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Abstract: In this paper nonlinear optimization algorithms, namely the Gradient descent and the Gauss-Newton algo-
rithms, are proposed for blind identification of MA models. A relationship between third and fourth order
cumulants of the noisy system output and the MA parameters is exploited to build a set of nonlinear equa-
tions that is solved by means of the two nonlinear optimization algorithms above cited. Simulation results are
presented to compare the performance of the proposed algorithms.

1 INTRODUCTION linear optimization algorithms, in the event Gradient
descent and Gauss-Newton algorithms, well be deve-
loped. Computer simulation results are given in Sec-
tion 4 to show the effectiveness of the proposed tech-
niques. Finally, the paper is concluded in Section 5.

Numerous methods have been proposed in the lite-
rature for blind identification of MA models using
cumulants. The present paper is concerned with
the linear algebra solutions approach. It consists in
constructing a system of equations obtained from ex-
plicit relations that link third and fourth order cumu- 2 PROBLEM FORMULATION

lants of the noisy output with the MA parameters and

solving this system by the least-squares method ((Al- . . ] o )
shebeili, 1993), (Giannakis, 1989), (Martin, 1996), We consider the discrete, causal, linear time-invariant
(Na, 1995), (Srinivas, 1995), (Stogioglou, 1996), (Tu- Process _represented on figure 1, with the following
gnait, 1990), (Tugnait, 1991)). In order to take the assumptions :

redundancy in the unknown parameters vector into

account, (Abderrahim, 2001) proposed a constrained H.1. The inputw(k) is a zero mean, independent

and identically distributed (i.i.d), stationary non-

optimization based solution. Gaussian, non measurable real sequence, with
In this paper, we propose another approach to re- unknown distribution, and :

duce this redundancy. It consists in exploiting the non-

linearity existing in the unknown parameters estima- Crnw(T1, T2, o, Tm—1) = Ymuw 0(T1, T2, ..., Tm—1)

ted vector. In the literature, the parameters of the vec-

tor to be estimated are regarded as independent, but ~ Where:

actually it isn’t the case. Thus the major contribution & Crmw(T1,72,...,Tm—1) iSthe mth-order cu-

of this paper lies in the estimates of a non redundant mulant of the input signal of the MA model.

vector of unknown parameters. S Ymaw 0, ¥V m>2

The organization of this paper is as follows. The
problem formulation is given in Section 2. In Sec-
tion 3, the resolution with least squares and the non- m—1

<>’Ym,,w: 'm.,w(0,0,...,O)
———
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o 2w = ou, = E{w(k)*} is the variance of

w(k).

o vsw = E{w(k)’} isthe skewness ab(k).

O Yaw = E{w(k) 117 is the

kurtosis ofw(k).
H.2. The additive noise (k) is assumed to be an

1 —3[E{w(k)?

Settingn = 3, m = 4, ands = 1 in equation (3),
yields

imagx

> hih

1=lmin

Z + 7 h(Z + Tg)cg,y(ﬁl,i + Oél) =

Jmaz

B Z h(j)h(j + B1)Cay(T1, 72, + 1) (4)

i.i.d Gaussian sequence with unknown variance, 4% j=;....

zero-mean, and independentuofk).

H.3. The non measurable outputk) is assumed
to be a nonminimum or minimum phase MA
process.

H.4. The orderg of the model is assumed to be
known.

w(k)

o x(9) ? v

(k)

Figure 1: Single-channel system.

The measured noisy MA procegék) is represen-
ted by the following equations :

(k) = {p(0) =1} (@)

y(k) = z(k) + v(k) )

For the MA model described by equation (1) with
the assumptionsl.1, H.2, H.3, andH .4, the nth and
nth-order cumulants of the MA system output (2) are
linked by the following relation (Abderrahim, 2001) :

Z h(i)l i‘[ﬁ h(i + T3)
k=1

1=lmin

X

Cn,y(ﬂla 52, o o8 7ﬂn,5,1, i+a1, i+a27 e ,i+a3) =
"Y jmam n—s—1
. h(j) l I G +8e)| x
T f=1
Cm,y(Tla T2y vy Tm75717j+a17j+a2a e 7j+as)
3)

wherem > 2, n > 2 ands is an arbitrary integer
number satisfying1 < s < min(m,n) — 2,

Imin = mamg T  ~Tm—s—1) )
? = nun 1, T Tm—s—1
d maz
an ]mzn = max(O ﬂh 7_ﬂn7571)
Jmaz = mzn(Qa q— ﬁh g — ﬁn—s—l)

12

Z‘min = max( *7_17 *7—2)
) =min(q,q — 11,9 — T2)
h .maa:
where Jmin = qu(O —B)
Jmax = mm(q, q— 61)

By settingmy, = 7 = 0 in (4), we get the rela-
tion used in this paper for estimating the parameters
{h(i)}i=1,2,... o Of the MA model.

(1)Cs,4 (01,1 + 1) =

Jmaz

> h(j)h

J=Jmin

] +ﬂ1)04 y(O 0,7 +a1) (5)

It is important to determine the
values of a; and B; so that the cumulants
{C3,4(B1,i + 1) tizo,-. g {C1y(0,0,5  +
A1)} jmjomin. e imas s and the coefficienth(j + 51)}
be not all zero for each equation.

By taking account of the property of causality of
the model and the domain of support for third and
fourth order cumulants of an MA&J process (Mendel,
1991), we obtain :

—q¢<p1<q
—2¢g< a1 <¢q
2+ 61 <oy <qg+ B

range of

(6)

Using the symmetry properties of cumulants (Ni-
kias, 1993), the set of values fa; and; is defined

by :

{—qsﬁlgo @

—2¢< a1 <qg+ B

3 PARAMETER ESTIMATION

3.1 Least-Squares(LS) Solution

Concatenating (5) for all values of, and3; defined
by (7), we obtain the following system of equations :

MO =r (8)
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where :
6= [h(1) -+ h(g) h3(1) A(1)h(2)
Ch(Dh(a) B2(2) - h2)h(g) h3(3)
o h%(q) eas eazhd(1) - eash® (@)t (9)
O €43 = 74,w/73,w-
o M is a matrix of dimensiofse*+a+2, *+sat2],
o 0 is a vector of dimensiofi+3e2 1] .

o ris a vector of dimensiofie<* 47242 1] .
Assuming that MT M) is invertible, the uniqué.S
estimate of is
0=(M"M)" My (10)
Solving (8) provides the parameter estimates
{h(i)}i=1,... 4 as the firstq components of the
estimated parameter vectin (10).

3.2 Gradient Descent Algorithm
(GDA)

The idea satisfying this paper is to reduce the dimen-
sion of the estimated parameter vector (9). In section
3.1,0 is a vector of(%) elements. The linear
algebra solutions regard the elements of the vettor
clarified in relation (9) as independent parameters, but

the dependence of these elements is almost obvious.

To palliate the problem of redundancy finwe pro-

pose a new approach based on non-linear optimiza-

tion algorithm. In this part, the parameters vectas
a(q + 1) length vector. It has this form :

9NL = [h(l), ,h(q)764’3}T (11)

The criterion to be minimized in this case is as fol-
lows :

Jis = |Ir — ¢(On1)|?
The GDA solution has the following form :
O =0nr,, + M (= ¢(0s,,))
where :
o ris defined in section 3.1.

o ¢ is the system of equations obtained by conca-
tenating (5) for all values ofy; and 3; defined

by (7).
o J is the Jacobian matrix af,

7= |
(kD)

00n1,
wherek = 1,... 54702 andl = 1,--- , ¢+1.
o Ais the step-size.

(12)

The parametet, 5 must be estimated since we are
supposed that we don’t know the nature of the distri-
bution of the input signal (k).

PROCESSES USING CUMULANTS AND NONLINEAR
OPTIMIZATION ALGORITHMS

3.3 Gauss-Newton Algorithm (GNA)

This algorithm has this form :

(JT )T (r = ¢(0 1))
(13)

j\Jrrqu = 9§VLgn + p
where :
o r, ¢, andJ are defined in section 3.2.

¢ On1,, has the form of (11).
o is the step-size of this algorithm.

4 SIMULATION RESULTS

To demonstrate the effectiveness of the proposed
techniques, let us examine two examples treated in
the literature. In both models the input signglk) is

a zero-mean exponentially distributed i.i.d noise se-
quence withys ., = 02, = 1 and~s; ,, = 2. We define

the Signal-to- Noise Ratio as

SNR(dB) = 10logyo (E[z*(k)]/E[v?(k)])

For each run, we calculate the Normalized Mean
Square Error (NMSE) defined as

(h(i) - ﬁ(i))Q
13

q
i=1

NMSE =

whereh(i) andﬁ(i) are respectively the actual and the
estimated impulse responses, respectively. The Error
to Signal Ratio (ESR) in decibels is also used as a
measure of the estimation error. The ESR is defined
as

Examplel:
y(k) = w(k)—2.3333w(k—1)+0.6667Tw(k—2)+v(k)

The zeros of the system transfer functiéiriz) are lo-
cated a and0.3333. This model has also been used
in (Abderrahim, 2001), (Giannakis, 1989), and (Srini-
vas, 1995).

Additive colored noise is generated as the output of
the following MA(2) model (Abderrahim, 2001) :

v(k) = e(k) + 2.3333¢(k — 1) — 0.6667e(k — 2)

where the input sequenegk) is an i.i.d Gaussian
sequence. We carried out Monte Carlo simulations
with K = 100 different noise sequenced, = 5120
data for each run, and three different values of SNR
(20dB, 10dB, and0dB). The simulation results are
summarized in Tables 1, 2, and 3.

Example2:

y(k) = w(k) + 0.1w(k — 1) — 1.87w(k — 2)
+3.02w(k—3)—1.435w(k—4)+0.49w(k—5)+v(k)

13
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Table 1: System identification using signal model MA(2),
Mean, Standard deviation, NMSE, and ESR . SNR=20dB.

Table 3: System identification using signal model MA(2),
Mean, Standard Deviation, NMSE, and ESR. SNR=0dB.

True Values LS GDA GNA True Values LS GDA GNA
A=810"° pu=05 A=810"° =05
h(1) -2.3333 mean -2.1704 -2.2676 -2.2676 h(1) -2.3333 mean -1.3781 -0.8631 -1.0952
o 0.0585 0.0149 0.0149 o 0.6033 0.6223 1.0662
h(2) 0.6667 mean 0.5101 0.6541 0.6541 h(2) 0.6667 mean 0.3217 0.3006 0.2882
o 0.0211 0.0060 0.0060 o 0.1794 0.2092 0.3499
NMSE mean 0.0093 0.0008 0.0008 NMSE mean 0.2418 0.4623 0.4964
o 0.0043 0.0003 0.0003 o 0.2464 0.2762 0.4890
ESR -20.3041 -30.9500 -30.9500 ESR -6.1661 -3.3511 -3.0421

Table 4: System identification using signal model MA(5),
Mean, Standard Deviation, NMSE, and ESR. SNR=20dB.

Table 2: System identification using signal model MA(2),
Mean, Standard Deviation, NMSE, and ESR. SNR=10dB.

True Values LS GDA GNA True Values LS GDA GNA

A=8.100° =05 A=6.109 =05

h(@) -2.3333 mean -2.1013 -2.1158 -2.2624 h(1) 0.1 mean 0.0474 0.0779 0.0887
o 0.1835 0.4664 0.0511 o 0.0359 0.0384 0.0392

h(2) 0.6667 mean 0.4987 0.6166 0.6557 h(2) -1.87 mean -1.4212 -1.2822 -1.7798
o 0.0632 0.1275 0.0192 o 0.0845 0.0665 0.1010

NMSE mean 0.0203 0.0478 0.0014 h(3) 3.02 mean 2.2489 1.6874 2.8902
o 0.0181 0.1490 0.0015 o 0.1258 0.0667 0.1494

ESR -16.9250 -13.2057 -28.5387 h(4) -1.435 mean -1.0779 -1.1768 -1.4206
o 0.0671 0.0754 0.0876

h(5) 0.49 mean 0.3640 0.3927 0.4536
o 0.0275 0.0301 0.0320

NMSE mean 0.0651 0.1484 0.0046
1 - o 0.0221 0.0184 0.0075

The zeros of the system transfer functiéiiz) are lo == . i oo 900

cated at-2, 0.7+ 0.7 and0.25+;0.433. This model
has also been used in (Alshebeili, 1993), (Stogioglou,
1996), (Tugnait, 1990), and (Tugnait, 1991).

Additive colored noise is generated as the output of
the following MA(3) model (Abderrahim, 2001) and
(Na, 1995) :

v(k) = e(k)+0.5e(k—1)—0.25e(k—2)+0.5e(k—3)

By increasing the ordey of the model, we use the
third and fourth order cumulants with large lags that
are poorly estimated for a low SNR. The consequence
of this is the bad parameters estimated (table 6) much
poorer than in the case of a model of or@dtable 3).

These two algorithms are numerically expensive

where the input sequeneék) is an i.i.d Gaussian se- compared to the Least-Squares algorithm.

guence. In this cas®& = 10240. The simulation re-
sults are given in tables 4, 5, and 6.

In these simulations, we initialize the nonlinear op-
timization algorithms with the LS solution. The ad-
vantage of this is to avoid the convergence to local
minimum. The good value of the step-size allows also In this paper, a blind identification of the MA mo-
to avoid this problem of the local minima. dels using Higher-Order Statistics (HOS) is exposed.

Table 1 shows that the parameters estimation via The linear algebra solution is compared with the non-
the proposed method is much more powerful than LS linear optimization algorithms solution. Computer si-
solution in term of mean value, standard deviation, or mulation results prove that it is interesting to use this
NMSE, and ESR . The Gradient Descent and Gauss-algorithms in spite of their expensive calculative cost.
Newton algorithms converge to the same values, but
the convergence speed is different. The figures 2 and
3 illustrate this.

Tables 2 and 5 show that the Gradient Descent al-
gorithm is sensitive to the additive noise. However,
the Gauss-Newton algorithm is more robust to mea-

surement noise. tion using Cumulantslournal Européen des Systémes
We can note that for a low SNRS(VR = 0dB), Automatisés-JESA, Vol. 35, No. 5, pp. 601622

the estimate Qf the parameters is poor what is dueAlshebeili, S. A, Venetsanopoulos, A. N., and Cetin, A.

to the bad estimate of third and fourth order cumu- E. (1993, April). Cumulant Based Identification Ap-

lants. These estimation results could be improved by proaches for Nonminimum Phase FIR Systet&EE

processing more data, which allows to get better esti- Transactions on Signal Processing, Vol. 41, No. 4, pp.

mates of the cumulants. 1576-1588

5 CONCLUSION
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Figure 3: The convergence of h(2).
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