
Hazard: A Framework Towards Connecting Artificial
Intelligence and Robotics

Peter J. Andersson1

Department of Computer and Information Science, Linköping university, SE-58334 Linköping

Abstract. The gaming industry has started to look for solutions in the Artificial
intelligence (AI) research community and work has begun with common stan-
dards for integration. At the same time, few robotic systems in development use
already developed AI frameworks and technologies. In this article, we present
the development and evaluation of the Hazard framework that has been used to
rapidly create simulations for development of cognitive systems. Implementa-
tions includes for example a dialogue system that transparently can connect to
either an Unmanned Aerial Vehicle (UAV) or a simulated counterpart. Hazard is
found suitable for developing simulations supporting high-level AI development
and we identify and propose a solution to the factors that make the framework
unsuitable for lower level robotic specific tasks such as event/chronicle recogni-
tion.

1 Introduction

When developing or testing techniques for artificial intelligence, it is common to use a
simulation. The simulation should as completely as possible simulate the environment
that the AI will encounter when deployed live. Sometimes, it is the only environment
in which the AI will be deployed (as is the case with computer games). As there exist
many more types of environments than AI techniques, there is a need to reuse existing
implementations of AI techniques with new environments. AI frameworks often come
bundled with an environment to test the AI technique against and the environments are
often not as easy to modify as a developer would want, nor is it easy to evaluate the
framework in new environments without time-consuming development of middleware.
In the case of robotics, there is an extended development period to create low-level con-
trol programs. The AI then developed is often tailored to the low-level control programs
and it is hard, if at all possible to reuse.

The Robocup initiative [1] uses both actual robotic hardware and simulation in com-
petition. Yet, there exists no common interface for using simulation league AIs with ro-
botic league robots. This can mean that the simulation interface is unintuitive for actual
robotics, or that AIs developed with the simulation are not usable with actual robots. In
either case it is a problem worth investigating.

The WITAS Unmanned Aerial Vehicle project [2] uses several simulators in their
research, both for hardware-in-the-loop simulation of the helicopter hardware and for
development of dialogue interaction with an actual UAV. A middleware translating ac-
tions and events from WITAS protocol to other protocols would allow experimentation

J. Andersson1 P. (2005).
Hazard: A Framework Towards Connecting Artificial Intelligence and Robotics.
In Proceedings of the 1st International Workshop on Multi-Agent Robotic Systems, pages 171-176
DOI: 10.5220/0001193901710176
Copyright c© SciTePress



with for example SOAR [3] as a high-level decision system. Itwould also allow the
application of developed agent architecture to other environments and problems.

By creating a middleware framework that can mediate betweenlow-level drivers
and high-level decision system, we hope to be able to alleviate the problems for AI
researchers presented above and inspire researchers in both artificial intelligence and
robotics to reuse existing implementations. Robotics researchers can reuse AI tech-
niques that exist and AI researchers can test their AI implementation in off-the-shelf
simulators before building an expensive robotic system. Itwould also allow separate
research groups to work with low-level control and high-level decision issues.

As a step towards proposing an interface and middleware for connecting AI and ro-
botics, we have designed and implemented a framework for developing agents and envi-
ronments based on action theory where we focus on the distinction between agent and
environment. The design iterations and various implementations with the framework
have allowed us to gain valuable experience in designing both interface and framework.
The work is presented here together with an evaluation of thestrengths, weaknesses and
limitations.

2 Iterations of Design and Implementation

The strength of a design proposal may be measured in terms of its development his-
tory. Designs that have undergone several iterations underdifferent conditions are much
more mature than designs without practical grounding. The Hazard framework was de-
rived from the Haphazard Role-Playing Game project and refined through several iter-
ations that are presented below.

2.1 Haphazard - An Online Role-Playing Game

The Haphazard Role-Playing Game [4] started as an open-source project for creating
a simple online role-playing game with focus on AI implementations. It was from this
game project that the first version of Hazard was extracted. The framework was then
redesigned and Haphazard was reimplemented to use the new framework. Haphazard
has the most complex environment of all implementations up to date, but only rudimen-
tary AI. The Haphazard project was the most prominent project when designing the
framework for environments.

Environment
The environment in Haphazard is a grid-based model using tiles for visualisation.
Objects in the world are either static or dynamic. Static objects include houses,
trees and other scenery. Dynamic objects are the objects that can be manipulated
by the player.

Agents
Agents are either controlled by AI or by a player through a graphical user interface
with the actions move, equip, carry, drop or use.



2.2 Simulator for Evaluating the Subsumption Architecture

An implementation of the subsumption architecture [5] was introduced to the agent part
of the framework as part of the work towards evaluation the subsumption architecture
for use in obstacle avoidance systems for cars [6]. This implementation allowed us to
evaluate the agent part of the framework and enhance it. The subsumption architec-
ture was integrated with an editor which allowed the user to change the subsumption
network during simulation runs to experiment with new behaviours.

Environment
The subsumption agent was used in two environments. The architecture was devel-
oped and tested in the Haphazard environment, but mainly used in a traffic simula-
tor. The traffic simulator used a straight road without any static obstacles.

Agents
The user controlled a car with acceleration and turning, theagent modified the
user’s input with a subsumption network before it was actuated to avoid obstacles.

2.3 Simulator for Dialogue System Development Support

Within the WITAS Unmanned Aerial Vehicle (UAV) project [2], the Hazard framework
was used in implementing a simulator that supports development of a dialogue system
for command and control of one or more UAVs.

Environment
The environment consists of a three-dimensional map containing roads and build-
ings. Buildings are visualized as polygons and have a height. All buildings also
have a name, color, material and one or more windows which canbe observed by
sensors.

Agents
There exist two types of agents:
UAV

The UAV agent consists of a socket interface which can receive commands
from both a dialogue system developed within the WITAS project and the
COMETS Multi-Level Executive developed within the COMETS project [7].
The simulator executes these commands and report their progress. The agent
has a camera sensor and can detect cars and buildings. The UAVcan take off,
land, hover, fly around, follow cars and follow roads to accomplish it’s mis-
sion. It is an interactive agent that can build plans and follow the commands of
a user.

Car
Cars drive along roads with a set speed.

The simulation is transparent and can be fully or partly substituted by a connection
to a real world UAV. The visualization is 2D, but current workis extending both camera
view and world view to three dimensions.



3 Evaluation

The evaluation of the framework is based on our own experience in developing sim-
ulations. It is focused on development and how suitable the framework is for use as
middleware and as a framework for development of high-leveland low-level AI for
robotic applications.

3.1 Strengths

Rapid development
The different implementations have shown that the framework rapidly gives a work-
ing system. The only comparison that has been done on development time is with
the replacement of the Simulator for Dialogue System Development Support. The
implementation using the Hazard framework cut the development time radically.

Scalability
The framework is very scalable in the form of developing new agents or objects for
an environment. It has not been tested how scalable it is in regard to the number of
existing objects/agents in an environment.

3.2 Weaknesses

Agents are tightly linked to the environment
Since the framework was extracted from an integrated system, the agents are tightly
linked to the environment and can have complete knowledge ofthe world without
using sensors. The agent module should be completely separate from the environ-
ment.

Agent to agent interaction
Since the design does not distinguish between success/failmessages for an action
and sensor data, it is hard to develop agent to agent interactions. A solution for this
problem could be to remove the success/fail notion from the environment side of
the action and let the agent side sensor interpreter decide when an action has been
successful or failed. This solution would also allow research into event/chronicle
recognition.

New developers
The system is well documented, but lacks examples and tutorials. This makes it
harder for new developers to use the framework.

3.3 Limitations

Mid-level functionality
Since the framework only supports high-level actions and isconfusing on the part
of sensor data, mid-level functionality is not intuitivelysupported. By mid-level
functionality is meant functionality such as event/chronicle recognition, symbol
grounding and similar robotic tasks. This is a disadvantageif the system is used for
developing AI techniques for robotic systems since a developer can easily “cheat”
with constructed events instead of having to identify them from sensor data.



Pre-defined set of actions
Since the actions are pre-defined in the environment, both with regard to execution
and evaluation of the execution (success/fail), an agent cannot learn new actions or
interpret the result in new ways. Also, since the actions canbe of different level of
abstraction, it is hard to combine actions concurrently.

4 Related Work

Currently, the International Game Developers Association(IGDA) is pushing towards
AI standard interfaces for computer games and is in the process of publishing the first
drafts of a proposed standard. These standards are geared towards enabling game AI
developers to reuse existing AI middleware and to concentrate on higher level AI tasks.
IGDA is working on interfaces for common AI tasks and has currently working groups
on interface standards for world interfacing, path planning, steering, finite state ma-
chines, rule-based systems and goal-oriented action planning. The work presented here
is closest to the work on world interfacing, but since the draft was not available at the
time of writing, it was impossible to compare.

The Testbed for Integrating and Evaluating Learning Techniques (TIELT) [8] is a
free software tool that can be used to integrate AI systems with (e.g., real-time) gaming
simulators, and to evaluate how well those systems learn on selected simulation tasks.
TIELT is used as a configurable middleware between gaming simulators and learning
systems and can probably be used as a middleware between general environments and
agent frameworks with some modification. The middleware philosophy of TIELT dif-
fers from our implementation, TIELT sits as a black box between environment and agent
while Hazard is only meant as a transparent interface without any real functionality, ex-
cept if the framework is used on either side. The black box functionality would hide
event/chronicle recognition, symbol grounding, etc. . . ina robotic system. This means
that special care has to be taken if the system is to be used with actual robotics.

The System for Parallel Agent Discrete Event Simulator (SPADES) [9] is a simu-
lation framework with approximately the same concept as theHazard framework with
regards to the separation between agents and environments.It focuses on repeatability
of simulations and uses a concept of Software-in-the-Loop.SPADES is a discrete event
simulator and uses a sense-think-act loop for the agents which limits its deliberation
time to the time between receiving events until it has decided what to do. This limita-
tion is minimized by allowing agents to tell the simulation that it wants to receive atime
notificationwhich works as a sense event. Our framework on the other hand sacrifices
repeatability and agent timesharing to obtain a continuous, asynchronous time model
which is more inline with robotic architectures than a discrete model.

There is also research on modules and frameworks that can be used in conjunction
with a set of interfaces for cognitive systems, in particular DyKnow [10].

5 Conclusions and Future Work

The iterative development of framework and interfaces has enabled us to gain valuable
experience in designing interfaces that are adequate for both robotic systems and sim-



ulated environments without sacrificing detail or ease of use. Our goal is to develop an
architecture for connecting AI and robotics with the following characteristics:

– Rapid environment/agent development
– Able to reuse both existing agents and environments
– Capable of acting as middleware between existing frameworks
– Usable in research of both simulations and actual robotic systems

Hazard is a mature system which has undergone several designiterations. It allows
rapid development and reuse of agents and environments. It contains interfaces between
agent and environment and can be used as middleware between existing frameworks.
But Hazard has been found unsuitable for development of AI orsimulations for actual
robotic systems due to its inherent limitation in event recognition and actuator control.
To be usable in a robotic AI implementation, the interfaces need to be layered to allow
both for high-level AI frameworks and middle-level event and chronical recognition on
the agent side.

Currently, work has been started on a new generation of interfaces and framework.
This work is called CAIRo (Connecting AI to Robotics) and addresses the issues found
with the development of Hazard.

References

1. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: RoboCup: The robot world cup
initiative. In Johnson, W.L., Hayes-Roth, B., eds.: Proceedings ofthe First International
Conference on Autonomous Agents (Agents’97), New York, ACM Press (1997) 340–347

2. Doherty, P., Granlund, G., Krzysztof, G., Kuchcinski, K., Sandewall, E., Nordberg, K., Skar-
man, E., Wiklund, J.: The witas unmanned aerial vehicle project. In: ECAI-00, Berlin,
Germany (2000)

3. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An architecturefor general intelligence.
Artificial Intelligence33 (1987) 1–64

4. Andersson, P.J., Beskid, L.C.: The haphazard game project. http://haphazard.sf.net (2003)
5. Brooks, R.A.: A robust layered control system for a mobile robot.Memo 864, MIT AI Lab

(1985)
6. Woltjer, R., McGee, K.: Subsumption architecture as a framework to address human machine

function allocation. Presented at SimSafe, http://130.243.99.7/pph/pph0220/simsafe/dok/
simsafe05.pdf (2004)

7. Ollero, A., Hommel, G., Gancet, J., Gutierrez, L.G., Viegas, D., Forssén, P.E., González, M.:
Comets: A multiple heterogeneous uav system. In: Proceedings of the 2004 IEEE Interna-
tional Workshop on Safety, Security and Rescue Robotics (SSRR 2004), Bonn (Germany)
(2004)

8. Aha, D., Molineaux, M.: Integrating learning in interactive gaming simulators. In Fu, D.,
Orkin, J., eds.: Challenges of Game AI: Proceedings of the AAAI’04Workshop (Technical
Report WS-04-04), San Jose, CA, AAAI Press (2004)

9. Riley, P.F., Riley, G.F.: Spades - a distributed agent simulation environment with software-
in-the-loop execution. In Chick, S., Sanchez, P.J., Ferrin, D., Morrice, D., eds.: Proceedings
of the 2003 Winter Simulation Conference. (2003) 817–825

10. Heinz, F., Doherty, P.: Dyknow: An approach to middleware for knowledge processing.
Journal of Intelligent and Fuzzy Systems15 (2004)


