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Abstract. An adaptive biosignal analysis system for the detection of microsleep 
events is presented. The system was applied to the electroencephalogram and 
electrooculogram recorded of 23 young volunteers while performing monotonic 
overnight driving in our real car driving simulation laboratory. Biosignals 
during clear observable microsleep and non-microsleep events were processed 
and classified. Besides the commonly applied Periodogram method to estimate 
power spectral densities we utilized the recently established method of Delay 
Vector Variance. The obtained feature set was used as input vectors of 
populations of Learning Vector Quantization networks which were evolved by 
Genetic Algorithms. The results were compared with results from best perfor-
ming Support Vector Machines. Fusion of all recorded signals and of both 
types of features led to empirical test errors down to 11.2 %. It is shown that 
the proposed methodology is able to detect, but not to predict immediately 
oncoming events. 

1   Introduction 

The detection of short-time brain states from ongoing biosignals is a challenging task 
not only in the area of clinical applications but also for e.g. future human-machine-
interaction which are in the case of electroencephalogram (EEG) analysis known as 
brain-computer interfaces. As a special type of such an interface one can consider a 
sensor to detect short intrusions of sleep into sustained wakefulness. In case of 
automobile drivers such events are believed to be a major factor in accident 
causation. During the recent years this topic has received broad attention from 
authorities, from the public and as well as from the research community. Most 
research projects in this area, e.g. the EU projects AWAKE (2001–2004) [1] and 
SENSATION (2004–2007) [2], are engaged in developing sensors to monitor driving 
impairment due to fatigue and drowsiness. These impairments arise on a time scale of 
some ten seconds and are typically developing as waxing and waning patterns. Some 
doubts still exist about the feasibility of detecting short sleep intrusions under 
demands of attentiveness in ongoing biosignals on a time scale of, say, one to five 
seconds [8].  
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Many biosignals which are more or less coupled to drowsiness do not fulfil these 
temporal requirements. For example, electrodermal activity and galvanic skin 
resistance are too slow in their dynamics to detect such suddenly occurring events [3]. 
The EEG is a relatively fast and direct functional reflection of mainly cortical and to 
some low degree also of subcortical activities. Therefore, it should be the most 
promising signal for microsleep detection. The electrooculogram (EOG) is a 
measurement of mainly eye and eyelid movements. Their endogenous components 
are coupled to the autonomic nervous system which is affected during drowsiness and 
wake-sleep transitions.  

We supposed that there should be characteristic short-time-stationary patterns in 
both signal sources, reflecting brain microstates associated to microsleep. Using 
machine learning algorithms it should be possible to detect these patterns. It is a priori 
not clear how stable and how affected by disturbances they are. 

2   Experiments 

Twenty-three young adults started driving in our lab (Fig. 1) at 1:00 a.m. after a day 
of normal activity and of at least 16 hours of incessant wakefulness which was 
checked by wrist actometry. All in all they had to complete seven driving sessions 
lasting 40 min, each followed by a 10 min period of responding to sleepiness 
questionnaires and tests and a 10 min break. Experiments ended at 8:00 a.m.. Driving 
tasks were chosen intentionally monotonous to provoke drowsiness and microsleep 
events (MSE). The latter are defined as short intrusions of sleep into wakefulness 
under demands of attention. They were detected during driving by the experimenter 
who observed subjects left eye region, her/his face, and driving scene utilizing three 
infrared video cameras. Typical signs of MSE are e.g. prolonged eyelid closures, 
nodding-off, driving incidents and drift-out-of-lane accidents. 

 
Fig. 1. Real car driving simulation laboratory 
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This step of online scoring is critically, because there are no unique signs of MSE, 
and their exact beginning is sometimes hardly to define. Therefore, all events were 
checked offline and were corrected by an independent expert. Unclear MSE 
characterized by e.g. drifting of eye gaze, short phases with extremely small eyelid 
gap, inertia of eyelid opening movements or slow head down movements were 
excluded from further analysis. Our intention was finding out a detection system for 
clear MSE versus clear Non-MSE assuming that such a system can not only detect the 
MSE recognized by human experts, but would also offer a possibility to detect 
unclear MSE cases which are not recognizable by experts. 

Non-MSE were selected at all times outside of clear and of unclear MSE.  
Five different types of Non-MSE were selected to show their influence on detection 
performance: 
− Non-MSE1: of first driving session (1:00 until 1:40 a.m.) only 
− Non-MSE2: of first driving session and only during eyelid closures 
− Non-MSE3: of first five minutes of each driving session 
− Non-MSE4: of periods between MSE where subject is drowsy 
− Non-MSE5: like Non-MSE4 and only during eyelid closures 

An explanation for the need of five different types of Non-MSE is given later. All 
in all we have found 3,573 clear MSE and picked out the same amount of Non-MSE 
for further analysis in order to have balanced data sets.  

Five channels of EEG (C3, Cz, C4, O1, O2) and two of EOG (vertical, horizontal) 
were recorded using a sampling rate of 128 sec-1 and binocular eyetracking signals 
(two-dimensional eye gaze, pupil size) using a rate of 250 sec-1, but analysis of the 
latter are not reported here. 

3   Signal Analysis 

Segments of all electrophysiological signals were extracted with respect to the 
observed temporal starting points of MSE / Non-MSE using two free parameters, the 
segment length and the offset between first sample of segment and starting point of 
an event. In these segments linear trend was removed and the power spectral densities 
(PSD) were estimated by Periodogram method applying a Hanning window. 
Extraction of PSD features was followed by a feature reduction step of simple 
averaging of PSD values in spectral bands. Here, three further free parameters are to 
be optimized: lower and upper cut-off frequency and the width of bands. Finally, 
PSD values were logarithmically transformed.  

To optimize empirically all free parameters we employed Optimized Learning 
Vector Quantization (OLVQ1) as a robust, very adaptive and rapidly converging 
classification method [14]. OLVQ1 has at least one further free parameter to be 
optimized, the number of prototype vectors. During parameter optimization the 
minimal test error was searched following the cross-validation paradigm of “multiple-
hold-out”. Only when utilizing Support Vector Machines (SVM) the paradigm of 
“leave-one-out” was applied, which is an almost unbiased estimator of the true 
classification error [4]. Disadvantageously, this method is computationally much  
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more expensive than “multiple-hold-out”; but only in case of SVM, an efficient 
implementation exists [13]. 
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Fig. 2. Mean empirical test errors vs. segment offset parameter. OLVQ1 was utilized for 
classification of clear MSE vs. five different types of Non-MSE (see text). The length of signal 
segments was 8 sec. 

Varying free parameters led in case of segment offset to a relative steep error 
function (Fig. 2). Optimal offset values of about -3 sec together with optimal segment 
length of 8 sec mean that classification works best when 3 sec of EEG / EOG 
immediately before MSE and 5 sec during ongoing MSE are processed. Classification 
of MSE versus Non-MSE1 resulted best because it is easiest to discriminate between 
MSE, which are always ongoing under a high level of fatigue, and Non-MSE of the 
first driving session, which are at relatively low level of fatigue. Classification of 
MSE versus Non-MSE3 was more difficult because a lot of segments under higher 
levels of fatigue are now to be classified against MSE. Applying segments of Non-
MSE5 was much more difficult because segments of both classes, MSE and Non-
MSE5, are of same highest level of fatigue. One could argue that mostly MSE are 
starting by eyelid closures and, therefore, we did perhaps nothing else than a simple 
detection of eyelid closures. But this was clearly not the case. Eyelid closures of MSE 
versus eyelid closures of Non-MSE (type 4) were discriminated with nearly the same 
error function. Only the first mentioned case, MSE against Non-MSE of the first 
session, was slightly more difficult to discriminate if both classes consist of eyelid 
closures (type 2). 

Next, we investigated if spectral domain features represented by PSD can be 
interchanged or complemented by state space features represented by the recently 
introduced method of delay vector variances (DVV) [5, 6]. The motivation is as 
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follows: PSD estimation is a linear method which can be conveniently performed 
utilizing the Periodogram and which has been shown to perform particularly well in 
applications related to EEG signal processing [7-9]. But PSD estimation is based 
solely on second order statistics. In contrast, the DVV approach is based on local 
predictability in state space. This approach can show both qualitatively and 
quantitatively whether the linear, nonlinear, deterministic or stochastic nature of a 
signal has undergone a modality change or not. Notice that the estimation of 
nonlinearity by DVV is intimately related to non-Gaussianity, which cannot be 
estimated by PSD. This way, it should be possible that DVV contributes to the 
discrimination ability of different classifiers. 

 

 

Fig. 3. Mean and standard deviation of test errors for different single electrophysiological 
signals. A comparison of two different feature types and three classification methods 

In addition to this question, it is important to know if single channel EEG or EOG 
contains enough discriminatory information and which electrode location could be 
most successful. Empirical results suggest that the vertical EOG signal is very 
important (Fig. 3) leading to the assumption that modifications in eyelid movements 
have high importance, which is in accordance to results of other authors [10]. 
Relatively low errors were also achievable in central and occipital electrode locations; 
both mastoid electrodes (A1 and A2), which are considered as least electrically active 
sites, showed lowest performance (highest errors), as expected. Similarity in 
performance between symmetrically located electrodes (A1-A2, C3-C4, O1-O2) 
meets also expectancy and supports reliance on the chosen analysis system. 

DVV methodology showed low performance (Fig. 3) despite additional effort of 
optimizing free parameters of DVV, e.g. embedded dimension and detail level. This 
is surprisingly because DVV was successfully applied to sleep EEG [6]. Handling of 
microsleep EEG and EEG in drowsy states and, moreover, of shorter segments seems 
to be another challenge. PSD performed much better and performance was only 
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slightly improved by fusion of DVV+PSD. A further slight improvement was 
achievable for each single signal if a scaling factor is assigned to each input variable 
of the OLVQ1-network and if these factors are adapted by genetic algorithms (GA) 
utilizing training errors as fitness function (Fig. 4). High values of scaling factors 
indicate high relevances of the assigned input variables. This allows extracting 
knowledge after succeeding training. We give no further insight into both methods 
(DVV, GA) for reasons of their limited performance and because of limited space. 
SVM outperformed both other classification methods, OLVQ1 and OLVQ1+GA, but 
only, if Gaussian kernel functions were utilized and if the regularization parameter 
and the kernel parameter were optimized previously. 

 

 

Fig. 4. Microsleep detection system based on feature fusion and on combining OLVQ1 
networks and Genetic Algorithms 

Finally, we tested if a fusion of features coming from both different signal sources 
(EEG, EOG) and feature extraction methods (PSD, DVV) will improve classification 
performance (Fig. 5). For comparison, the best two single channels are drawn against 
fusion examples. Fusing features of both best performing single channels, i.e. Cz-
EEG and vertical EOG, resulted in higher performance than fusion of all signals of 
one signal type, i.e. all EEG or all EOG signals. But, the best result was achieved by 
fusion of all EEG and of all EOG signals and additionally, by utilization of SVM. For 
this case empirical test errors are down to 11.2 %. It is not shown in fig. 5, but results 
were nearly equal between PSD+DVV and only PSD features when utilizing SVM; 
related performance decrements are only about 0.8 %. 

4   Conclusions 

Machine learning methods are capable to detect microsleep events in ongoing EOG 
and EEG signals. Statistically validated test errors of approximately 12 % were 
achieved for the discrimination between MSE and NMSE. This result should be a 
step on the long way to establish a reference measure needed for development of 
video-based drowsiness warning systems [1, 2].  It turned out that second-order statis-
tics performed by PSD estimation seems to deliver efficient features. The 
improvements in the test error rates adding DVV features are relatively small.  
Therefore, modality changes in the signals concerning their predictability and 
linearity mainly detected by DVV method seem less important. 
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There is an optimum of detection, but only in a relatively small “time window” 
which is nearly centred on starting point of the critical events. Future work has to find 
out methods to broaden this window. This would open up the development of 
predicting systems. Until now, a prediction would be too erroneous. In fig. 2 the pure 
prediction case is at offset of -8 sec because we have segment length of 8 sec. 
Immediately at segment endings we can perform predictions; but, the errors would be 
about 30% assuming that the most difficult tasks are vital for practical applications, 
i.e. MSE versus Non-MSE5 and MSE versus Non-MSE4. Only for these cases, the 
real sensory task is required, where brain microstates of short sleep intrusions are to 
be detected against drowsy but still attentive states. 

 

 

Fig. 5. Mean and standard deviation of test errors before and after feature fusion of different 
biosignals. A comparison of two different feature types and three classification methods 

Fusion of features of all signals has turned out to be the best choice. The number 
of fused signals multiplies the dimensionality of feature space after fusion compared 
to the single signal case. This notwithstanding, the performance was improved giving 
further indications that Support Vector Machines and prototype-vector based 
classification methods in contrast to other methods do not have the problem of 
learning discriminant functions in very high-dimensional feature spaces, which is also 
known as “curse of dimensionality” [4].  

Until now, not much is known about intra-individual variability. Experimental 
material of much more than of one night of driving is needed to gain insight into this 
topic. Concerning the inter-individual variability, large differences in signal 
characteristics during microsleep and during drowsiness has been observed [11, 12]. 
As a consequence, detection performance is relatively low when empirical 
classification errors of examples of one subject were calculated excluding all 
examples of this subject from training, previously. A greater variety of feature 
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extraction methods may possibly overcome these limitations and should be likely to 
improve and stabilize the discrimination of MSE. 
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