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Abstract: An Evolutionary Algorithm (EA) strategy for the optimization of generic Work-In-Process (WIP) 
scheduling fuzzy controllers is presented. The EA is used to tune a set of fuzzy control modules which are 
used for distributed and supervisory WIP scheduling. The distributed controllers objective is to control the 
rate in each production stage so that satisfies the demand for final products while reducing WIP within the 
system. The EA identifies the parameters for which the fuzzy controller performs optimal with respect to 
WIP and backlog minimization. The proposed strategy is compared to known heuristically tuned fuzzy 
control approaches. Simulation results show that the EA strategy improves system’s performance. 

1 INTRODUCTION 

The Work-In-Process (WIP) inventory is measured 
by the number of unfinished parts in the buffers 
throughout the manufacturing system. For various 
reasons reported in (Conway et al, 1998) and 
elsewhere, the in-process inventories should stay as 
small as possible. The important question in WIP 
management is: what is the minimum necessary 
WIP? The answer, which is not straightforward, is 
that WIP is highly associated with the fluctuations of 
demand. WIP is accumulated when the actual 
production rate is higher than the demand. However, 
when WIP is very low, unpredicted phenomena, 
such as machine failures, may lead the actual 
production behind the demand and thus to delayed 
deliveries and unsatisfied customers. Obviously, 
product demands of constant level and pattern make 
scheduling easier than randomly changing demands.  

Control policies that tend to keep WIP in low 
levels have drawn a great deal of attention from 
researchers and practitioners (Gershwin et al, 1994), 
(Bai et al, 1994). Recently, artificial intelligence-
based methodologies for the WIP control of realistic 
(in terms of modelling assumptions) manufacturing 
systems have been presented ((Tsourveloudis et al 
2000),(Ioannidis et al, 2004), (Custodio et al, 1994)). 

In previous work ((Tsourveloudis et al 2000), 
(Ioannidis et al, 2004)), distributed and supervisory 
schemes for the control of WIP where introduced. In 
both approaches presented the controllers performed 
better from traditional and surplus-based policies. 
However, neither this approach has adopted a 
systematic methodology that ensures optimal design 
of the in – process inventory controllers. 

In this paper we present an Evolutionary 
Algorithm (EA) strategy for optimization of generic 
WIP scheduling fuzzy controllers introduced in 
(Tsourveloudis et al 2000), (Ioannidis et al, 2004). 
The scheduling problem objective is to control the 
production rate in a way that satisfies the demand for 
final products while keeping minimum WIP within 
the production system. During the evolution, the EA 
identifies those set of parameters for which the fuzzy 
controller performs optimal with respect to WIP 
minimization for several demand patterns.  

2 FUZZY SCHEDULING 

A production system can be viewed as a network of 
machines and buffers. Items are received at each 
machine and wait for the next operation in a finite 
capacity buffer. The machines break down randomly 
and may be incapable of producing more parts 
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because of starvation and/or blocking phenomena. 
Due to a failed machine with operational neighbors, 
the level of the downstream buffer decreases, while 
the upstream increases. If the repair time is big 
enough, then the broken machine will either block 
the next station or starve the previous one. This 
effect will propagate throughout the system. 

Clearly, production scheduling of realistic 
manufacturing plants must satisfy multiple 
conflicting criteria and also cope with the dynamic 
nature of such environments. Fuzzy logic offers the 
mathematical framework that allows for simple 
knowledge representations of the production control 
/ scheduling principles in terms of IF-THEN rules. 

Two approaches of production scheduling have 
been identified, the distributed and the supervisory 
fuzzy scheduling. The advantage of the fuzzy 
controllers used in the distributed approach is that 
computationally simple and therefore facilitate 
application to real time control/scheduling.  

In the distributed fuzzy scheduling system 
presented in (Tsourveloudis et al, 2000), three basic 
subsystems have been introduced, namely transfer 
line, assembly and disassembly module. The 
majority of the real production networks can be 
decomposed into these subsystems. Each subsystem 
can be seen as a distributed fuzzy logic controller.  

The inputs of the control modules (Table 1) are 
the buffer levels Bji, Bil, Bki, Bik, Bil, the state si of the 
machine Mi, the production surplus xi of Mi and the 
sole output is the processing rate ri of Mi. 

Table 1: Control Modules 
Module                Schema 
Line 
 

 
 

 
Assembly 
 

 
 
 
  

Disassembly 
 

 
 
 
 The control objective of the distributed 

scheduling approach, is to satisfy the demand keep 
WIP as low as possible. This is attempted by 
regulating the processing rate ri at every time instant. 
The expert knowledge that describes the control 
objective can be summarized as follows: 

 If the surplus level is satisfactory then try to 
prevent starving or blocking by increasing or 
decreasing the production rate accordingly. 

If the surplus is either too low or too high then 
produce at maximum or zero rate respectively.  

The above knowledge is formally represented, 
for the control modules of Table 1, by fuzzy rules. In 
the case of the transfer line rule has the form: 

IF bj,i is LB(k) AND bi,l is LB(k) AND si is LSi
(k) 

AND xi is LX(k) THEN ri is LRi
(k) 

where k is the rule number, i is the number of 
machine or workstation, LB is a linguistic value of 
the variable buffer level b with term set B= {Empty, 
Almost Empty, OK, Almost Full, Full}, si denotes the 
state of machine i, which can be either 1 (operative) 
or 0 (stopped); consequently S= {0, 1}. LX 
represents the value that surplus x takes and it is 
chosen from the term set X= {Negative, OK, 
Positive}. The production rate r takes linguistic 
values LR from the term set R= {Zero, Low, Almost 
Low, Normal, Almost High, High}. The processing 
rate ri of each machine at every time instant is  
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where, ),,,( ,, iiliijis sxbbf  represents a fuzzy 

inference system ([7], [8]) that takes as inputs the 
level bj,i of the upstream buffer, the downstream 
buffer level bi,l, xi is the surplus (cumulative 
production minus demand) and si is a non fuzzy 
variable denoting the state of the machine, which 
can be either 1 (operative) or 0 (stopped). In (1), 

)( iR r∗µ is the membership function of the aggregated 
production rate, which is given by  
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where ),,( ,,
*

iliijAND xbbµ  is the membership function 

of the conjunction of the inputs and 
),,,( ,,)( iiliijFR

rxbbkµ  is the membership function of 

the k-th activated rule. That is 
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In equations (3), (4), )( ,ijB b∗µ and )( ,liB b∗µ  are 

the membership functions (MFs) of the actual 
upstream and downstream buffer levels and )( iX x∗µ  
is the membership function of production surplus. 

In the supervised fuzzy scheduling approach, the 
supervisory controller utilizes macroscopic data of 
higher hierarchies to adjust the overall system's 
behavior. Potentially, this may happen by modifying 
the lower level controllers in a way to ultimately 
achieve desired specifications. The supervisory 
controller’s task, introduced in (Ioannidis et al, 
2004) and its optimization discussed in the next 
paragraph, is the tuning of the previously presented 
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distributed fuzzy controllers, in a way that improves 
certain performance measures without causing a 
dramatic change in the control architecture. The 
overall scheduling approach remains modular since 
the production control modules are not modified but 
tuned by the additional supervisory controller. 

In the supervisory scheduling scheme it is 
assumed that the demand and the cumulative 
production are known. This is important for the 
production surplus monitoring and control and for 
scheduling decisions based on production surplus. 
The expert knowledge that describes the supervisory 
control objective builds on the assumption that 
adaptive surplus bounds may improve the 
production systems performance and can be 
summarized in the following statements: 

If the upper surplus bound is reduced there is an 
immediate reduction of WIP. 

If the upper surplus bound is increased there is 
an increase of WIP and the total production rate 
leading to a small reduction of backlog. 

If the lower surplus bound is increased a 
substantial reduction of backlog and an increase in 
WIP is achieved. 

If there is a reduction of lower surplus bound as 
a result we have a deterioration of backlog with an 
improvement of WIP. 
Surplus bounds are decided by the output of IF-
THEN rules of the following form: 

IF mxe is LMX(k)AND ex is LEx
(k) AND ew is 

LEw
(k) THEN uc is LUc

(k) AND lc is LLc
(k), 

where, k is the rule number, mxe is the mean surplus 
of the end product, LMX is a linguistic value of the 
mxe with term set MX= {Negative Big, Negative 
Small, Zero, Positive Small, Positive Big}, ex is the 
error of end product surplus (the difference between 
surplus xe and the lower bound of surplus), with 
linguistic value term set Ex= {Negative, Zero, 
Positive}. The relative deviation of WIP is denoted 
ew and LEw is the linguistic value chosen from the 
term set Ew = {Negative, Zero, Positive}. The upper 
surplus bound correction factor uc takes linguistic 
values LUc from Uc= {Negative, Negative Zero, 
Zero, Positive Zero, Positive} and the lower surplus 
bound correction factor lc takes linguistic values LLc 
from the term set L c= {Negative, Negative Zero, 
Zero, Positive Zero, Positive}. 

The crisp arithmetic values, *

cu  and *

cl , of the 

corrections of the upper and lower surplus bounds, 
respectively, are given by the following 
defuzzification formulas: 
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where )(*
cU u

c
µ and )(*
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c

µ  are the MFs of the upper 

and lower surplus bounds, respectively. These MFs 
represent the aggregated outcome of the fuzzy 
inference procedure. The correct selection of input 
and output membership functions characterizes the 
performance of the overall scheduling task. 

Since the form of the fuzzy rules of both the 
distributed and supervised approach for fuzzy 
scheduling have been identified, a crucial point is 
the selection of the MFs. The correct choice of the 
MFs is by no means trivial but plays a crucial role in 
the success of an application. Consequently, the 
selection of MFs if not based on a systematic 
optimization procedure cannot guarantee minimum 
WIP level. This is the main drawback of the 
heuristic selection of MFs in case of known (or 
almost known) demand patterns. The evolutionary 
algorithm developed and explained in the next 
section, creates MFs that fit best to scheduling 
objectives. In this context, the design of the fuzzy 
controllers (distributed or supervisory) can be 
regarded as an optimization problem in which the set 
of possible MFs constitutes the search space. 

3 EVOLUTIONARY FUZZY 
SCHEDULING 

The use of evolving genetic structures for the 
production scheduling problem, has recently gained 
a lot of acceptance for the automated and optimal 
design of fuzzy logic systems (Tedford et al, 2001). 
Here, we consider the application of an evolutionary 
algorithm for the optimal selection of MFs.  

The MF defined in the previous paragraphs are 
used to construct the chromosome. The basic idea is 
to represent the complete set of MFs by an 
individual (chromosome) and to evolve shape and 
location of the MFs. This is shown in Figure 1 for 
the case of trapezoidal and triangular MFs. An initial 
population is derived from the first chromosome by 
repeated application of the mutation operator. The 
objective is to optimize a performance measure 
which in the EAs context is called fitness function. 
In each generation, the fitness of every chromosome 
is first evaluated based on the performance of the 
production network system which is controlled 
through the membership functions represented in the 
chromosome. A specified percentage of the better 
fitted chromosomes, is retained for next generation. 
Parents are selected repeatedly from the current 
chromosomes generation, and new chromosomes are 
generated from the parents. One generation ends 
when the number of chromosomes for the next 
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generation has reached the quota. This process is 
repeated for a pre-selected number of generations. 
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Figure 1: Chromosome created by the MFs 

The structure of the distributed fuzzy logic 
controllers as far as it concerns the rule base and the 
linguistic variables remains the same with those 
described in Section 2. The controllers used for 
training have randomly created membership 
functions. The initial population is consisted of 
individuals which have the same initial chromosome 
which contains the points ai, (i=1,…, n) that define 
the membership functions of the inputs and the 
output of the controllers. In case of more than one 
controller the chromosome consists of the points that 
define all membership functions of these controllers. 
the membership functions, which correspond to the 
linguistic variables, are randomly created in the 
begging of the evolution process.  

The evolutionary algorithm maintains a 
population of individuals in each generation / 
iteration. Individuals represent a different set of 
distributed fuzzy controllers. In every generation the 
individuals are sorted from the best to the worst 
based on their fitness score.  As far as it concerns the 
fitness function, in the case of the distributed fuzzy 
control evolution concept, it has the following form: 
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where, t is the current simulation time, T is the total 
simulation time and D(t) is the overall demand and 
PR(t) is the cumulative production of the system. 
The architecture of the distributed evolution scheme 
is presented in Figure 2.  

The best individual is considered the one with 
the biggest fitness. The fittest individuals are 
selected and undergo mutations. The fittest 
controllers and their mutated offsprings are forming 
the new population. After some generations the 
algorithm converges and the best individuals 
represent near optimal solutions. After the evolution 
process the membership functions shape is altered. 

In case of the supervisory fuzzy evolutionary 
scheduling, the procedure is similar. In the lower 
control level were used the heuristic fuzzy 
distributed controllers introduced in (Tsourveloudis 
et al, 2000). The parameters were chosen as in the 
distributed case, that is, population number is 40 and 
mutation rate is 0.1. From the overall population the 

20 fittest individuals are qualified for the next 
generation while the rest are replaced by mutation of 
the fittest. Each individual is evaluated by the results 
of a simulation run of 200 time units. The 
architecture of the supervisor evolution scheme is 
shown in Figure 3.  

In the case of the fuzzy supervisory evolutionary 
concept the fitness function is: 

BLcWIPc
F

bI +
=

1 ,                                                      (7) 

where, WIP  and BL  are the mean work-in-process 
and mean backlog, respectively. The cI, cb are 
weighting factors that represent the unit costs of 
inventory and backlog respectively. By taking into 
account these costs in the fitness function we may 

adjust the importance of WIP  and BL . 

 
Figure 2: Distributed fuzzy evolutionary concept 

 
Figure 3: The fuzzy supervisory evolutionary concept 

4 EXPERIMENTAL RESULTS 

We have used the evolutionary algorithm presented 
to optimize the performance of the unsupervised / 
distributed and the supervised production control 
schemes. The evolutionary fuzzy approaches are 
tested and compared with the heuristic approaches 
introduced in (Tsourveloudis et al, 2000), (Ioannidis 
et al, 2004). We assume continuous parts flow 
within the system. In the continuous-flow simulation 
the discrete production is approximated by the 
production of a liquid item (Kouikoglou et al, 1997). 
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Several assumptions were made for all simulations. 
Machines fail randomly with a failure rate pi and are 
repaired randomly with rate rri. Unlimited repair 
personnel is assumed. Time to failure and time to 
repair are exponentially distributed. Demand is 
either constant or stochastic with rate d. In stochastic 
case it follows the Poisson distribution. Machines 
operate at known, but not necessarily equal rates. 
Each machine produces in a rate ri ≤ µi, where µi is 
the maximum processing rate of machine Mi. The 
initial buffers are infinite sources of raw material 
and so the initial machines are never starved. Buffers 
between adjacent machines Mi, Mj have finite 
capacities. Set-up times or transportation times are 
negligible or are included in the processing times. 

In order to test both the distributed and the 
supervised evolutionary fuzzy approach the systems 
presented in figures 4, 5 were used.  

Figure 4: Production line 

 
Figure 5: Production Network 

4.1 Distributed evolutionary fuzzy 
approach 

Several scenarios have been studied for the case of 
the Evolutionary Distributed Fuzzy (EDF) approach 
and the results were compared with the ones 
produced from the Heuristic Distributed Fuzzy 
approach (HDF). 

For the case of the production line, the system 
under consideration consists of five machines 
producing one product type. The failure and repair 
rates are equal for all machines. The repair rates are 
rri=0.5 and the failure rates are pi = 0.1. The 
processing rates are also equal for all machines and 
are equal to µi = 2 (i=1,...,5).  

In Figure 6 the evolution WIP  for both 
evolutionary and heuristic systems in a simulation 
run of 10000 time units is presented. 

Comparative results for the WIP  and BL  for 
various demand patterns are shown in Table 2. All 
buffer capacities are equal to BCi = 10. 
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Figure 6: Evolution of WIP in the production line with 
stochastic demand (d = 1) 

In Figure 7 the evolution of mean backlog BL  
for the same case is presented.  
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Figure 7: Evolution of BL  in the production line with 
stochastic demand (d = 1) 

The production cost consists of inventory and 
backlog costs. Inventory costs are due to the capital 
invested for the purchase of raw material and the 
handling of material during the production process. 
It is assumed that inventory cost is independent from 
the stage of process. Thus, the mean production cost 
C is given by: 

BLcWIPcC bI += ,                                               (8) 
where cI, cb are the unit costs of inventory and 
backlog respectively. 

The cost analysis results for the production line 
examined in test case for stochastic demand are 
presented in Table 3, where the production cost of 
the EDF control approach is compared with the HDF 
approach for various values of cI and cb. The 
distributed approach was also tested in the 
production network presented in Figure 6. The 
production system under consideration consists of 
five machines producing one part type. The failure 
and repair rates of all machines are equal. The repair 
rates are rri= 0.5 and the failure rates are pi = 0.1. 
The processing rates are also equal for all machines 
and are equal to µi = 5 (i=1,...,5). All buffer 
capacities are equal to BCi = 10. Comparative 
results for the WIP  and BL  for various demand 
patterns are shown in Table 4. 
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Table 2: Results for the test case of the production line 
  HDF  EDF 

Demand PIW  BL  PIW  BL  
Constant 1 11.492 1.72 6.371 1.567 

0.5 19.393 0.057 6.417 0.438 
Stochastic 

1 12.719 2.496 8.07 2.427 

Table 3: Cost analysis  
Cost C 

Demand cI cb HDF EDF 
0.99 0.01 19.2 6.357 
0.75 0.25 14.56 4.922 
0.5 0.5 9.725 3.428 
0.25 0.75 4.891 1.933 

0.5 

0.01 0.99 0.25 0.498 
0.99 0.01 12.617 8.014 
0.75 0.25 10.163 6.659 
0.5 0.5 7.608 5.249 
0.25 0.75 5.052 3.834 

1 

0.01 0.99 2.598 2.483 

Table 4: Results for the production network test case 
 HDF  EDF 
Demand PIW  BL  PIW  BL  

Constant 1 21.356 0.078 16.542 0.737 
0.5 20.097 0.049 17.34 0.136 Stochastic 
1 20.496 0.087 10.046 0.673 

4.2 Supervised fuzzy evolutionary 
approach  

The Evolutionary Supervised Fuzzy approach (ESF) 
was tested in the case of the production line of the 
Figure 4 and was compared with the Heuristic 
Supervised Fuzzy approach. Comparative results for 
the WIP , BL  and production cost C, when cI and cb 
are equal to 0.5, for various stochastic demand 
patterns are shown in Table 5.  The supervised 
approach was also tested in the production network 
presented in Figure 5. Table 6 shows comparative 
results of WIP , BL  and C, when cI and cb are equal to 
0.5, for various stochastic demand patterns.  
Table 5: Comparative results for the test case of the 
production line 

 HSF ESF 
Demand PIW  BL  C PIW  BL  C 

0.5 19.886 0.167 10.027 6.446 0.32 3.383 
1 0.5 2.584 7.153 9.17 3.853 6.512 

Table 6: Results for the production network test case 
HSF ESF  

Demand PIW  BL  C PIW  BL  C 

0.5 5.43 0.09 2.76 1.406 1.888 1.647 
1 7.162 0.505 3.834 3.036 2.681 2.859 
2 14.55 2.777 8.666 8.914 5.55 7.232 

5 CONCLUSIONS 

An evolutionary algorithm strategy for the 
optimization of already established fuzzy production 
control architectures ((Tsourveloudis et al, 2000), 

(Ioannidis et al, 2004)) has been presented. The EA 
strategy selects the membership functions of the 
fuzzy controllers in a way that WIP and backlog 
values minimize fitness function based on 
production surplus. Simulation results, for a number 
of taste cases, have shown an important 
improvement of performance and production related 
costs, with the use of EA strategies. More 
specifically the EA strategies manage to reduce 
substantially the weighted sum of WIP and backlog 
and thus improving the inventory and backlog costs. 
Evolutionary algorithms clearly represent a 
successful approach towards the optimization of 
fuzzy production control approaches.  

In the future it would be very interesting to 
consider the case of seasonal demand. Another 
interesting extension would be the use of EA 
strategies in more complex production systems such 
as multiple-part-type and/or re-entrant systems.  
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