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Abstract: In this paper, partially reversibility property and reversibility enforcement are studied for unbounded Petri nets.
A method which tests partial reversibility, and also finds a bound vector guaranting reversibility for unbounded
Petri nets is developed and an algorithm of the method is generated. Furthermore a controller design approach
which enforces reversibility for unbounded Petri nets is introduced.

1 INTRODUCTION reversible subset of the reachability set. Moreover,
we explain the controller presented in (Aybar et al.,

Petri net model is a common tool for discrete event 2005) Which enforces reversibility at each times it is

systems. Some properties and definitions are used td*S€d With the bound vector proposed by our method.

describe this model. Properties of Petri nets are de-
composed into two types such as behavioral and struc-
tural properties (Desrochers and Al-Jaar, 1995; Proth2  PRELIMINARIES
and Xie, 1996). In this work, we consider reversibility
and patrtially reversibility which are two of important . .
behavioral properties of Petri nets. 2.1 Notationsof Petri Nets

Some approaches have been presented to analyse
reversibility and partially reversibility of Petri nets. A Petri net is denoted by five tuple
The most favor is constructing reachability set. But G(P, T, N,O,m,), whereP is the set oplaces, T is
it is not efficient for unbounded Petri nets because of the set of transitionsV : P x T — Z is theinput
infinite number of reachable marking vectors (Peter- matrixthat specifies the weights of arcs directed from
son, 1981). If a Petri net is partially reversible for at places to transitions) : P x T' — Z is theoutput
least one initial state, that is proven by using a struc- matrix that specifies the weights of arcs directed
tural analysis method named T-invariant (Desrochers from transitions to places, wherg is the set of
and Al-Jaar, 1995). The method which was developed non-negative integer numbers, ang is theinitial
in (Jeng et al., 2002) verifies reversibility for 1-place marking.
unbounded Petri nets. Since these approaches give M : P — Z is amarking vectorin other words
sufficient but not necessary conditions for partially re- marking, M (p) indicates the number dbkensas-
versibility, they do not propose a way to test partially signed by marking\/ to placep. A transitiont € T

reversibility of all unbounded Petri nets. is enabledif and only if M(p) > N(p,t) for all
In this work, reversibility enforcement is consid- p € P. A firing sequence is a sequence of enabled
ered for unbounded Petri nets. It is possible to en- transitionst;ts ... tx, wherety,to, ..., tp, € T. A

force reversibility for a Petri net, if the net is par- marking M’ is said to beeachablefrom M if there
tially reversible. Hence, testing partially reversibility exists a firing sequence starting frav (i.e., the first
is very important for our work. We present a method transition of the sequence fires &f) and yielding
to test partially reversibility for unbounded Petri nets. M’ (i.e., the final transition of the sequence yields
If the net is partially reversible the method proposes M’). The set denoted bR(G, M) is the set of all
a bound vector covering all reachable markings in a marking vectors reachable from/. R(G,myg) is
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called asreachability setof the Petri net. We let
E(G, M) to denote the set of transitions which are
enabled at\/ € R(G,myg). For a Petri net, we also
let p(M, g) to denote tharansition function which
gives the yielded marking when the sequendees
starting fromM (p is in fact a partial function, since
it is not defined ifg contains transitions which are not
enabled) (Aybar antftar, 2003). If M’ = p(M,g),
thenM'’' = M + (O — N)U = M + AU. Here;M
and M’ are markings)N andO are input and output
matrices respectivelyd := O — N is incidence
matrixandU : T — Z is firing count vectowhose
jth element indicates how many timgsis fired ing.

Let us remember some behavioral properties
related to the discussion of this workG is said
to be K-bounded if M(p) < K(p), ¥p € P,
VM € R(G,mp) (K : P — Z), G is said to be
boundedif it is K-bounded for somé{ : P — Z.
OtherwiseG is unbounded@ is said to beeversible
if mo € R(G,M), VM € R(G,mgp). G is said
to be partially reversibleif mq € R(G, M) for at
least oneM € R(G,myp) such thatM # mg. Note
that, if a Petri net is partially reversible, there exists
a reversible subset aR(G,m) and it is possible
to find a bound vector covering all markings in this
subset. It is possible to enforce reversibility of the net
by using this bound vector with the controller in (Ay-
bar et al., 2005). Therefore, we say that this bound
vector guarantees reversibility for the considered net.
Deadlockis said to occur in a Petri net if there exists
M € R(G,myp) such that no transition € T can
fire at M (Desrochers and Al-Jaar, 1995). A marking
M coversa markingM if M(p) > M(p), Vp € P.

A marking M dominatesa marking), if M covers
M and M # M. That is denoted by\/ >, M.
If M >, M and £(G, M) E(G, M), then
p(M,t) >4 p(M,t), Vt € E(G,M) (Cassandras
and Lafortune, 1999).

The behavioral properties of Petri nets are com-
monly explained by using reachability set. Since
unbounded Petri nets have infinite number of reach-
able markings, the coverability tree (CT) is used to
analyse some behavioral properties instead of the
reachability set. CT is drawn as a tree, where each
node of tree either explicitly represents a reachable
marking ofmg or covers a reachable marking nf,
throughw notation. If there exists a notation at a
place of a marking in the CT, this place is unbounded
place and this Petri net is unbounded (Desrochers an
Al-Jaar, 1995). Note that since the representation of
an infinite set is finite, an infinite number of markings
must be mapped onto the same representation in th
CT.

In this paper an algorithm in (Zhou and DiCe-
sare, 1993) (Algorithm 5.1 on page 104) is used to
construct CT.
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3 REVERSIBILITY FOR
UNBOUNDED PETRI NETS

Some works have been presented about reversibility
of Petri nets (Peterson, 1981; Desrochers and Al-Jaar,
1995; Jeng et al., 2002). But none of them has abil-
ity of testing partially reversibility of unbounded Petri
nets.

In this section we will explain a method, callBdr-
tially Reversibility Testing Metho@PRTM). PRTM
tests partially reversibility of unbounded Petri nets
and yields a bound vector guaranting reversibility for
the considered net. To facilitate discussion of the
method, we first give the following explanations and
Lemma 1.

Let R’ be a set of marking vectors such thet:=
{M € R(G,myg) | p(M,t) = mg, t € T} then
M(p) = mo(p) £ a,a € {0, 1..v,},Vp € P. This
meansvM € R', M(p) < mo(p) + v, Vp € P.
Herev, denotes the maximum number of token vari-
ation in placep by firing any enabled transition. It can
be determined for each plapes P by the following
way:

Vp = Itnea%((N(p7 t)? O(pat))

1)

Note that, if M (p) > mo(p) + v, for at least one
p € P, thenM ¢ R'.
Lemma 1: If there exists a marking/ € R’ such
that M # mg, Petri net is partially reversible. Other-
wise, Petri net is not partially reversible.
Proof: In a Petri net, each of the marking vector
M satisfiying p(M,t) = my are the members of
the setR’. So, if there exists/ € R’ such that
M # myg, Petri net is partially reversible. If there
exists noM € R(G,myg) such thatp(M,t) = myg
andM # my (there exists no marking/ € R’ such
that M # my), then there exists ndf € R(G,my)
such thatp(M, g) = my. Hence Petri net is not par-
tially reversible. o
Although we do not know the reachability set for
unbounded Petri nets; as a result of Lemma 1, we
know thatR’ must have a marking vector other than
mg for the presence of partially reversibility. There-
fore, it is efficient to determine only’ set of the
Petri net to test partially reversibility and one does
not need to construct all reachability set for this test.
PRTM tests partially reversibility of the considered
nbounded Petri net by using this fact. It is possi-
le to find a bound vector guaranting reversibility for
a Petri net, iff the net is partially reversible. Hence,

ePRTM proposes a bound vector guaranting reversibil-

ity, if the considered net is partially reversible.

At the first step, PRTM determines unbounded
places of the Petri net by using the CT and begins
obtaining reachable markings fromy by firing tran-
sitions. In fact, for any unbounded Petri net it is
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possible to construct sets of reachable markings such

that markings in each set are obtained by firing tran-
sitions or transition sequences from markings in the

one previous generated set and each marking in each

set dominates one of the marking in the one previous

generated set (Cassandras and Lafortune, 1999). The

method determines these sef$; ( Ry, Rs...) step
by step. When it finds a sét; such thatVM € R;
there exists @ € P (P denotes the set of unbounded
places) such thad/(p) > mo(p) + v;, this means
R;NR’ = (. Then, the method obtains a getnclud-
ing all of the markings obtained from, to that point,
ie R =J;_y R,. SinceVi € {1, 2,...}, each of the
markings inR;;1 will dominate one of the marking
in R;, R’ of the Petri net is a subset ¢t and it is
determined by searching the markinys € R such
thatp(M,t) = my. If there exists a marking/ € R’
suchthatM # my, this Petri netis partially reversible

(see, Lemma 1) and PRTM proposes a bound vector

covering all of the markings itk for guaranting re-
versibility of the Petri net. Otherwise, Petri net is not
partially reversible (see, Lemma 1) and it is impossi-

ble to guarantee reversibility. Hence, the method does

not propose any bound vector.
3.1 Algorithms

In this section, the algorithm for PRTM, which is
explained in Section 3, is presented with the help of a
motivation example.

The main algorithm for PRTM is named
Main|G, M] (see, Appendix A). In this algo-
rithm; first the set of unbounded places of a Petri
net is determined by the functio® = Cr(G)
which finds the set of unbounded placeB) (of
Petri net by constructing CT; for the Petri net
shown in Figure 1, the set of vectors in the CT is
{2107, 01217, 3007%, [0327, [21w]T,
[12w]”, [30w]”, [03w]"}andP = {ps}. Then
the setR’ of Petri net is determined by the algorithm
Rprime|G, M, P]. If there existsM € R’ such
that M # mg, Petri net is partially reversible and
a bound vector guaranting reversibility of the net
is determined. Otherwise Petri net is not partially
reversible (see, Lemma 1) and the algorithm is halted.

Main|G, M] algorithm callsRprime|G, M,
P] to constructR’ set of Petri net (see, Appendix A).
At this algorithm, the set®;, Rs, ... are the sets of

markings and each of these sets are obtained by firing

transitions or transition sequences from markings in
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Figure 1: Motivation example (Proth and Xie, 1996)
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Figure 2: Obtained markings of Petri net in Figure 1

first, all enabled transitions are fired fromy,. This
leads new markings. The new markings which are
previously generated are labeled @d. The new
markings which are deadlock are labelediagd. If

on the pathM = p(my, g) (path fromm, to a new
marking M), there exists a marking/ such that,
M >4 M, and&(G, M) = £(G, M), thenM s la-
beled asroot (p(M,t) >4 p(M,t), Yt € E(G, M)).
From markings which are not labeled ak&l, dead

or root, we continue firing transitions and obtain
new markings. If all of the enabled transitions of a
marking are fired, this marking is labeled@as. This
process is proceed until there exists no nolabeled
markings. Then, excepild labeled markings, all
of the markings obtained fronm, at this process
construct the sek, and theroot labeled markings in
Ry construct the se§ M,. Then a new cycle begins
by firing enable transitions of each markingsSii/.

As before, until there exists no nolabeled marking,
new markings are obtained and they are labeled. But
after that point rule of labeling asoot changes: a
new markingM is labeled as-oot if there exists a

the previous set. Each marking in each set dominatesmarking M in the setSM, such that,\l >, M

one of the marking in the one previous set, &, 1

is obtained by firing transitions frorR;, and each of
the markings inR;; dominates one of the marking
in R;, « € Z. For the construction of these sets;

and&(G, M) = £(G, M). Then, excepbld labeled
markings, all the markings obtained fros\/, at
this process construct the get and theroot labeled
markings inR; construct the se§ M. If VM € Ry,

183



ICINCO 2005 - ROBOTICS AND AUTOMATION

there exists @& € P such that,

M(p) >mo(p) +vp, (RiNR =0) (2)
all of the markings in the seR; (: > 1) also sat-
isfy equation (2). This means, none of the mark-
ings which will be obtained can not be a new mem-
ber of the setR’ of Petri net. Then a sek (R’ C
R) is obtained, i.e. R = Ry, and the setR’
of Petri net is determined by searching the mark-
ings in R satisfyingp(M,t) = mo, t € T. For
the motivation example, the sé&, is determined as
{2107, (1217, [300]7, [0327, 2117,
1227 [30 1]} (see, Figure 2). Since some
markings in the setR, do not satisfy equation
(2), i.e [2 1 1]7; from markings in the setR,
a new set is constructed aB; {[o 3 3]T,
1237, 302]T, [212]T} (see, Figure 2). Note
that, each of the markings iR; dominates one of the
marking inRy. Since all markings irR; satisfy equa-
tion (2), R = Ry. By searching the marking®/ in
R such thato(M, t) = my, the setR’ is obtained as
R’ = {[12 1]} for the Petri net shown in Figure 1.

If some of the markings oR; of a Petri net do not
satisfy equation (2), from each markings3in/, their
enabled transitions are fired. By this way, new mark-
ings are obtained and the s&d/, and R, are con-
structed (exceptid labeled markings, all of the mark-
ings obtained from markings i)/, at this process
construct the seR; and theroot labeled markings
in Ry construct the sef M>). This process is proceed
until a setR; satisfying equation (2) is obtained. Then
asetR (R’ C R)is obtained, i.eR = |J;_; R;, and
the setR’ of Petri net is determined by searching the
markings inR such thaip(M, t) = my.

If there existsM € R’ such thatM £ my, Petri net
is partially reversible and1ain[G, M] algorithm de-
termines a bound vectdt covering all of the mark-
ings in R and guaranting reversibility of Petri net. For
the motivation example, the s&' is determined as
{[1 2 1J7}. Since[1 2 1]T # my, Petri net is par-
tially reversible. The set of markings including all of
the markings on the path(mg,g) = [1 2 1] is a
reversible subset of the reachability set. Sidte-
cludes this set, the bound vec{8r3 2|7 covering all
markings inR guarantees reversibility of this net.

If there exists noM € R’ such thatM # my,
Petri net is not partially reversible and any bound vec-
tor is not determined by the algorithmtain|[G, M].
Because, there exists nd € R(G,mp) such that
p(M, g) = my, if a Petrinetis not partially reversible.
Therefore, anyK can not guarantee reversibility of
the net.

Theorem 1: The bound vectoK obtained by the al-
gorithm Main|G, M] guarantees reversibility for un-
bounded Petri nef.

Proof: If a marking M such thatM # mg is a mem-
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ber of R/, then Petri net is partially reversible and a
bound vectorK is determined. Sinc& covers not
only all of the markings iR’ but also all of the mark-
ings on the path fromn, to each markings iR’ (K
covers all of the markings i), it covers all of the
markings in a reversible subset of the reachability set
of the Petri net and it guarantees reversibility. <

4 A CONTROLLER TO ENFORCE
REVERSIBILITY

In (Aybar et al., 2005), some algorithms and a con-
troller have been presented to enforce boundedness,
reversibility and liveness. In that work; initially, with
an arbitrarily chosen bound vector, a bounded reach-
ability set of an unbounded Petri net has been deter-
mined; then, the reversible subset of that bounded set
is constructed by using developed algorithms. Since
obtained reversible set may be empty, reversibility can
not be enforced by the controller everytimes.

If the considered unbounded Petri net is partially
reversible, PRTM presented in the Section 3 obtains
a bound vectork, which guarantees reversibility for
unbounded Petri nets. By running the developed algo-
rithms in (Aybar et al., 2005) with the obtained bound
vector gives a reversible subset of the reachability set
of considered unbounded Petri net. So it is possible
to enforce reversibility for this net by using controller
presented in (Aybar et al., 2005). In this section that
controller will be explained.

If a bound vectorK is obtained by PRTM, Petri
net is partially reversible and it is possible to enforce
reversibility for this net by a controllerK” bounded
reachability set is found by the algorithm named
Bounded-Set (Aybar et al., 2005), i.8B=Bounded-
Set(G, K). Here, K andG are the inputs of the algo-
rithm and represent the bound vector and definition of
the Petri net, respectivelg B is the output of the al-
gorithm and represenfs bounded reachability set of
G. Reversible subset @t B is found by the algorithm
named Reversible-Set, i.ekRr=Reversible-Seff B)
whereR, is the reversible subset dtB. Note that,
since K guarantees reversibility,. # (. Then, it
is known that if a Petri net is partially reversible, the
controller ¢(M, t) below enforces boundedness and
reversibility of the net (Aybar et al., 2005).

[, if p(M,t) € R,
o(M,t) = { 0, otherwise ®)

where,M € R(G,my), t € E(G,M). If ¢(M,t) =
1, thenp(M,t) € R, and firing transitiont from
marking M is allowed. If ¢(M,¥) 0, then
p(M,t) ¢ R, and firing transitiont from marking
M is forbidden.
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5 EXAMPLE

(|RB| = 100, |R.| = 75). As a result, ob-
tained K guarantees reversibility of the Petri net. Ad-
ditionally the controllerc(M,t) enforces not only

Let us consider a Petri net modelled manufacturing poundedness but also reversibility for this net. If
system borrowed from (Proth and Xie, 1996) as an we were to give two specific cases as an exam-

example. The Petri net model of this system is pre- ple, ¢([1 2 021 1 1 2 07, ;) = 1 since
sented in Figure 3. Since the weights of arcs are unity, ,([120211120/7,#) =[130211120]7
vp = 1, Vp € P. For this Petri net, the setof places r: ¢(1 4010114 17, t,) = 0 since

P = {p1, p2, p3,71, T2, T3, P4, P5, s}, the set of
transitions” = {t1, to, ts, t4, ts5, tg}, and the initial
marking ismo = [100211100]7. Atthe first step,

I

Figure 3: Example Petri net.

the algorithmMain|[G, M] calls the functiorCr(G)
to find the unbounded places. Since there exists
notation at some placegy p;) of some markings at
CT of this Petri net (Apaydi®zkan, 2005), the set of
unbounded places of this netis= {p, ps}. Then
Main|G, M| calls the algorithnRprime|G, M, P]
to obtain a set includind?’ set of Petri net and®’ it-
self. For this purpose firsk, then R; are obtained
(|Ro| = 16, |R1| = 41, here| x | denotes the number
of elements of set#"). Since R; does not satisfy
equation (2), process continues aRd is obtained
(|R2| = 63). VM € Ry, R, satisfies equation (2).
This means,kR>; N R’ = ( and all the members of
R’ are obtainedR; N R’ =0, ¢ € {2, 3, 4, 5...}).
Then a sef? including R’ of Petri net is obtained as
R = Ry U Ry (|R| = 57). Through the markings in
the setR, only markingsM; = [101110100]7
andM; = [10010110 1]7 reach tomg
by firing only one transition, i.e. p(Mi,t3) =
mo, p(Ms,ts) = mo. Hence,R' is determined as
{My, Ms}. Since there exist somg&/ € R’ such
that M 75 mo (M1 75 mg, Mo ?é mo), Petri net
is partially reversible and\ain|[G, M] determines
the vectorK = [1 4121114 1] covering
all of the markings in the seR. The bounded set
RB, which is obtained by? B=Bounded-Setf, K),
is partially reversible and the reversible $&t, which
is obtained byRr=Reversible-Sef{ B), is not empty

p([140101141)7,4,) =[140101151]T ¢ R,.

6 CONCLUSION

In this work, we consider partially reversibility and re-
versibility enforcement for unbounded Petri nets. For
this purpose, a method and its corresponding algo-
rithm is developed. By using the algorithm, it is deter-
mined whether considered unbounded Petri net is par-
tially reversible or not. If it is partially reversible, the
algorithm determines a bound vector guaranting re-
versibility and the controlle¢( )M, t) enforces bound-
edness and reversibility of this net. If the Petri net
is not partially reversible, algorithm does not find a
bound vector and reversibility can not be enforced for
this Petri net.

In this work, a Matlab program is also developed to
simulate the presented algorithm.

Further research is underway to use T-invariants
(see, section 5.6 in (Desrochers and Al-Jaar, 1995))
for testing partially reversibility and reversibility en-
forcement of Petri nets. Only the Petri nets with con-
trollable transitions are the subjects under the discuss
in this work, this approach may be extended to Petri
nets with controllable and uncontrollable transitions.

APPENDICES

A) Algorithmsfor PRTM

Main [G,M]

P=Cr [G],

< R, R’ >=Rprime|G, p;;

If (AM € R’ such that\l # mg) Then
“Petri net is not partially reversible”
Exit Main

Else
“Petri net is partially reversible”
For (i=1:|PJ)

K (i) = max o (M([P]:);
End

The setsRy, R1, R2, RB andR, of the example Petri

net are not given here due to space limitations. But one can
see them in (Apaydi®zkan, 2005).
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End

Return K
Rprime|G, M, P]
i=0; SMy=0;

For eaclp € P determinev;;
Do loop Rtilde
If (i=0) Then
Ri=my;
Else
Ri=SM;_1;
End
Doloop R, set
Select a nolabeled markiny from R;;
If (M is previously generatgd hen
Label M asold; R; = R;,\{M};
Elself (£(G, M) = 0) Then
Label M asdead; _
Elself (i = 0 && IM on the path fronmn, to M,
such that\l >4 M, (G, M) = (G, M))Then
Label M asroot; SM; = SM; U{M};
Elself (i > 0 && IM € SM;_; such that
M >4 MEG,M)=E(G,M)) Then
Label M asroot; SM; = SM; U{M};
Else
Fire each transition i& (G, M) from M;
Add each obtained marking vector to &t
Label M ascnt;
End
If (A nolabeled marking i;) Then
If (¢ # 0)Then
R; = R\SM,_1;
End
Exit R, set
End
Loop R, set
If (YM € R; 3p in P such that
M(ﬁ) > mo(f)) + Vp ) Then
R = U;zé R_j;
Exit Rtilde
End
1 =1+1;
R, = @; SM; = 0;
Loop Rtilde
For (i =1:|R|)
If (3t € T such thap([R];,t) = mg) Then
R' = R U[R];;
End
End v
Return R’ R

B) Notation used in the presentation of algoritms:

For a setX, | X| denotes the number of elements of
set X and[X]; denotes theth element ofX (i =

1,2,...,]X]). All the sets are assumed to be ordered.
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If a new element is added to a set size the new
element is taken as then(+ 1)th element of the set.
U is used to setunion If a vector X dominates a
vectorY, X >, Y denotes this situationM (p;),
denotes théth place of marking\/. The logic ‘and’
operation is represented By& in the algorithms.
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