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Abstract: Autonomous Underwater Vehicles (AUV) represent a challenging control problem with complex, noisy, 
dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing 
number of sub sea missions and its complexity ask for an automatization of submarine processes. This paper 
proposes a high-level control system for solving the action selection problem of an autonomous robot. The 
system is characterized by the use of Reinforcement Learning Direct Policy Search methods (RLDPS) for 
learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated 
experiments using the model of our underwater robot URIS in a target following task. 

1 INTRODUCTION 

A commonly used methodology in robot learning is 
Reinforcement Learning (RL) (Sutton, 1998). In RL, 
an agent tries to maximize a scalar evaluation 
(reward or punishment) obtained as a result of its 
interaction with the environment. The goal of a RL 
system is to find an optimal policy which maps the 
state of the environment to an action which in turn 
will maximize the accumulated future rewards. Most 
RL techniques are based on Finite Markov Decision 
Processes (FMDP) causing finite state and action 
spaces. The main advantage of RL is that it does not 
use any knowledge database, so the learner is not 
told what to do as occurs in most forms of machine 
learning, but instead must discover actions yield the 
most reward by trying them. Therefore, this class of 
learning is suitable for online robot learning. The 
main disadvantages are a long convergence time and 
the lack of generalization among continuous 
variables. 

In order to solve such problems, most of RL 
applications require the use of generalizing function 
approximators such artificial neural-networks 
(ANNs), instance-based methods or decision-trees. 
As a result, many RL-based control systems have 
been applied to robotics over the past decade. In 
(Smart and Kaelbling, 2000), an instance-based 
learning algorithm was applied to a real robot in a 
corridor-following task. For the same task, in 
(Hernandez and Mahadevan, 2000) a hierarchical 
memory-based RL was proposed. 

The dominant approach has been the value-
function approach, and although it has demonstrated 
to work well in many applications, it has several 
limitations, too. If the state-space is not completely 
observable (POMDP), small changes in the 
estimated value of an action cause it to be, or not be, 
selected; and this will detonate in convergence 
problems (Bertsekas and Tsitsiklis, 1996).  

Over the past few years, studies have shown that 
approximating directly a policy can be easier than 
working with value functions, and better results can 
be obtained (Sutton et al., 2000) (Anderson, 2000). 
Instead of approximating a value function, new 
methodologies approximate a policy using an 
independent function approximator with its own 
parameters, trying to maximize the expected reward. 
Examples of direct policy methods are the 
REINFORCE algorithm (Williams, 1992), the 
direct-gradient algorithm (Baxter and Bartlett, 2000) 
and certain variants of the actor-critic framework 
(Konda and Tsitsiklis, 2003). Some direct policy 
search methodologies have achieved good practical 
results. Applications to autonomous helicopter flight 
(Bagnell and Schneider, 2001), optimization of robot 
locomotion movements (Kohl and Stone, 2004) and 
robot weightlifting task (Rosenstein and Barto, 
2001) are some examples. 

The advantages of policy methods against value-
function based methods are various. A problem for 
which the policy is easier to represent should be 
solved using policy algorithms (Anderson, 2000). 
Working this way should represent a decrease in the 
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computational complexity and, for learning control 
systems which operate in the physical world, the 
reduction in time-consuming would be notorious. 
Furthermore, learning systems should be designed to 
explicitly account for the resulting violations of the 
Markov property. Studies have shown that stochastic 
policy-only methods can obtain better results when 
working in POMDP than those ones obtained with 
deterministic value-function methods (Singh et al., 
1994). On the other side, policy methods learn much 
more slowly than RL algorithms using value 
function (Sutton et al., 2000) and they typically find 
only local optima of the expected reward (Meuleau 
et al., 2001). 

In this paper we propose an on-line direct policy 
search algorithm based on Baxter and Bartlett’s 
direct-gradient algorithm OLPOMDP (Baxter and 
Bartlett, 1999) applied to a real learning control 
system in which a simulated model of the AUV 
URIS (Ridao et al., 2004) navigates a two-
dimensional world. The policy is represented by a 
neural network whose input is a representation of the 
state, whose output is action selection probabilities, 
and whose weights are the policy parameters. The 
proposed method is based on a stochastic gradient 
descent with respect to the policy parameter space, it 
does not need a model of the environment to be 
given and it is incremental, requiring only a constant 
amount of computation step. The objective of the 
agent is to compute a stochastic policy (Singh et al., 
1994), which assigns a probability over each action. 
Results obtained in simulation show the viability of 
the algorithm in a real-time system. 

The structure of the paper is as follows. In 
section II the direct-policy search algorithm is 
detailed. In section III a description of all the 
elements that affect our problem (the world, the 
robot and the controller) are commented. The 
simulated experiment description and the results 
obtained are included in section IV and finally, some 
conclusions and further work are included in section 
V. 

2 THE RLDPS ALGORITHM 

A partially observable Markov decision process 
(POMDP) consists of a state space S, an observation 
space Y and a control space U. For each state 
i S∈ there is a deterministic reward r(i). As 
mentioned before, the algorithm applied is designed to 
work on-line so at every time step, the learner (our 
vehicle) will be given an observation of the state and, 
according to the policy followed at that moment, it will 
generate a control action. As a result, the learner will be 
driven to another state and will receive a reward 

associated to this new state. This reward will allow us to 
update the controller’s parameters that define the policy 
followed at every iteration, resulting in a final policy 
considered to be optimal or closer to optimal. The 
algorithm procedure is summarized in Table 1.  
 

Table 1: Algorithm: Baxter & Bartlett’s OLPOMDP 

1: Given: 
• 0T >   
• Initial parameter values 

0
Kθ ∈�  

• Arbitrary starting state i0 
 
2: Set z0 = 0 ( z0

K∈� ) 
 
3: for t = 0 to T do 
4:    Observe state yt 

5:    Generate control action ut according to current    policy      
( , )tyµ θ  

6:    Observe the reward obtained r(it+1) 
 
7:    Set  

 
 

8:    Set  
 

9: end for 
 
 

The algorithm works as follows: having 
initialized the parameters vector 0θ , the initial state 
i0 and the gradient 0 0z = , the learning procedure 
will be iterated T  times. At every iteration, the 
parameters gradient tz will be updated.  According 
to the immediate reward received 1( )tr i + , the new 

gradient vector 1tz + and a fixed learning 
paramenterα , the new paramenter vector 1tθ + can be 

calculated. The current policy tµ is directly modified 
by the new parameters becoming a new policy 

1tµ + that will be followed next iteration, getting 
closer, as t T→  to a final policy Tµ that represents a 
correct solution of the problem. 

In order to clarify the steps taken, the next lines 
will relate the update parameter procedure of the 
algorithm closely. The controller uses a neural 
network as a function approximator that generates a 
stochastic policy. Its weights are the policy 
parameters that are updated on-line every time step. 
The accuracy of the approximation is controlled by 
the parameter [0,1)β ∈ .  

The first step in the weight update procedure is 
to compute the ratio: 
 

1

( , )
( , )
t

t

u t
t t

u t

y
z z

y
µ θ

β
µ θ+

∇
= +

1 1 1( )t t t tr i zθ θ α+ + += +
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for every weight of the network. In AANs like the 
one used in the algorithm the expression defined in 
step 7 of Table 1 can be rewritten as: 
 
 1t t t tz z yβ δ+ = +  (2) 
 

At any step time t, the term tz represents the 
estimated gradient of the reinforcement sum with 
respect to the network’s layer weights. In addition, 

tδ refers to the local gradient associated to a single 
neuron of the ANN and it is multiplied by the input 
to that neuron ty . In order to compute these 
gradients, we evaluate the soft-max distribution for 
each possible future state exponentiating the real-
valued ANN outputs { }1,..., no o being n the number 
of neurons of the output layer (Aberdeen, 2003).  

 

 
Figure 1: Schema of the ANN architecture used. 

 
After applying the soft-max function, the outputs 

of the neural network give a weighting, (0,1)jξ ∈  to 
each of the vehicle’s thrust combinations. Finally, 
the probability of the ith thrust combination is then 
given by: 
 

1

exp( )Pr
exp( )

i
i n

z
z

o

o
=

=

∑
 (3) 

 
Actions have been labeled with the associated 

thrust combination, and they are chosen at random 
from this probability distribution.  

Once we have computed the output distribution 
over the possible control actions, next step is to 
calculate the gradient for the action chosen by 
applying the chain rule; the whole expression is 
implemented similarly to error back propagation 
(Haykin, 1999). Before computing the gradient, the 
error on the neurons of the output layer must be 
calculated.  This error is given by expression (4). 

 

 Prj j je d= −  (4) 
 

The desired output 
jd will be equal to 1 if the action 

selected was jo  and 0 otherwise (see Fig. 2). 
 

 
Figure 2: Soft-Max error computation for every output. 

 
With the soft-max output error calculation 

completed, next phase consists in computing the 
gradient at the output of the ANN and back 
propagate it to the rest of the neurons of the hidden 
layers. For a local neuron j located in the output 
layer we may express the local gradient for neuron j 
as:   
 '· ( )o

j j j je oδ ϕ=  (5) 
 

Where 
je  is the soft-max error at the output of 

neuron j, ' ( )j joϕ  corresponds to the derivative of the 
activation function associated with that neuron and 

jo  is the function signal at the output for that 
neuron. So we do not back propagate the gradient of 
an error measure, but instead we back propagate the 
soft-max gradient of this error. Therefore, for a 
neuron j located in a hidden layer the local gradient 
is defined as follows: 

 
 ' ( )h

j j j k kj
k

o wδ ϕ δ= ∑  (6)   

 
When computing the gradient of a hidden-layer 

neuron, the previously obtained gradient of the 
following layers must be back propagated. In (6) the 
term ' ( )j joϕ represents de derivative of the 

activation function associated to that neuron, jo  is 
the function signal at the output for that neuron and 
finally the summation term includes the different 
gradients of the following neurons back propagated 
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by multiplying each gradient to its corresponding 
weighting (see Fig. 3).  

 

 
Figure 3: Gradient computation for a hidden-layer neuron. 
 

Having all local gradients of the all neurons 
calculated, the expression in (2) can be obtained and 
finally, the old parameters are updated following the 
expression: 

 
 1 1 1( )t t t tr i zθ θ γ+ + += +  (7) 
 

The vector of parameters tθ represents the 

network weights to be updated, 1( )tr i + is the reward 
given to the learner at every time step, 1tz +  describes 
the estimated gradients mentioned before and at last 
we have γ  as the learning rate of the RLDPS 
algorithm.  

3 CASE TO STUDY: TARGET 
FOLLOWING 

The following lines are going to describe the 
different elements that take place in our problem.  
First, the simulated world will be detailed, in a 
second place we will present the underwater vehicle 
URIS and its model used in our simulation. At last, a 
description of the neural-network controller is 
presented.  

3.1 The World  

As mentioned before, the problem deals with the 
simulated model of the AUV URIS navigating a 
two-dimensional world constrained in a plane region 
without boundaries. The vehicle can be controlled in 
two degrees of freedom (DOFs), surge (X 
movement) and yaw (rotation respect z-axis) by 
applying 4 different control actions: a force in either 

the positive or negative surge direction, and another 
force in either the positive or negative yaw rotation. 
The simulated robot was given a reward of 0 if the 
vehicle reaches the objective position (if the robot 
enters inside a circle of 1 unit radius, the target is 
considered reached) and a reward equal to -1 in all 
other states. To encourage the controller to learn to 
navigate the robot to the target independently of the 
starting state, the AUV position was reset every 50 
(simulated) seconds to a random location in x and y 
between [-20, 20], and at the same time target 
position was set to a random location within the 
same boundaries. The sample time is set to 0.1 
seconds.  

3.2 URIS AUV Description  

The Autonomous Underwater Vehicle URIS (Fig. 4) 
is an experimental robot developed at the University 
of Girona with the aim of building a small-sized 
UUV. The hull is composed of a stainless steel 
sphere with a diameter of 350mm, designed to 
withstand pressures of 4 atmospheres (30m. depth).  
 

 
Figure 4: (Left) URIS in experimental test. (Right) Robot 
reference frame. 
 

The experiments carried out use the 
mathematical model of URIS computed by means of 
parameter identification methods (Ridao et al., 
2004). The whole model has been adapted to the 
problem so the hydrodinamic equation of motion of 
an underwater vehicle with 6 DOFs (Fossen, 1994) 
)has been uncoupled and reduced to modellate a 
robot with two DOFs. Let us consider the dynamic 
equation for the surge and yaw DOFs: 
 

 
   (8) 
 
 
 

 
     (9) 
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Then, due to identification procedure (Ridao et al., 
2004), expressions in (8) and (9) can be rewritten as 
follows: 
 

 x x x x x x x x xv v v vα β γ τ δ
•

= + + +  (10) 

 v v v vψ ψ ψ ψ ψ ψ ψ ψ ψα β γ τ δ
•

= + + +  (11) 

 
Where xv& and vψ& represent de acceleration in both 

surge and yaw DOFs, xv is the linear velocity in 

surge and vψ is the angular velocity in yaw DOF. 
The force and torque excerted by the thrusters in 
both DOFs are indicated as xτ and ψτ . The model 
parameters for both DOFs are stated as follows: 
α andβ coeficients refer to the linear and the 
quadratic damping forces, γ represent a mass 
coeficient and the bias term is introduced byδ . The 
identified parameters values of the model are 
indicated in Table 2. 
 

Table 2: URIS Model Parameters for Surge and Yaw 
 α  β  γ  δ  

Units 
  

 

 
Surge 

 
Yaw 

-0.3222 
 

1.2426 

0 
 
0 

0.0184 
 

0.5173 

0.0012 
 

-0.050 

3.3 The Controller  

A one-hidden-layer neural-network with 4 input 
nodes, 3 hidden nodes and 4 output nodes has been 
used to generate a stochastic policy.  One of the 
inputs corresponds to the distance between the 
vehicle and the target location, another one 
represents the yaw difference between the vehicle’s 
current heading and the desired heading to reach the 
objective position.  The other two inputs represent 
the derivatives of the distance and yaw difference at 
the current time-step. Each hidden and output layer 
has the usual additional bias term. The activation 
function used for the neurons of the hidden layer is 
the hyperbolic tangent type (12, Fig. 5), while the 
output layer nodes are linear. The four output 
neurons have been exponentiated and normalized as 
explained in section 2 to produce a probability 
distribution. Control actions are selected at random 
from this distribution. 

 

 sinh( )tanh( )
cosh( )

zz
z

=  (12) 

 

 
Figure 5: The hyperbolic tangent function. 

4 SIMULATED RESULTS 

The controller was trained, as commmented in 
section 3, in an episodic task. Robot and target 
positions are reseted every 50 seconds so the total 
amount of reward per episode percieved varies 
depending on the episode. Even though the results 
presented have been obtained as explained in section 
3, in order to clarify the graphical results of time 
convergence of the algorithm, for the plots below 
some constrains have been applied to the simulator: 
Target initial position is fixed to (0,0) and robot 
initial location has been set to four random locations, 

20x = ± and 20y = ± , therefore, the total amount 
per episode when converged to minima will be the 
same. 

The number of episodes to be done has been set 
to 100.000. For every episode, the total amount of 
reward percieved is calculated. Figure 6 represents 
the performance of the neural-network vehicle 
controller as a function of the number of episodes, 
when trained using OLPOMDP. The episodes have 
been averaged over bins of 50 episodes. The 
experiment has been repeated in 100 independent 
runs, and the results presented are a mean over these 
runs. 

The simulated experiments have been repeated 
and compared for different values ofα and β .  
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Figure 6: Performance of the neural-network puck 
controller as a function of the number of episodes. 
Performance estimates were generated by simulating 
100.000 episodes, and averaging them over bins of 50 
episodes. Process repeated in 100 independent runs. The 
results are a mean of these runs. Fixed 0.000001α = , for 
different values of 0.999β = , 0.99β =  and 0.97β = . 
 
For 0.00001α = : 
 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-500

-450

-400

-350

-300

-250

-200

-150

-100

-50
Total R per Episode, Averaged over bins of 50 Episodes (Alfa 0.00001)

Groups of 50 Episodes

M
ea

n 
To

ta
l R

 p
er

 E
pi

so
de

beta 0.999
beta 0.99
beta 0.97

 
Figure 7: Performance of the neural-network puck 
controller as a function of the number of episodes. 
Performance estimates were generatedby simulating 
100.000 episodes, and averaging them over bins of 50 
episodes. Process repeated in 100 independent runs. The 
results are a mean of these runs. Fixed 0.00001α = , for 
different values of 0.999β = , 0.99β =  and 0.97β = . 
 
 
 
 
 

For 0.0001α = :  
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Figure 8: Performance of the neural-network puck 
controller as a function of the number of episodes. 
Performance estimates were generatedby simulating 
100.000 episodes, and averaging them over bins of 50 
episodes. Process repeated in 100 independent runs. The 
results are a mean of these runs. Fixed 0.0001α = , for 
different values of 0.999β = , 0.99β =  and 0.97β = . 
 

 As it can bee apreciated in the figure above 
(see Fig. 7), the optimal performance (within the 
neural network controller used here) is around -100 
for this simulated problem, due to the fact that the 
puck and target locations are reset every 50 seconds 
and for this reason the vehicle must be away from 
target a fraction of the time. The best results are 
obtained when 0.00001α = and 0.999β = , see Fig. 7.  

 Figure 9 represents the behavior of the trained 
robot controller.  For the purpose of the illustration, 
only target location has been reseted to random 
location, not the robot location. 
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Figure 9: Behavior of a trained robot controller, results of 
target following task asfter learning period is completed. 
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5 CONCLUSIONS 

An on-line direct policy search algorithm for AUV 
control based on Baxter and Bartlett’s direct-gradient 
algorithm OLPOMDP has been proposed. The method 
has been applied to a real learning control system in 
which a simulated model of the AUV URIS navigates a 
two-dimensional world in a target following task. The 
policy is represented by a neural network whose input is 
a representation of the state, whose output is action 
selection probabilities, and whose weights are the policy 
parameters. The objective of the agent was to compute a 
stochastic policy, which assigns a probability over each 
of the four possible control actions. 

Results obtained confirm some of the ideas 
presented in section 1. The algorithm is easier to 
implement compared with other RL methodologies like 
value function algorithms and it represents a 
considerable reduction of the computational time of the 
algorithm. On the other side, simulated results show a 
poor speed of convergence towards minimal solution. 

In order to validate the performance of the 
method proposed, future experiments are centered 
on obtaining empirical results: the algorithm must be 
tested on real URIS in a real environment. Previous 
investigations carried on in our laboratory with RL 
value functions methods with the same prototype 
URIS (Carreras et al., 2003) will allow us to 
compare both results. At the same time, the work is 
focused in the development of a methodology to 
decrease the convergence time of the RLDPS 
algorithm. 
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