have great potential to help
knowledge workers gather information more
efficiently and present a promising solution for
information share and integration, recently more and
more attentions are paid to approaches for
translating legacy Web contents authored in HTML
into the RSS feeds. There has been some existing
services and tools to “RSSify” HTML pages.
FeedFire.com provides an automatic “Site-To-RSS”
feed creation that allows the user to generate RSS
feed for Web sites. But the FeedFire is only
extracting all hyperlinks and corresponding anchor

Pre. Rec. Pre. Rec. Pre. Rec.

nifty /20 0.9 0.893 0.9 0.893 0.333 0.35

localnews/14 0.929 0.879 0.929 0.879 0.717 0.717

i-mode/20 1 1 1 1 N/A N/A

title link categorysite/page

number

Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec.

asahi/13 0.974 0.946 1 0.974 1 1 1 0.958
yomiuri/10 0.971 0.964 1 0.993 1 1 0.882 0.838
nikkei/9 0.998 0.867 1 0.867 1 1 0.893 0.655
sankei/10 1 1 1 1 1 1 0.778 1
peopledaily /10 1 1 1 1 1 1 1 1
yahoo/10 1 1 1 1 1 1 0.571 0.529
nifty /15 0.976 0.932 0.99 0.946 1 1 0.9 0.82
sina/10 0.989 0.967 0.989 0.967 0.991 0.991 0.864 0.841
fuj itv/3 1 1 1 1 1 1 N/A N/A
phoenixtv/9 1 1 1 1 1 1 1 1
localnews/16 0.998 0.973 1 0.976 1 1 1 0.963
beij ingnews/12 1 1 1 1 1 1 1 1
fuj itsu/15 1 1 1 1 1 1 1 1
nec/15 1 1 1 1 0.982 0.982 1 1
hitachi/10 1 1 1 1 1 1 N/A N/A
canon/5 1 1 1 1 0.989 0.989 N/A N/A
haier/10 1 1 1 1 1 1 1 1
huawei/5 1 1 1 1 1 1 N/A N/A
i-mode/10 1 1 1 1 1 1 N/A N/A
intranet/20 0.963 0.975 0.981 0.972 0.974 0.974 0.863 0.822

categorysite/ page

number

title link pubDate

EFFICIENT RSS FEED GENERATION FROM HTML PAGES

317

texts in the page and does not identify the data-rich
regions and desired information items for RSS
generation. Therefore, the results of the RSS feed
are often full of noises such as links in the regions
for navigation, menu and advertisement. MyRSS.JP
also provides an automatic RSS feed generation
service similar to FeedFire.com, which is based on
monitoring the difference between the current
contents and previous contents of a Web page. The
new hyperlinks emerge in current contents are
extracted with corresponding anchor texts. This
approach can reduce part of the noise, but the results
are not good enough due to complexity of Web
pages. The above two services cannot extract the
release time of the information items. xpath2rss
(Nottingham) is a scraper converting HTML pages
to RSS feeds and uses XPath instead of using regular
expressions. However its converting rule in XPath
has to be coded manually.

RSS feed generation from HTML pages is a kind
of specific information extraction, and there is a
large body of related research on the Web
information extraction. IEPAD (Chang, 2001) uses
repetitive HTML tag pattern to extract the
information items in a page, but it only treats the
HTML page as a sequential text and does not apply
the hierarchical structure of HTML page, which is
useful for refining the identification of information
items. (Mukherjee, 2003; Wang, 2003) also did
work related to repetitive patterns, but the authors
addressed a different topic, discussing how to
segment HTML pages according to the semantic
structure instead of information item extraction.
Compared with existing work, our work focuses on
the efficient information extraction for RSS feed
generation and provides adaptive approaches based
on the distinct features of the list-oriented
information in HTML pages, consequently reaching
a better result.

5 CONCLUSION

In this paper we present EHTML2RSS, an efficient
system for converting legacy HTML pages to RSS
feeds. We use two automatic approaches based on
time pattern and repeated tag pattern discovery, and
a semi-automatic approach, based on interactive
labelling. The experimental results show that our
system is highly efficient and effective for RSS feed
generation. Currently EHTML2RSS has widely been
used for knowledge management in our company.

REFERENCES

Berners-Lee, T., 2001. The Semantic Web: A new form of
Web content that is meaningful to computers will
unleash a revolution of new possibilities. Scientific
American, May 2001 Issue.

Chang, C., 2001. IEPAD: Information Extraction based on
Pattern Discovery, In the 10th International
Conference on World Wide Web, Hong Kong.

Chen, Y., 2003. Detecting Web Page Structure for
Adaptive Viewing on Small Form Factor Devices, In
the 12th International Conference on World Wide Web,
Budapest, Hungary.

Gupta, S., 2003. DOM-based Content Extraction of
HTML Documents, In the 12th International
Conference on World Wide Web, Budapest, Hungary.

Gusfield, D., 1997. Algorithms on Strings, Trees, and
Sequences: Computer Science and Computational
Biology, Cambridge University Press; 1st edition

Hammer, J., 1997. Extracting Semistructured Information
from the Web, In Workshop on the Management of
Semistructured Data, 1997

Hammersley, B., 2003. Content Syndication with RSS,
Oreilly & Associate, Inc. 1st edition.

Huck, G., 1998. Jedi: Extracting and Synthesizing
Information from the Web, In CoopIS1998, 3rd
International Conference of Cooperative Information
Systems. New York.

Miller, R., 2004. Can RSS Relieve Information Overload?
EContent Magazine, March 2004 Issue.

Mukherjee, S., 2003. Automatic Discovery of Semantic
Structures in HTML Documents, In 7th International
Conference on Document Analysis and Recognition,
Edinburgh

Nottingham, M., XPath2rss, http://www.mnot.net/
Sahuguet, A., 1999. Web Ecology: Recycling HTML

pages as XML documents using W4F, In WebDB 99.
Ukkonen, E., 1995. On-line construction of suffix trees.

Algorithmica, 14(3):249-260, Sept. 1995.
Wang, J., 2003. On Intra-page and Inter-page Semantic

Analysis of Web Pages, In the 17th Pacific Asia
Conference on Language, Information and
Computation, Singapore

WEBIST 2005 - WEB INTERFACES AND APPLICATIONS

318

