Hazard: A Framework Towards Connecting Artificial
Intelligence and Robotics

Peter J. Andersson

Department of Computer and Information Science, Link6ping university, SE-58334 Linkdping

Abstract. The gaming industry has started to look for solutions in the Atrtificial
intelligence (Al) research community and work has begun with common stan-
dards for integration. At the same time, few robotic systems in development use
already developed Al frameworks and technologies. In this article, we present
the development and evaluation of the Hazard framework that has been used to
rapidly create simulations for development of cognitive systems. Implementa-
tions includes for example a dialogue system that transparently can connect to
either an Unmanned Aerial Vehicle (UAV) or a simulated counterpart. Hazard is
found suitable for developing simulations supporting high-level Al development
and we identify and propose a solution to the factors that make the framework
unsuitable for lower level robotic specific tasks such as event/chronicle recogni-
tion.

1 Introduction

When developing or testing techniques for artificial intelligence, it is common to use a
simulation. The simulation should as completely as possible simulate the environment
that the Al will encounter when deployed live. Sometimes, it is the only environment
in which the Al will be deployed (as is the case with computer games). As there exist
many more types of environments than Al techniques, there is a heed to reuse existing
implementations of Al techniques with new environments. Al frameworks often come
bundled with an environment to test the Al technique against and the environments are
often not as easy to modify as a developer would want, nor is it easy to evaluate the
framework in new environments without time-consuming development of middleware.
In the case of robotics, there is an extended development period to create low-level con-
trol programs. The Al then developed is often tailored to the low-level control programs
and it is hard, if at all possible to reuse.

The Robocup initiative [1] uses both actual robotic hardware and simulation in com-
petition. Yet, there exists no common interface for using simulation league Als with ro-
botic league robots. This can mean that the simulation interface is unintuitive for actual
robotics, or that Als developed with the simulation are not usable with actual robots. In
either case it is a problem worth investigating.

The WITAS Unmanned Aerial Vehicle project [2] uses several simulators in their
research, both for hardware-in-the-loop simulation of the helicopter hardware and for
development of dialogue interaction with an actual UAV. A middleware translating ac-
tions and events from WITAS protocol to other protocols would allow experimentation

J. Andersson1 P. (2005).

Hazard: A Framework Towards Connecting Artificial Intelligence and Robotics.

In Proceedings of the 1st International Workshop on Multi-Agent Robotic Systems, pages 171-176
DOI: 10.5220/0001193901710176

Copyright © SciTePress



with for example SOAR [3] as a high-level decision systemwdiuld also allow the
application of developed agent architecture to other enwirents and problems.

By creating a middleware framework that can mediate betwewrevel drivers
and high-level decision system, we hope to be able to atlevlse problems for Al
researchers presented above and inspire researchersiartiétial intelligence and
robotics to reuse existing implementations. Roboticsaeders can reuse Al tech-
niques that exist and Al researchers can test their Al imptgation in off-the-shelf
simulators before building an expensive robotic systerwdtld also allow separate
research groups to work with low-level control and higheledecision issues.

As a step towards proposing an interface and middlewaresfomecting Al and ro-
botics, we have designed and implemented a framework faidping agents and envi-
ronments based on action theory where we focus on the distincetween agent and
environment. The design iterations and various implentems with the framework
have allowed us to gain valuable experience in designinig iptérface and framework.
The work is presented here together with an evaluation ddtiiemgths, weaknesses and
limitations.

2 Iterations of Design and Implementation

The strength of a design proposal may be measured in ternts dévelopment his-
tory. Designs that have undergone several iterations udiffierent conditions are much
more mature than designs without practical grounding. Taeartd framework was de-
rived from the Haphazard Role-Playing Game project andedfthrough several iter-
ations that are presented below.

2.1 Haphazard - An Online Role-Playing Game

The Haphazard Role-Playing Game [4] started as an opemequoject for creating
a simple online role-playing game with focus on Al implenainns. It was from this
game project that the first version of Hazard was extractéd. flamework was then
redesigned and Haphazard was reimplemented to use the ameviork. Haphazard
has the most complex environment of all implementation®wgate, but only rudimen-
tary Al. The Haphazard project was the most prominent ptojden designing the
framework for environments.

Environment
The environment in Haphazard is a grid-based model usieg tilr visualisation.
Objects in the world are either static or dynamic. Staticeoty include houses,
trees and other scenery. Dynamic objects are the objedtsdhabe manipulated
by the player.

Agents
Agents are either controlled by Al or by a player through gbieal user interface
with the actions move, equip, carry, drop or use.



2.2 Simulator for Evaluating the Subsumption Architecture

An implementation of the subsumption architecture [5] waoiduced to the agent part
of the framework as part of the work towards evaluation tHesemption architecture

for use in obstacle avoidance systems for cars [6]. Thisemghtation allowed us to
evaluate the agent part of the framework and enhance it. hsusnption architec-

ture was integrated with an editor which allowed the usemtange the subsumption
network during simulation runs to experiment with new bebiass.

Environment
The subsumption agent was used in two environments. Thédectire was devel-
oped and tested in the Haphazard environment, but maintyinsetraffic simula-
tor. The traffic simulator used a straight road without a@jistobstacles.

Agents
The user controlled a car with acceleration and turning,atent modified the
user’s input with a subsumption network before it was aeti&b avoid obstacles.

2.3 Simulator for Dialogue System Development Support

Within the WITAS Unmanned Aerial Vehicle (UAV) project [2hé Hazard framework
was used in implementing a simulator that supports devetopiof a dialogue system
for command and control of one or more UAVS.

Environment
The environment consists of a three-dimensional map atintaroads and build-
ings. Buildings are visualized as polygons and have a he#ghbuildings also
have a name, color, material and one or more windows whictbeasbserved by
Sensors.
Agents
There exist two types of agents:
UAV
The UAV agent consists of a socket interface which can receemmands
from both a dialogue system developed within the WITAS propnd the
COMETS Multi-Level Executive developed within the COMET®ject [7].
The simulator executes these commands and report theirgagrhe agent
has a camera sensor and can detect cars and buildings. Theds™éke off,
land, hover, fly around, follow cars and follow roads to acpbish it's mis-
sion. Itis an interactive agent that can build plans anawolthe commands of
a user.
Car
Cars drive along roads with a set speed.

The simulation is transparent and can be fully or partly stilied by a connection
to a real world UAV. The visualization is 2D, but current waslextending both camera
view and world view to three dimensions.



3 Evaluation

The evaluation of the framework is based on our own expegiémaeveloping sim-
ulations. It is focused on development and how suitable taméwork is for use as
middleware and as a framework for development of high-lewval low-level Al for
robotic applications.

3.1 Strengths

Rapid development
The differentimplementations have shown that the framkwayidly gives a work-
ing system. The only comparison that has been done on deweldgime is with
the replacement of the Simulator for Dialogue System Dgaknt Support. The
implementation using the Hazard framework cut the devetagrtime radically.
Scalability
The framework is very scalable in the form of developing ngerds or objects for
an environment. It has not been tested how scalable it igyardeto the number of
existing objects/agents in an environment.

3.2 Weaknesses

Agents are tightly linked to the environment
Since the framework was extracted from an integrated sydtenagents are tightly
linked to the environment and can have complete knowledgkeeofvorld without
using sensors. The agent module should be completely segerm the environ-
ment.

Agent to agent interaction
Since the design does not distinguish between success#aiages for an action
and sensor data, it is hard to develop agent to agent ini@nact solution for this
problem could be to remove the success/fail notion from thérenment side of
the action and let the agent side sensor interpreter dedida an action has been
successful or failed. This solution would also allow reshénto event/chronicle
recognition.

New developers
The system is well documented, but lacks examples and &lgofThis makes it
harder for new developers to use the framework.

3.3 Limitations

Mid-level functionality
Since the framework only supports high-level actions anmbigusing on the part
of sensor data, mid-level functionality is not intuitivedyipported. By mid-level
functionality is meant functionality such as event/chotmirecognition, symbol
grounding and similar robotic tasks. This is a disadvanitiipe system is used for
developing Al techniques for robotic systems since a d@ezloan easily “cheat”
with constructed events instead of having to identify theomfsensor data.



Pre-defined set of actions
Since the actions are pre-defined in the environment, bdthregard to execution
and evaluation of the execution (success/fail), an agemtatdearn new actions or
interpret the result in new ways. Also, since the actionsteaof different level of
abstraction, it is hard to combine actions concurrently.

4 Related Work

Currently, the International Game Developers AssociatiGDA) is pushing towards
Al standard interfaces for computer games and is in the geoogpublishing the first
drafts of a proposed standard. These standards are gear@disoenabling game Al
developers to reuse existing Al middleware and to concentnahigher level Al tasks.
IGDA is working on interfaces for common Al tasks and has ently working groups
on interface standards for world interfacing, path plagnsteering, finite state ma-
chines, rule-based systems and goal-oriented actioniplgnifhe work presented here
is closest to the work on world interfacing, but since theftdreas not available at the
time of writing, it was impossible to compare.

The Testbed for Integrating and Evaluating Learning Tegqhes (TIELT) [8] is a
free software tool that can be used to integrate Al systenis(@ig., real-time) gaming
simulators, and to evaluate how well those systems learmel@cted simulation tasks.
TIELT is used as a configurable middleware between gaminglabors and learning
systems and can probably be used as a middleware betweenalgamgronments and
agent frameworks with some modification. The middlewaréosbphy of TIELT dif-
fers from our implementation, TIELT sits as a black box betwenvironment and agent
while Hazard is only meant as a transparent interface witaoy real functionality, ex-
cept if the framework is used on either side. The black boxtionality would hide
event/chronicle recognition, symbol grounding, etc. airobotic system. This means
that special care has to be taken if the system is to be ushdetiial robotics.

The System for Parallel Agent Discrete Event Simulator (BE8) [9] is a simu-
lation framework with approximately the same concept astaeard framework with
regards to the separation between agents and environritefotsuses on repeatability
of simulations and uses a concept of Software-in-the-L&86ADES is a discrete event
simulator and uses a sense-think-act loop for the agentshwimnits its deliberation
time to the time between receiving events until it has detidbat to do. This limita-
tion is minimized by allowing agents to tell the simulatidrat it wants to receive time
notificationwhich works as a sense event. Our framework on the other reriises
repeatability and agent timesharing to obtain a continuasgnchronous time model
which is more inline with robotic architectures than a diemodel.

There is also research on modules and frameworks that caseloeiu conjunction
with a set of interfaces for cognitive systems, in partic@sKnow [10].

5 Conclusions and Future Work

The iterative development of framework and interfaces Imabked us to gain valuable
experience in designing interfaces that are adequate farrbbotic systems and sim-



ulated environments without sacrificing detail or ease ef @ur goal is to develop an
architecture for connecting Al and robotics with the follog characteristics:

— Rapid environment/agent development

— Able to reuse both existing agents and environments

— Capable of acting as middleware between existing framesvork
— Usable in research of both simulations and actual robostesys

Hazard is a mature system which has undergone several desiggions. It allows
rapid development and reuse of agents and environmentsthios interfaces between
agent and environment and can be used as middleware betwiséngframeworks.
But Hazard has been found unsuitable for development of Alraulations for actual
robotic systems due to its inherent limitation in event gggtion and actuator control.
To be usable in a robotic Al implementation, the interfacescto be layered to allow
both for high-level Al frameworks and middle-level eventlaihronical recognition on
the agent side.

Currently, work has been started on a new generation offaaes and framework.
This work is called CAIRo (Connecting Al to Robotics) and eslibes the issues found
with the development of Hazard.

References

1. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.. R6hp: The robot world cup
initiative. In Johnson, W.L., Hayes-Roth, B., eds.: Proceedingth®fFirst International
Conference on Autonomous Agents (Agents’97), New York, ACMsB(@997) 340-347

2. Doherty, P., Granlund, G., Krzysztof, G., Kuchcinski, K., Samdll, E., Nordberg, K., Skar-
man, E., Wiklund, J.: The witas unmanned aerial vehicle project. IPAIED, Berlin,
Germany (2000)

3. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An architectorgyeneral intelligence.
Artificial Intelligence33(1987) 1-64

4. Andersson, P.J., Beskid, L.C.: The haphazard game projiet/taphazard.sf.net (2003)

5. Brooks, R.A.: Arobust layered control system for a mobile robt¢mo 864, MIT Al Lab
(1985)

6. Woltjer, R., McGee, K.: Subsumption architecture as a frameworetdoess human machine
function allocation. Presented at SimSafe, http://130.243.99.7/pplz@pt¥dmsafe/dok/
simsafe05.pdf (2004)

7. Ollero, A., Hommel, G., Gancet, J., Gutierrez, L.G., Viegas, Drs&én, P.E., Gonzélez, M.:
Comets: A multiple heterogeneous uav system. In: Proceedings of @4elE&E Interna-
tional Workshop on Safety, Security and Rescue Robotics (SSRR,2B0dh (Germany)
(2004)

8. Aha, D., Molineaux, M.: Integrating learning in interactive gaming datars. In Fu, D.,
Orkin, J., eds.: Challenges of Game Al: Proceedings of the AAAW&kshop (Technical
Report WS-04-04), San Jose, CA, AAAI Press (2004)

9. Riley, P.F., Riley, G.F.: Spades - a distributed agent simulation emaiat with software-
in-the-loop execution. In Chick, S., Sanchez, P.J., Ferrin, D.riglrD., eds.: Proceedings
of the 2003 Winter Simulation Conference. (2003) 817-825

10. Heinz, F., Doherty, P.: Dyknow: An approach to middleware foovidedge processing.
Journal of Intelligent and Fuzzy Systert¥s(2004)



