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Abstract: This article proposes a general, intuitive and rigorous framework for designing temporal differences algorithms
to solve optimal control problems in continuous time and space. Within this framework, we derive a version
of the classical TD(λ) algorithm as well as a new TD algorithm which is similar, but designed to be more
accurate and to converge as fast as TD(λ) for the best values ofλ without the burden of finding these values.

1 INTRODUCTION

Dynamic programming (DP) is a powerful technique
to compute optimal feedback controllers which was
developed at the early stages of the field of optimal
control (Bellman, 1957). It has been used since then
in a wide variety of domains ranging from control
of finite state machines, Markov Decision Process
(MDP), to optimal control of continuous and hybrid
systems. For all these problems, its goal is to compute
a so-calledvalue function(VF) mapping the states of
the system to numbers that reflect the optimal cost to
reach a certain objective from these states. Once this
function computed, the optimal feedback control can
be easily deduced from its values. The main draw-
back of DP lies in its computational cost. Computing
the VF over the whole state space of the system can
be prohibitively expensive if the number of states is
large, particularly if it is infinite, e.g. in the case of
continuous problems. This led some to developre-
laxedDP techniques, e.g. (Rantzer, 2005).

In the reinforcement learning (RL) community,
the temporal difference (TD) family of algorithms
gained a particular interest after several spectacular
experimental success, such as TD-Gammon (Tesauro,
1995), a player of backgammon that outperformed
professional human players. These algorithms work
by “learning” the VF while observing simulated tra-
jectories. This family of algorithms is most typ-
ically designed for discrete MDPs, but various at-
tempts were also made to adapt it to optimal control

of continuous systems, see (Sutton and Barto, 1998)
for a survey. Recently, one of these works gave very
promising and impressive results in the control of a
continuous mechanical system with a large number of
degrees of freedom and input variables (respectively
14 and 6) (Coulom, 2002). This motivated our in-
terest in studying the applicability of TD algorithms
to continuous optimal control problems. The main
problem of this study is the lack of theoretical results
such as convergence proofs, uniqueness of solutions
and so on. For TD algorithms, results are generally
available in their original context of MDPs and are
not trivial to adapt to the continuous case. On the opti-
mal control side, the most advanced theoretical frame-
work available is that of functional analysis applied
to the numerical solutions of Hamilton Jacobi Bell-
man (HJB) equations. To the best of our knowledge,
the most complete and rigorous analysis of RL algo-
rithm in this context is (Munos, 2000), but it does not
include TD algorithms. Algorithms under study are
numerical schemes usually used to solve partial dif-
ferential equations: finite differences, finite elements,
etc. Apart from their ease of implementation, one po-
tential advantage of TD methods over other numerical
schemes to compute the solution of HJB equations is
that as it is based on simulation of real trajectories, it
takes into account the structure of the reach set of the
system. Hence, the approximation of the VF will then
naturally converge faster in the ‘interesting’ zones in-
side the reach set. If the optimality is not the prior
objective, the correct exploitation of this feature can
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allow to design more rapidly a sub-optimal controller
that meets the desired specifications.

This article attempts to provide a clarified frame-
work for TD algorithms applied to continuous prob-
lems. Our hope is that by clearly identifying and iso-
lating different problems arising in the design of TD
algorithms, it will help to develop new and better TD
algorithms, and to analyze their behavior more rigor-
ously. Our first result in this direction is the derivation
of a version of the classical TD(λ) algorithm along
with a new TD algorithm, we called TD(∅), designed
to be more accurate and to converge as fast as TD(λ)
for the best values ofλ without the burden of finding
these values. The works closest to this one are (Doya,
1996), (Doya, 2000) and (Coulom, 2002). Apart from
the TD(∅) algorithm, a contribution w.r.t. these works
is a slightly higher level of abstraction, which allows
an easier intuitive interpretation of the behaviour of
TD algorithms and the role of their parameters, in par-
ticular theλ parameter. It is this interpretation of the
role ofλ that led to the design of TD(∅) algorithm.

The paper is organized as follows. Section 2 re-
calls the principles of DP, first applied to the sim-
ple case of deterministic discrete transition systems,
then adapted to continuous problems. Section 3 intro-
duces our continuous framework for TD algorithms,
the TD(λ) algorithm instantiated in this framework
and our variant TD(∅). Section 4 present some ex-
perimental results obtained on two test problems.

2 DYNAMIC PROGRAMMING

2.1 DP For Discrete Systems

We first consider in this section a purely discrete de-
terministic system with a state setX , an input or ac-
tion setU and a transition map→: X × U 7→ X .
For each pair(x, u) of state-action, a bounded, non-
negative cost valuec(x, u) reflects the price of tak-
ing actionu from statex. Given a statex0 and an
infinite input sequenceu = (un), we can thus de-
fine the cost-to-go orvalue functionof the trajectory
x0

u0→ x1
u1→ . . . as:

V u(x0) =

∞
∑

n=0

γnc(xn, un) (1)

whereγ is a discount factor lying strictly between 0
and 1, which prevents the infinite sumV u from di-
verging. SinceV u(x0) represents the cost of apply-
ing the input sequenceu from x0, the optimal control
problem consists in finding a sequenceu∗ that mini-
mizes this cost, i.e.V u∗

(x0) ≤ V u(x0),∀u ∈ U
N.

Note thatV u∗

(x0) does not depend onu∗ and thus
will be notedV ∗(x0). Instead of searching an optimal

sequence, DP aims at computing directly the optimal
value functionV ∗(x) for all x ∈ X . It relies onBell-
man equationsatisfied byV ∗ which is easily deduced
from (1):

V ∗(x) = min
u, x

u
→x′

c(x, u) + γV ∗(x′) (2)

OnceV ∗ has been computed, an optimal sequenceu∗

is obtained by solving the right hand side of Bellman
equation, which gives the state feedback controller:

u∗(x) = arg min
u, x

u
→x′

c(x, u) + γV ∗(x′) (3)

Since (2) is a fix point equation,V ∗ can be computed
using fix point iterations. This gives the following
value iteration algorithm. Convergence of this algo-

Algorithm 1 Value Iteration

1: Init V 0, i← 0
2: repeat
3: for all x ∈ X do
4: V i+1(x)← min

u, x
u
→x′

c(x, u) + γV i(x′)

5: end for
6: i← i + 1
7: until V has converged

rithm is guaranteed by the discount factorγ which
makes the iteration a contraction. Indeed, it is easy to
see that

‖Vi+1 − Vi‖∞ ≤ γ‖Vi − Vi−1‖∞

2.2 DP in Continuous Time and
Space

In this section, we adapt the previous algorithm to the
continuous case. LetX andU now be bounded sub-
sets ofRn andR

m respectively, andf : X ×U 7→ R
n

the dynamics of the system, so that for allt ≥ 0,

ẋ(t) = f(x(t), u(t)) (4)

Cost and cost-to-go functions have their continuous
counter parts: for eachx and u, c(x, u) is a non-
negative scalar bounded by a constantc > 0, and for
any initial statex0 and any input functionu(·),

V u(·)(x0) =

∫ ∞

0

e−sγtc(x(t), u(t))dt

Wherex(t) andu(t) satisfy (4) withx(0) = x0. The
optimal value function, still not depending onu(·), is
such that∀x ∈ X ,

V ∗(x) = min
u(·)∈UR+

∫ ∞

0

e−sγtc(x(t), u(t))dt
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A straightforward way to adapt Algorithm 1 in this
continuous context is first to discretize time and space
and then to find an equivalent of the Bellman equation
(2). Let us fix a time step∆t and a regular gridXǫ

of resolutionǫ coveringX . We evaluateV ∗ on each
point of the grid and interpolate for anyx inX outside
Xǫ (see figure 1).

b

x

x′ ǫ

ǫ

Figure 1: Simple grid of resolutionǫ. V i is known at the
grid points, e.g. atx, whereasV i(x′) has to be interpolated

In order to get a transition function, one can classi-
cally perform an Euler integration of (4):

x
u
→ x′ ⇔ x′ = x + ∆x (5)

where∆x = f(x, u)∆t

Moreover we can write :

V u(x0) =

∫ ∆t

0

e−sγtc(x(t), u(t))dt

+

∫ ∞

∆t

e−sγtc(x(t), u(t))dt

≃ c(x(0), u(0))∆t + e−sγ∆tV u(x(0) + ∆x)

≃ c(x0, u0)∆t + γV u(x0 + ∆x) (6)

Where we notee−sγ∆t = γ thenV ∗ satisfies

V ∗(x) ≃ min
u, x

u
→x′

c(x, u)∆t + γV ∗(x′) (7)

which provides a decent equivalent of the discrete
Bellman equation. From here, nothing prevents us
from applying Algorithm 1 using (7) as a fix point
iteration. The complete algorithm is given below.

Algorithm 2 Continuous Value Iteration

1: Init V 0
ǫ , i← 0

2: repeat
3: for all x ∈ X do
4: V i+1

ǫ (x)← min
u, x

u
→x′

c(x, u)∆t + γV i
ǫ (x′)

5: end for
6: i← i + 1
7: until Vǫ has converged

Again, Algorithm 2 is guaranteed to converge for
the same reasons as Algorithm 1 does, and, moreover,

in (Munos, 2000) it is proven that under certain reg-
ularity conditions, asǫ and∆t tend toward zero,Vǫ

tends toward the exact optimal VF of the continuous
problem.

2.3 Discussion

Limitations As presented above, the adaptation of
discrete value iteration algorithm to the continuous
case may seem simple. Unfortunately, in practice it
may fail for several reasons: first, as it is a direct
application of DP, it has the limitation that Bellman
called originally thecurse of dimensionality(Bell-
man, 1957) which expresses the fact that complexity
of these algorithms is exponential in the dimension of
the system. This makes them impractical for prob-
lems in high dimensions. Another limitation of Algo-
rithm 2 that is more specific to the continuous case is
the simplicity of the underlying numerical methods.
Explicit Euler integration used in (5) is the simplest
method to solve a differential equations and is known
to have severe limitations. In particular, it is of or-
der one and is sensitive to stiffness. Also, in (6), the
rectangle method is used to approximate integral on
interval[0,∆t] which is also a method of order one.
A lot can be done to benefit from more clever nu-
merical schemes to solve (4) or to better approxi-
mate the integral in (6) using more advanced meth-
ods of numerical analysis. For instance, backward
Euler integration is preferable to explicit Euler inte-
gration (Doya, 2000) and a cost-less trick to improve
approximation (6) consists in, instead of considering
thate−sγtc(x, u) is constant on[0,∆t], only consid-
ering thatc(x, u) is constant and integrating formally
the exponential, which gives, ifγ = e−sγ∆t,

V ∗(x) ≃ min
u, x

u
→x′

c(x, u)
(1− γ)

sγ

+ γV ∗(x′) (8)

which is a more precise continuous equivalent of the
discrete Bellman equation than (7) that can be used in
Algorithm 2 (Coulom, 2002).

Function approximators The major reason for the
curse of dimensionality is the discretization of the
state space into a simple grid, an object whose size
grows exponentially with the number of dimensions.
Among classical alternative solutions are variable
resolution discretization (Munos and Moore, 1999),
sparse coarse coding (Sutton, 1996), or neural net-
works (Coulom, 2002), (Tesauro, 1995). It is worth
recalling that all these techniques, including simple
grids, approximate a function defined over (a bounded
subset of)Rn using a finite number of parameters
{ωi, i ∈ N}. In the case of simple grids, these
parameters are associated to the exponentially many
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grid points. In the case of neural networks, the pa-
rameters are the weights of the “neurons” in the net-
work, whose number is dimension independent. Al-
though methods using sophisticated function approx-
imators like neural networks proved to be potentially
very powerful in some practical cases, such as for
swimmers in (Coulom, 2002), they offer in general no
guarantee of convergence or optimality. In fact, func-
tion approximators are double-edged swords. On one
hand, they providegeneralization, that is, while the
VF is updated at a pointx, it is also updated in some
neighborhood ofx, or more precisely in all points af-
fected by the change of the parameters of the approx-
imator; the bad side isinterferencewhich is in fact an
excessive generalization, e.g. if an update inx affects
the VF iny in such a way that it destroys the benefits
of a previous update iny. Understanding and control-
ling the effects of generalization, in particular in the
case of non linear function approximators, is a very
deep and complicated numerical analysis problem.

Hamilton-Jacobi-Bellman (HJB) Equation Here
we present the connection with the HJB Equation.
In fact, (7) and (8) can be seen as finite differences
schemes approximating the HJB equation, that we can
retrieve from those equations by dividing each term
by ∆t and making∆t going to zero, which leads to

min
u∈U

(

c(x, u) +
∂V ∗

∂x
· f(x, u)− sγV ∗(x)

)

= 0 (9)

From this definition of the HJB equation, we define
theHamiltonian:

H(x) = min
u∈U

�
c(x, u) +

∂V i

∂x
· f(x, u) − sγV

i(x)

�
(10)

Algorithms for computingV ∗ thus often try to mini-
mizeH in order to find a solution to (9). The problem
is that there might be an infinite number ofgeneral-
izedsolutions of (9) i.e. functions that satisfyH(x) =
0 almost everywhere, while being very far from the
true value functionV ∗ (Munos, 2000). Thus, if no
guarantee is given by the algorithm other than the
minimization ofH(x), then no one can tell whether
the computed solution is optimal or even near to the
optimal VF.
(Munos, 2000) uses the theory of viscosity solutions
to prove that Algorithm 2 actually converges toward
the true value function but this result is limited to the
case of grids.

3 TEMPORAL DIFFERENCE
ALGORITHMS

DP algorithms presented so far compute the next es-
timationV i+1(x) based onV i(x) andV i(x′) where

x′ is in the spatial neighborhood ofx. The slightly
different point of view taken by temporal difference
(TD) algorithms is that instead of considering that
x′ is the neighbor in spaceof x they consider it as
its neighbor in timealong a trajectory. This way,
with the same algorithm,V i+1(x) would be updated
from V i(x(0)) andV i(x(∆t)), wherex = x(0) and
x′ = x(∆t) are then viewed in the context of a whole
trajectory(x(t))t>0. Then, pursuing in this spirit, it is
clear that ifV i(x(∆t)) holds interesting information
for the update ofV i(x(0)), then it is also the case for
V i(x(t)) for all t > 0. Henceforth, TD algorithms
update their current approximation of the VF thanks
to data extracted from complete trajectories.

3.1 General Framework

In section 2, we discussed the fact that DP algo-
rithms were bound to different issues and problemat-
ics: function approximation, numerical analysis etc.
This was the case for value iteration algorithms and
their adaptation to continuous time and space, and this
is also the case for TD algorithms. In this subsection,
we propose a general, high level framework common
to most of TD algorithms that allow us to separate
those different issues, assuming that some are solved
and focusing on the others. This high-level frame-
work is represented by Algorithm 3.

Algorithm 3 Generic TD algorithm

1: Init V 0, i← 0
2: repeat
3: Choosex0 ∈ X
4: Compute (x(t))t∈[0,T ] using u(·), starting

from x0

5: Compute update tracee(·) from x(·) andu(·)
6: for all t ∈ R

+ do
7: V i+1(x(t))← V i(x(t)) + e(t)
8: end for
9: i← i + 1

10: until Stopping condition istrue

To implement an instance of this generic algorithm,
we need the non-trivial following elements:

• A simulator that can generate a trajectory of dura-
tion T > 0 (x(t)))t∈[0,T ] given an initial statex0

and an input functionu.

• A function approximator to be used to represent
any functionV from X to R

+ and allowing us to
simply writeV (x) for anyx in X e.g. lines 7. A
question arising here is, as already discussed in pre-
vious sections, whether to use simple grids, linear
function approximators, or non linear function ap-
proximators such as neural networks etc.
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• An update function which, given a functionV , a
statex and a quantitye, altersV i into V i+1 so that
V i+1(x) is equal to or nearV i(x) + e, which is
written line 7 as an assignment statement. When
parametrized function approximators are used, up-
dating can be done e.g. by gradient descent on the
parameters (Doya, 2000).

• A policy, or controller, which returns a control in-
put at each timet, needed by the simulator to com-
pute trajectories. In the case ofoptimistic policy it-
eration(Tsitsiklis, 2002),u is the feedback control
obtained fromV i using thearg min of left hand
side of (10). It is said to beoptimisticbecause ifV i

is the optimal VF, then this gives an optimal control
input.

• An update trace generator used to extract infor-
mation from the computed trajectoryx(·) and to
store it into the update tracee(.) (line 5). In the
field of RL, e(.) is classically called theeligibility
trace(Sutton and Barto, 1998).

Variants of TD algorithms differ in the way this last
point is implemented, as discussed in the following
sections.

3.2 Continuous TD(λ)

3.2.1 Formal algorithm

The objective of TD algorithms is to build an im-
proved estimation of the VF based on the data of com-
puted trajectories. The main additional information
provided by a trajectoryx(·) is the values of the cost
function along its course. If we combine these values
with the current estimationV i, we can then build a
new estimation for a given horizonτ > 0, which is:

Ṽτ (x0) =

∫ τ

0

e−sγtc(x, u)dt + e−sγτV i(x(τ)) (11)

In other words, the estimatioñVτ (x0) relies on a por-
tion of the trajectory of durationτ and on the old es-
timationV i(x(τ)) at the end of this portion. We re-
mark that ifV i is already the optimal value function
V ∗, thenṼ i

τ = V ∗ for all τ > 0 and this equality is,
in fact, a generalization of the Bellman equation.
A question to answer is then, how to choose horizon
τ? In the case of TD(λ), the algorithm constructs
a new estimatioñVλ which is a combination of the
Ṽτ (x0) for all τ > 0. In our continuous framework,
we define forsλ > 0:

Ṽ i
λ(x0) =

∫ ∞

0

sλe−sλτ Ṽ i
τ (x0)dτ (12)

Several remarks about this definition are:

• Equation (12) means that̃V i
λ is constructed from all

Ṽ i
τ , τ > 0, each of them contributing with an expo-

nentially decreasing amplitude represented by the
term e−sλτ . In other words, the further̃V i

τ looks
into the trajectory, the less it contributes toṼ i

λ.

• This definition is sound in the sense that it can be
seen as a convex combination ofṼ i

τ , τ > 0. In
effect, it is true that

∫ ∞

0
sλe−sλτdτ = 1. Thus, if

eachṼ i
τ is a sound estimation ofV ∗, thenṼ i

λ is a
sound estimation ofV ∗.

• This definition is consistent with the original defin-
ition of TD(λ) algorithm (Sutton and Barto, 1998).
In fact, by choosing a fixed time step∆τ , assum-
ing thatṼ i

τ is constant on[τ, τ +∆τ ] and summing
sλe−sλτ on this interval, we get:

Ṽ i
λ(x0) ≃ (1− λ)

∞
∑

k=0

λkṼ i
k∆τ (x0) (13)

whereλ = e−sλ∆τ

which is the usual discrete TD(λ) estimation built
upon the k-step TD estimation (Tsitsiklis, 2002)

Ṽ
i
k∆τ (x0) =

Z
k∆τ

0

e
−sγ t

c(x, u)dt + e
−sγ τ

V
i
(x(k∆τ))

≃

k−1X
j=0

γ
j
c(x(j∆τ), u(j∆τ))+

e
−sγ k∆τ

V
i
(x(k∆τ))

=

k−1X
j=0

γ
j
c(xj , uj) + γ

k
V

i
(xk) (14)

whereγ = e
−sγ∆τ

3.2.2 Implementation

In practice, we can only compute trajectories with a
finite durationT . As a consequence,̃V i

τ can only be
computed forτ ≤ T . In this context, (12) is replaced
by

Ṽ i
λ(x0) =

∫ T

0

sλe−sλτ Ṽ i
τ (x0)dτ + e−sλT Ṽ i

T (x0)

≃ (1− λ)

N−1
∑

k=0

λkṼ i
k∆τ (x0) + λN Ṽ i

T (x0)

whereT = N∆τ (15)

Combining (15) and (14), one can show that:

V i(x0)− Ṽ i
λ(x0) ≃

N
∑

j=0

λjγjδj (16)

where

δj = c(xj , uj) + γV i(xj+1)− V i(xj) (17)

is what is usually referred to as thetemporal differ-
ence error(Tsitsiklis, 2002). This expression pro-
vides an easy implementation given in Algorithm 4

ON TEMPORAL DIFFERENCE ALGORITHMS FOR CONTINUOUS SYSTEMS

59



which refines line 5 of Algorithm 3. There, we as-
sume that the trajectory has already been computed
with a fixed time step∆t = ∆τ , that is at times
tj = j∆t, 0 ≤ j ≤ N + 1.

Algorithm 4 TD(λ): Update traces
1: for j = 0 to N do
2: δj ← c(xj , uj) + γV i(xj+1)− V i(xj)
3: end for
4: e(tN )← δN

5: for k = 1 to N do
6: e(tN−k)← e(tk) + (λγ)e(tN−k+1)
7: end for

Note that the computation complexity of the update
trace is inO(N) whereN + 2 is the number of com-
puted points in the trajectoryx. Thus the overall com-
plexity of the algorithms depends only on the num-
ber of trajectories to be computed in order to obtain a
good approximation ofV ∗.

3.2.3 Qualitative interpretation of TD(λ)

In the previous sections, we started by presenting
TD(λ) as an algorithm that compute a new estima-
tion of the VF using a trajectory and older estima-
tions. This allowed us to provide a continuous for-
mulation of this algorithm and an intuition of why
it should converge towards the true VF. Then, using
a fixed time step and numerical approximations for
implementation purposes, we derived equation (16)
and Algorithm (4). These provide another intuition of
how this algorithm behaves.
The TD errorδj (17) can be seen as a local error in
x(tj) (in fact, it is an order one approximation of the
HamiltonianH(x(tj))). Thus, (16) means that thelo-
cal error inx(tj) affects theglobalerror estimated by
TD(λ) in x(t0) with a shortness factor equal to(γλ)j .
The values ofλ ranges from 0 to 1 (in the continuous
formulation,sλ ranges from 0 to∞). Whenλ = 0,
then only local errors are considered, as in value iter-
ation algorithms. Whenλ = 1 then errors along the
trajectory are fully reported tox0. Intermediate val-
ues ofλ are known to provide better results than these
extreme values. But how to choose the best value for
λ remains an open question in the general case. Our
intuition, backed by experiments, tends to show that
higher values ofλ often produce larger updates, re-
sulting in a faster convergence, at least at the begin-
ning of the process, but also often return a coarser
approximation of the VF, when it does not simply di-
verge. On the other hand, smaller values ofλ result in
a slower convergence but toward a more precise ap-
proximation. In the next section, we use this intuition
to design a variant of TD(λ) that combines the quali-
ties of high and low values ofλ.

3.3 TD(∅)

3.3.1 Idea

The new TD algorithm that we propose is based on
the intuition about local and global updates presented
in the previous section. Global updates are those per-
formed byTD(1) whereas local updates are those
used byTD(0). The idea is that global updates
should only be used if they are “relevant”. In other
cases, local updates should be performed. To de-
cide whether the global update is “relevant” or not,
we use a monotonicity argument: from a trajectory
x(·), we compute an over-approximation̄V (x(t)) of
V ∗(x(t)), along with the TD errorδ(x(t)). Then,
if V̄ (x(t)) is less than the current estimation of the
value functionV i(x(t)), it is chosen as a new estima-
tion to be used for the next update. In the other case,
V i(x(t)) + δ(x(t)) is used instead.
Let us first remark that sincec is bounded andsλ > 0,
thenV ∗(x) ≤ Vmax, ∀x ∈ X , where

Vmax =

∫ ∞

0

e−sγt c̄ dt =
c̄

sλ

(18)

This upper bound ofV ∗ represents the cost-to-go of
an hypothetic forever worse trajectory, that is, a tra-
jectory for which at every moment, the pair state in-
put (x, u) has the worse cost̄c. Thus,Vmax could be
chosen as a trivial over-approximation ofV ∗(x(t)).
In this case, our algorithm would be equivalent to
TD(0). But if we assume that we compute a tra-
jectoryx(·) on the interval[0, T ], then a better over-
approximation can be obtained:

V̄ (x0) =

∫ T

0

e−sλtc(x, u)dt + e−sγT Vmax (19)

It is easy to see that (19) is indeed an over-
approximation ofV ∗(x(0)): it represents the cost of a
trajectory that would begin as the computed trajectory
x(·) on [0, T ], which is at best optimal on this finite
interval, and then fromT to∞ it behaves as the ever
worse trajectory. Thus,̄V (x0) ≥ V ∗(x0).

3.3.2 Continuous Implementation of TD(∅)

In section 3.2.2 we fixed a time step∆t and gave a nu-
merical scheme to compute estimationṼλ. This was
useful in particular to make the connection with dis-
crete TD(λ). In this section, we give a continuous
implementation of TD(∅) by showing that the compu-
tation of V̄ can be coupled with that of the trajectory
x(·) in the solving of a unique dynamical system.
Let xV (t) =

∫ t

0
e−sγrc(x, u)dr. Then,

V̄ (x0) = xV (T ) + e−sγ(T )Vmax
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and more generally, for allt ∈ [0, T ],

V̄ (x(t)) = esγt(xV (T )− xV (t)) + e−sγ(T−t)Vmax

WherexV can be computed together withx by solv-
ing the problem:

{

ẋ(t) = f(x(t), u(t))
ẋV (t) = e−sγtc(x(t), u(t))

x(0) = x0 , xV (0) = 0
(20)

From there, we can give Algorithm 5.

Algorithm 5 TD(∅)

1: Init V 0 with Vmax, i← 0
2: repeat
3: Choosex0 ∈ X
4: Compute(x(t))t∈[0,T ] and (xV (t))t∈[0,T ] by

solving (20)
5: ComputeV̄ (x(·)) andδ(x(·))
6: for all t ∈ [0, T ] do
7: V i+1(x(t)) ← min(V̄ (x(t)), V i(x(t)) +

δ(x(t)))
8: end for
9: until Stopping condition istrue

Several remarks are worth mentionning:
• Initializing V 0 to Vmax imposes a certain

monotonicity with respect toi. This monotonic-
ity is not strict since when local updates are made,
nothing preventsδ(x(t)) from being positive, but
during the first trajectories at least, as long as they
pass through unexplored states,V̄T will be auto-
matically better than the pessimistic initial value.
Note also that ifV ∗ is known at some special states
(e.g. at stationary points), convergence can be fas-
tened by initializingV 0 to these values.

• Computingx andxV (and hencēV ) together in the
same ordinary differential equation (ODE) facili-
tates the use of variable time step size integration,
the choice of which can be left to a specialized effi-
cient ODE solver, and thus permits a better control
of the numerical error at this level.

4 EXPERIMENTAL RESULTS

To compare the performances of TD(∅) with TD(λ)
for various values ofλ, we implemented and applied
Algorithms 4 and 5 to deterministic, continuous ver-
sions of two classical problems in the field of RL:
The continuous walker: a one dimensional problem

in which a robot must exit the zone[−1, 1] as
quickly as possible. The system equations are
given by

ẋ =

{

u if −1 < x < 1
min(0, u) if x = 1
max(0, u) if x = −1

(21)

The inputu represents the speed of the walker in
either direction. It is bounded in absolute value by
1. Thus, in the context of optimal control, we can
restrict to a binary decision problem whereu = 1
or u = −1. The cost function is:

c(x) =

{

1 if −1 < x < 1
0 if x = −1 or x = −1

(22)

The swing-up of a pendulum with limited torque.
The goal is to drive a pendulum to the vertical posi-
tion. The dynamics of the system are described by
a second order non linear differential equation:

θ̈ = −µθ̇ + g sin θ + u (23)

−10 < θ̇ < 10, −3 < u < 3

θ

g

b

b

Figure 2: Pendulum

The cost function isc(θ) = (1− cos(θ)). It is thus
minimal, equal to 0 when the pendulum is up (θ =
0) and maximal, equal to 2, when the pendulum is
down. The variableµ is a friction parameter andg
the gravitational constant.

For both of these problems, we used regular grids and
linear interpolation to represent values ofV i. We call
a sweepa set of trajectories for which the set of ini-
tial states cover all points of the grid. For both prob-
lems, we then applied TD(λ) and TD(∅) to such set of
trajectories and after each sweep, we measured the 2-
norm of the Hamiltonian error (noted‖δ‖2) over the
state space. This allowed to observe the evolution of
this error depending on the number of sweeps of the
state space performed.
The results are given in figure 3 and 4. An interesting
thing to observe is that for the simple problem of the
walker, the value ofλ that worked best in our exper-
iments was 0, whereas for the pendulum, this value
was more around0.7. Not surprisingly, in the first
case, we see that the error curve of TD(∅) closely fol-
lows that ofTD(0), even performing slightly better.
For the second problem, TD(∅) seems to perform bet-
ter than TD(λ) for any value ofλ. This leads to the
very encouraging observation that TD(∅) seems to be-
have at least as well as TD(λ) for the best value ofλ,
independently of this value and of the problem. Of
course, more experiments are needed to validate this
conclusion.
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Figure 3: Hamiltonian error for walker
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5 CONCLUSIONS

We have presented a framework for the design of tem-
poral differences algorithms for optimal control prob-
lems in continuous time and space. This framework
is attractive as it clearly separates different issues re-
lated to the use of such algorithms, namely:

1. How to choose and compute trajectories - which
initial state, and which choice ofu - in order to
ensure that the VF will be accurately and quickly
computed in the interesting part of the state space?

2. How to represent the VF efficiently in order to
break the curse of dimensionality?

3. How to update the VF based on simulated trajecto-
ries?

After describing the context of DP and our frame-
work, we focused on question 3 and presented a con-
tinuous version of TD(λ) which was shown to be con-
sistent after appropriate discretization with the origi-

nal discrete version of the algorithm. We then dis-
cussed its efficiency with respect to the parameterλ,
and presented a variant, TD(∅), that we found to be
experimentally as efficient as TD(λ) for the best val-
ues ofλ. Future work will include improvement of
this algorithm and its application to higher dimen-
sional problems, and consequently an investigation of
the above mentioned Questions 1 and 2,a necessary
step toward scalability.
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