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Abstract: In this paper nonlinear optimization algorithms, namely the Gradient descent and the Gauss-Newton algo-
rithms, are proposed for blind identification of MA models. A relationship between third and fourth order
cumulants of the noisy system output and the MA parameters is exploited to build a set of nonlinear equa-
tions that is solved by means of the two nonlinear optimization algorithms above cited. Simulation results are
presented to compare the performance of the proposed algorithms.

1 INTRODUCTION

Numerous methods have been proposed in the lite-
rature for blind identification of MA models using
cumulants. The present paper is concerned with
the linear algebra solutions approach. It consists in
constructing a system of equations obtained from ex-
plicit relations that link third and fourth order cumu-
lants of the noisy output with the MA parameters and
solving this system by the least-squares method ((Al-
shebeili, 1993), (Giannakis, 1989), (Martin, 1996),
(Na, 1995), (Srinivas, 1995), (Stogioglou, 1996), (Tu-
gnait, 1990), (Tugnait, 1991)). In order to take the
redundancy in the unknown parameters vector into
account, (Abderrahim, 2001) proposed a constrained
optimization based solution.

In this paper, we propose another approach to re-
duce this redundancy. It consists in exploiting the non-
linearity existing in the unknown parameters estima-
ted vector. In the literature, the parameters of the vec-
tor to be estimated are regarded as independent, but
actually it isn’t the case. Thus the major contribution
of this paper lies in the estimates of a non redundant
vector of unknown parameters.

The organization of this paper is as follows. The
problem formulation is given in Section 2. In Sec-
tion 3, the resolution with least squares and the non-

linear optimization algorithms, in the event Gradient
descent and Gauss-Newton algorithms, well be deve-
loped. Computer simulation results are given in Sec-
tion 4 to show the effectiveness of the proposed tech-
niques. Finally, the paper is concluded in Section 5.

2 PROBLEM FORMULATION

We consider the discrete, causal, linear time-invariant
process represented on figure 1, with the following
assumptions :

H.1. The inputw(k) is a zero mean, independent
and identically distributed (i.i.d), stationary non-
Gaussian, non measurable real sequence, with
unknown distribution, and :

Cm,w(τ1, τ2, . . . , τm−1) = γm,w δ(τ1, τ2, . . . , τm−1)

where :

⋄ Cm,w(τ1, τ2, . . . , τm−1) is the mth-order cu-
mulant of the input signal of the MA model.
⋄ γm,w 6= 0, ∀ m ≥ 2

⋄ γm,w = Cm,w( 0, 0, . . . , 0| {z }
m−1

)
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⋄ γ2,w = σ2

w = E
�
w(k)2

	
is the variance of

w(k).

⋄ γ3,w = E
�
w(k)3

	
is the skewness ofw(k).

⋄ γ4,w = E
�
w(k)4

	
− 3

�
E

�
w(k)2

	�2 is the
kurtosis ofw(k).

H.2. The additive noisev(k) is assumed to be an
i.i.d Gaussian sequence with unknown variance,
zero-mean, and independent ofw(k).

H.3. The non measurable outputx(k) is assumed
to be a nonminimum or minimum phase MA
process.

H.4. The orderq of the model is assumed to be
known.

w(k)

H(z)
 +


x(k)


v(k)


y(k)


Figure 1: Single-channel system.

The measured noisy MA processy(k) is represen-
ted by the following equations :

x(k) =

q∑

i=0

h(i)w(k − i); {h(0) = 1} (1)

y(k) = x(k) + v(k) (2)

For the MA model described by equation (1) with
the assumptionsH.1, H.2, H.3, andH.4, the mth and
nth-order cumulants of the MA system output (2) are
linked by the following relation (Abderrahim, 2001) :

imax∑

i=imin

h(i)

[
m−s−1∏

k=1

h(i + τk)

]
×

Cn,y(β1, β2, . . . , βn−s−1, i+α1, i+α2, . . . , i+αs) =

γn,w

γm,w

jmax∑

j=jmin

h(j)

[
n−s−1∏

k=1

h(j + βk)

]
×

Cm,y(τ1, τ2, . . . , τm−s−1, j+α1, j+α2, . . . , j+αs)
(3)

wherem > 2, n > 2 and s is an arbitrary integer
number satisfying :1 ≤ s ≤ min(m,n) − 2,

and






imin = max(0,−τ1, · · · ,−τm−s−1)
imax = min(q, q − τ1, · · · , q − τm−s−1)
jmin = max(0,−β1, · · · ,−βn−s−1)
jmax = min(q, q − β1, · · · , q − βn−s−1)

Settingn = 3, m = 4, ands = 1 in equation (3),
yields

imax∑

i=imin

h(i)h(i + τ1)h(i + τ2)C3,y(β1, i + α1) =

γ3,w

γ4,w

jmax∑

j=jmin

h(j)h(j + β1)C4,y(τ1, τ2, j + α1) (4)

where






imin = max(0,−τ1,−τ2)
imax = min(q, q − τ1, q − τ2)
jmin = max(0,−β1)
jmax = min(q, q − β1)

By settingτ1 = τ2 = 0 in (4), we get the rela-
tion used in this paper for estimating the parameters
{h(i)}i=1,2,...,q of the MA model.

q∑

i=0

h3(i)C3,y(β1, i + α1) =
γ3,w

γ4,w

jmax∑

j=jmin

h(j)h(j + β1)C4,y(0, 0, j + α1) (5)

It is important to determine the range of
values of α1 and β1 so that the cumulants
{C3,y(β1, i + α1)}i=0,··· ,q, {C4,y(0, 0, j +
α1)}j=jmin,··· ,jmax

, and the coefficients{h(j + β1)}
be not all zero for each equation.

By taking account of the property of causality of
the model and the domain of support for third and
fourth order cumulants of an MA(q) process (Mendel,
1991), we obtain :






−q ≤ β1 ≤ q

−2q ≤ α1 ≤ q

−2q + β1 ≤ α1 ≤ q + β1

(6)

Using the symmetry properties of cumulants (Ni-
kias, 1993), the set of values forα1 andβ1 is defined
by : {

−q ≤ β1 ≤ 0

−2q ≤ α1 ≤ q + β1

(7)

3 PARAMETER ESTIMATION

3.1 Least-Squares (LS) Solution

Concatenating (5) for all values ofα1 andβ1 defined
by (7), we obtain the following system of equations :

Mθ = r (8)
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where :

θ = [h(1) · · · h(q) h2(1) h(1)h(2)

· · · h(1)h(q) h2(2) · · · h(2)h(q) h2(3)

· · · h2(q) ǫ4,3 ǫ4,3h
3(1) · · · ǫ4,3h

3(q)]T (9)

⋄ ǫ4,3 = γ4,w/γ3,w.

⋄ M is a matrix of dimension
h

5q2+7q+2

2
,

q2+5q+2

2

i
.

⋄ θ is a vector of dimension
h

q2+5q+2

2
, 1
i

.

⋄ r is a vector of dimension
h

5q2+7q+2

2
, 1
i

.

Assuming that(MT M) is invertible, the uniqueLS
estimate ofθ is

θ̂ = (MT M)−1MT r (10)

Solving (8) provides the parameter estimates
{h(i)}i=1,··· ,q as the first q components of the
estimated parameter vectorθ̂ in (10).

3.2 Gradient Descent Algorithm
(GDA)

The idea satisfying this paper is to reduce the dimen-
sion of the estimated parameter vector (9). In section
3.1, θ is a vector of

�
q2+5q+2

2

�
elements. The linear

algebra solutions regard the elements of the vectorθ
clarified in relation (9) as independent parameters, but
the dependence of these elements is almost obvious.
To palliate the problem of redundancy inθ, we pro-
pose a new approach based on non-linear optimiza-
tion algorithm. In this part, the parameters vectorθ is
a (q + 1) length vector. It has this form :

θNL = [h(1), · · · , h(q), ǫ4,3]
T (11)

The criterion to be minimized in this case is as fol-
lows :

JLS = ‖r − φ(θNL)‖
2

TheGDA solution has the following form :

θ̂i+1
NLgr

= θ̂i
NLgr

+ λJT (r − φ(θ̂i
NLgr

)) (12)

where :
⋄ r is defined in section 3.1.
⋄ φ is the system of equations obtained by conca-

tenating (5) for all values ofα1 andβ1 defined
by (7).

⋄ J is the Jacobian matrix ofφ,

J =

[
∂φk

∂θNLl

]

(k,l)

wherek = 1, · · · , 5q2+7q+2

2
, andl = 1, · · · , q+1.

⋄ λ is the step-size.

The parameterǫ4,3 must be estimated since we are
supposed that we don’t know the nature of the distri-
bution of the input signalw(k).

3.3 Gauss-Newton Algorithm (GNA)

This algorithm has this form :

θ̂i+1
NLgn

= θ̂i
NLgn

+ µ(JT J)−1JT (r − φ(θ̂i
NLgn

))

(13)
where :

⋄ r, φ, andJ are defined in section 3.2.
⋄ θ̂NLgn

has the form of (11).
⋄ µ is the step-size of this algorithm.

4 SIMULATION RESULTS

To demonstrate the effectiveness of the proposed
techniques, let us examine two examples treated in
the literature. In both models the input signalw(k) is
a zero-mean exponentially distributed i.i.d noise se-
quence withγ2,w = σ2

w = 1 andγ3,w = 2. We define
the Signal-to- Noise Ratio as

SNR(dB) = 10 log10

(
E[x2(k)]/E[v2(k)]

)

For each run, we calculate the Normalized Mean
Square Error (NMSE) defined as

NMSE =

∑q

i=1

(
h(i) − ĥ(i)

)2

∑q

i=1 h2(i)

whereh(i) andĥ(i) are respectively the actual and the
estimated impulse responses, respectively. The Error
to Signal Ratio (ESR) in decibels is also used as a
measure of the estimation error. The ESR is defined
as

ESR(dB) = 10 log10(NMSE)

Example 1 :

y(k) = w(k)−2.3333w(k−1)+0.6667w(k−2)+v(k)

The zeros of the system transfer functionH(z) are lo-
cated at2 and0.3333. This model has also been used
in (Abderrahim, 2001), (Giannakis, 1989), and (Srini-
vas, 1995).

Additive colored noise is generated as the output of
the following MA(2) model (Abderrahim, 2001) :

v(k) = e(k) + 2.3333e(k − 1) − 0.6667e(k − 2)

where the input sequencee(k) is an i.i.d Gaussian
sequence. We carried out Monte Carlo simulations
with K = 100 different noise sequences,N = 5120
data for each run, and three different values of SNR
(20dB, 10dB, and0dB). The simulation results are
summarized in Tables 1, 2, and 3.

Example 2 :

y(k) = w(k) + 0.1w(k − 1) − 1.87w(k − 2)

+3.02w(k−3)−1.435w(k−4)+0.49w(k−5)+v(k)
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Table 1: System identification using signal model MA(2),
Mean, Standard deviation, NMSE, and ESR . SNR=20dB.

True Values LS GDA GNA
λ = 8.10−5 µ = 0.5

h(1) -2.3333 mean -2.1704 -2.2676 -2.2676
σ 0.0585 0.0149 0.0149

h(2) 0.6667 mean 0.5101 0.6541 0.6541
σ 0.0211 0.0060 0.0060

NMSE mean 0.0093 0.0008 0.0008
σ 0.0043 0.0003 0.0003

ESR -20.3041 -30.9500 -30.9500

Table 2: System identification using signal model MA(2),
Mean, Standard Deviation, NMSE, and ESR. SNR=10dB.

True Values LS GDA GNA
λ = 8.10−5 µ = 0.5

h(1) -2.3333 mean -2.1013 -2.1158 -2.2624
σ 0.1835 0.4664 0.0511

h(2) 0.6667 mean 0.4987 0.6166 0.6557
σ 0.0632 0.1275 0.0192

NMSE mean 0.0203 0.0478 0.0014
σ 0.0181 0.1490 0.0015

ESR -16.9250 -13.2057 -28.5387

The zeros of the system transfer functionH(z) are lo-
cated at−2, 0.7±j0.7 and0.25±j0.433. This model
has also been used in (Alshebeili, 1993), (Stogioglou,
1996), (Tugnait, 1990), and (Tugnait, 1991).

Additive colored noise is generated as the output of
the following MA(3) model (Abderrahim, 2001) and
(Na, 1995) :

v(k) = e(k)+0.5e(k−1)−0.25e(k−2)+0.5e(k−3)

where the input sequencee(k) is an i.i.d Gaussian se-
quence. In this caseN = 10240. The simulation re-
sults are given in tables 4, 5, and 6.

In these simulations, we initialize the nonlinear op-
timization algorithms with the LS solution. The ad-
vantage of this is to avoid the convergence to local
minimum. The good value of the step-size allows also
to avoid this problem of the local minima.

Table 1 shows that the parameters estimation via
the proposed method is much more powerful than LS
solution in term of mean value, standard deviation, or
NMSE, and ESR . The Gradient Descent and Gauss-
Newton algorithms converge to the same values, but
the convergence speed is different. The figures 2 and
3 illustrate this.

Tables 2 and 5 show that the Gradient Descent al-
gorithm is sensitive to the additive noise. However,
the Gauss-Newton algorithm is more robust to mea-
surement noise.

We can note that for a low SNR (SNR = 0dB),
the estimate of the parameters is poor what is due
to the bad estimate of third and fourth order cumu-
lants. These estimation results could be improved by
processing more data, which allows to get better esti-
mates of the cumulants.

Table 3: System identification using signal model MA(2),
Mean, Standard Deviation, NMSE, and ESR. SNR=0dB.

True Values LS GDA GNA
λ = 8.10−5 µ = 0.5

h(1) -2.3333 mean -1.3781 -0.8631 -1.0952
σ 0.6033 0.6223 1.0662

h(2) 0.6667 mean 0.3217 0.3006 0.2882
σ 0.1794 0.2092 0.3499

NMSE mean 0.2418 0.4623 0.4964
σ 0.2464 0.2762 0.4890

ESR -6.1661 -3.3511 -3.0421

Table 4: System identification using signal model MA(5),
Mean, Standard Deviation, NMSE, and ESR. SNR=20dB.

True Values LS GDA GNA
λ = 6.10−9 µ = 0.5

h(1) 0.1 mean 0.0474 0.0779 0.0887
σ 0.0359 0.0384 0.0392

h(2) -1.87 mean -1.4212 -1.2822 -1.7798
σ 0.0845 0.0665 0.1010

h(3) 3.02 mean 2.2489 1.6874 2.8902
σ 0.1258 0.0667 0.1494

h(4) -1.435 mean -1.0779 -1.1768 -1.4206
σ 0.0671 0.0754 0.0876

h(5) 0.49 mean 0.3640 0.3927 0.4536
σ 0.0275 0.0301 0.0320

NMSE mean 0.0651 0.1484 0.0046
σ 0.0221 0.0184 0.0075

ESR -11.8660 -8.2867 -23.3527

By increasing the orderq of the model, we use the
third and fourth order cumulants with large lags that
are poorly estimated for a low SNR. The consequence
of this is the bad parameters estimated (table 6) much
poorer than in the case of a model of order2 (table 3).

These two algorithms are numerically expensive
compared to the Least-Squares algorithm.

5 CONCLUSION

In this paper, a blind identification of the MA mo-
dels using Higher-Order Statistics (HOS) is exposed.
The linear algebra solution is compared with the non-
linear optimization algorithms solution. Computer si-
mulation results prove that it is interesting to use this
algorithms in spite of their expensive calculative cost.
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Figure 2: The convergence of h(1).
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Figure 3: The convergence of h(2).

PARAMETER ESTIMATION OF MOVING AVERAGE PROCESSES USING CUMULANTS AND NONLINEAR
OPTIMIZATION ALGORITHMS

15


