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Abstract: Gaussian processes prior model methods for data analysis are applied to wind turbine time series data to 
identify both rotor speed and rotor acceleration from a poor measurement of rotor speed. In so doing, two 
issues are addressed. Firstly, the rotor speed is extracted from a combined rotor speed and generator speed 
measurement. A novel adaptation of Gaussian process regression based on two independent processes rather 
than a single process is presented. Secondly, efficient algorithms for the manipulation of large matrices are 
required. The Toeplitz nature of the matrices is exploited to derive novel fast algorithms for the Gaussian 
process methodology that are memory efficient. 

1 INTRODUCTION 

Following some initial publications in the late 1990s 
(e.g., Rasmussen (1996), Gibbs (1997), Mackay 
(1998), Williams and Barber (1998)), interest has 
grown quickly into the application of Gaussian 
process prior models to data analysis; e.g. Williams 
(1999), Gibbs and Mackay (2000), Sambu et al 
(2000), Toshioka and Ishii (2001), Leith et al 
(2002), Shi et al (2003), Solak et al (2003), Leithead 
et al (2003a), Leithead et al (2003b). In this paper, 
these methods are applied to wind turbine time 
series data, specifically, site measurements of the 
rotor speed for a commercial 1MW machine. 
However, the measurement is some unknown 
combination of the rotor speed and the generator 
speed (scaled by the gearbox ratio) (Leithead et al, 
2003b). Furthermore, the data is corrupted by 
significant measurement noise. The objective of the 
data analysis is to extract from the data both the 
rotor speed and the rotor acceleration, an initial yet 
important part of identifying the aerodynamics and 
drive-train dynamics of variable speed wind turbines 
(Leithead et al, 2003b). Previously, only traditional 

filtering methods have been employed (Leithead et 
al, 2003b). 

To successfully identify the wind turbine rotor 
speed and acceleration using Gaussian process prior 
models, two particular issues must be addressed. 
Firstly, since the measurement is a combination of 
rotor speed and generator speed, only that 
contribution to the measurement due to the rotor 
speed must be extracted. Secondly, since analysis 
using Gaussian process prior models involves the 
inversion and multiplication of N-dimensional 
square matrices where N is the number of data 
measurements (24,000 in this case), the matrix 
manipulations must be efficient. In this paper, novel 
adaptations of the Gaussian process data analysis 
methodology to meet these two issues are presented  
(the first in section 3 and the second in section 4) 
and successfully applied to the wind turbine data (in 
section 5).  
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2 GAUSSIAN PROCESS PRIOR 
MODELS 

Gaussian process prior models and their application 
to data analysis is reviewed in theis section. 

Consider a smooth scalar function f(.) dependent 
on the explanatory variable, . Suppose 
N measurements, { , of the value of the 
function with additive Gaussian white measurement 
noise, i.e. y

pD ℜ⊆∈z
}N

1iii )y,( =z

i=f(zi)+ni,  are available and denote them 
by M.  It is of interest here to use this data to learn 
the mapping f(z) or, more precisely, to determine a 
probabilistic description of f(z) on the domain, D, 
containing the data. Note that this is a regression 
formulation and it is assumed the explanatory 
variable, z, is noise free. The probabilistic 
description of the function, f(z), adopted is the 
stochastic process, fz, with the E[fz ], as z varies, 
interpreted to be a fit to f(z). By necessity, to define 
the stochastic process, fz, the probability 
distributions of fz for every choice of value of D∈z  
are required together with the joint probability 
distributions of  for every choice of finite 
sample, {z

i
fz

1,…,zk}, from D, for all k>1. Given the 
joint probability distribution for 

i
, i=1..N, and the 

joint probability distribution for n
f z

i, i=1..N, the joint 
probability distribution for yi, i=1..N, is readily 
obtained since the measurement noise, ni, and the 
f(zi) (and so the 

i
) are statistically independent. M 

is a single event belonging to the joint probability 
distribution for y

f z

i, i=1..N.  
In the Bayesian probability context, the prior 

belief is placed directly on the probability 
distributions describing fz which are then 
conditioned on the information, M, to determine the 
posterior probability distributions. In particular, in 
the Gaussian process prior model, it is assumed that 
the prior probability distributions for the fz are all 
Gaussian with zero mean (in the absence of any 
evidence the value of f(z) is as likely to be positive 
as negative). To complete the statistical description, 
requires only a definition of the covariance function 

=E[ , ], for all z),(C jif zz
i

f z j
f z i and zj. The 

resulting posterior probability distributions are also 
Gaussian. This model is used to carry out inference 
as follows.  

Clearly  where p(M) 
acts as a normalising constant.  Hence, with the 
Gaussian prior assumption, 
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where , ΛT
Nyy ],[ 1=Y 11 is E[fz, fz], the ijth 

element of the covariance matrix Λ22 is E[yi, yj] and 
the ith element of vector Λ21 is E[yi, fz].  Both Λ11 and 
Λ21 depend on z.  Applying the partitioned matrix 
inversion lemma, it follows that  
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with  , . 
Therefore, the prediction from this model is that the 
most likely value of f(z) is the mean, , with 

variance Λ

Yz
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z. Note that  is simply a z-dependent 
weighted linear combination of the measured data 
points, Y, using weights . The measurement 
noise, n

zf̂

-1
22

T
21ΛΛ

i, i=1,..N, is statistically independent of f(zi), 
i=1,..N, and has covariance matrix B. Hence, the 
covariances for the measurements, yi, are simply 

E[yi,yj] = E[ , ]+ B
i

f z j
f z ij ; E[yi, fz] = E[ , f

i
f z z]  (3) 

In addition, assume that the related stochastic 
process, , where  and eif e

z
δ δ−= δ+ /)f(ff )(
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a unit basis vector, is well-defined in the limit as 
0→δ , i.e. all the necessary probability 

distributions for a complete description exist. Denote 
the derivative stochastic process, i.e. the limiting 
random process, by . When the partial derivative 

of f(z) in the direction e

if e
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i exists, E[ ] as z varies is 

interpreted as a fit to 
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covariance E[ , ] is sufficiently differentiable, 

it is well known (O’Hagan, 1978) that  is itself 
Gaussian and that 
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where zi denotes the ith element of z; that is, the 
expected value of the derivative stochastic process is 
just the derivative of the expected value of the 
stochastic process. Furthermore, 
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where Q(z1
i∇ o,z1) denotes the partial derivative of 

Q(zo,z1) with respect to the ith element of its first 
argument,  etc. 
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The prior covariance function is generally 
dependent on a few hyperparameters, θ . To obtain a 
model given the data, M, the hyperparameters are 
adapted to maximise the likelihood, p(M|θ), or 
equivalently to minimize the negative log likelihood, 
L(θ), where 

YY 1)(
2
1)(detlog

2
1)( −+= θθθ CCL T     (6) 

with 22)( Λ=θC , the covariance matrix of the 
measurements.  

3 MODELS WITH TWO 
GAUSSIAN PROCESSES  

Suppose that the measurements are not of a single 
function but of the sum of two functions with 
different characteristics; that is, the measured values 
are yi=f(zi)+g(zi)+ni. Now, it is of interest to use the 
data to learn the mappings, f(z) and g(z), or, more 
precisely, to determine a probabilistic description for 
them. The probabilistic description by means of a 
single stochastic process, discussed in the previous 
section, is no longer adequate. Instead, a novel 
probabilistic description in terms of the sum of two 
independent stochastic processes, fz and gz, is 
proposed below. 

Since fz and gz are independent,  E[FGT]=0 where 
 and . Let the 

covariance functions for f

T]f,f[
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z and gz be  and 

, respectively. Note that this is a different 
model from one using a single stochastic process 
with covariance function, (C
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with ,  and 
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The prior joint probability distribution for F, G 

and Y is Gaussian with mean zero and covariance 
matrix Λ. The requirement is to obtain the posterior 
probability distribution for F and G conditioned on 
the data set, M, subject to the condition that they 
remain independent. Of course, the posterior 
probability distribution remains Gaussian. The mean 
and covariance matrix for the posterior is provided 
by the following theorem (Leithead et al, 2005). 

 

Theorem 1: Given that the prior joint probability 
distribution for F, G and Y is Gaussian with mean 
zero and covariance matrix Λ, the posterior joint 
probability distribution for [FT, GT ]T conditioned on 
the M, subject to the condition that they remain 
independent, is Gaussian with 
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where FFF BQ Λ+= . 
 
Proof. Omitted due to space limitations. 

 
Note, since fz and gz remain independent when 

conditioned on M, the prediction and covariance for 
(fz+gz) are simply the sum of the individual 
predictions and covariance values. 
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Figure 1:  Data values (***), long length-scale component 
with confidence intervals (––) and total error and 
confidence interval (==) 

 
Example: A commonly used prior covariance 
function for a Gaussian process with scalar 
explanatory variable is 

][ 2
2
1 )zz(exp jida −−      (9) 

It ensures that measurements associated with nearby 
values of the explanatory variable should have 
higher correlation than more widely separated values 
of the explanatory variable;  is related to the 
overall mean amplitude and d inversely related to 
the length-scale of the Gaussian process. 

a

Let the covariance function for fz be (9) with 
a=1.8 and d=2.5, and the covariance function for gz 
be (9) with a=0.95 and d=120; that is, fz has a long 
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length-scale and gz a short length-scale. In addition, 
let the measurement noise be Gaussian white noise 
with variance b=0.04, i.e. Bij=bδij., where δij is the 
Kronecker delta. A set of 800 measurements at 
constant interval, 0.01, for yi=f(zi)+g(zi)+ni, with the 
f(zi) and g(zi) the sample values for the stochastic 
processes fz and gz, respectively, is shown in figure 
1. 

A prediction for the long and short length-scale 
components is obtained using (8); that is, the 
conditioning on the data is chosen such that as much 
of the data as possible is explained by the long 
length-scale component. The long length-scale 
component with its confidence interval ( standard 
deviations) is shown in Figure 1 and the short 
length-scale component with its confidence interval 
is shown in Figure 2. The prediction error for (f

2±

z+gz) 
with its confidence interval is also depicted in Figure 
2. 
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Figure 2: Short length-scale component with confidence 
intervals 

 
In Section 5, Theorem 1 is applied to the wind 

turbine measurement data to extract the contribution 
due to the rotor speed and, together with (4) and (5), 
to identify the rotor acceleration.  

4 TOEPLITZ-BASED 
EFFICIENCY IMPROVEMENT  

In section 3, a novel adaptation of the Gaussian 
regression methodology to support the extraction of 
separate components from data is presented. 
However, before that procedure can be applied to 
large data sets, fast and memory efficient algorithms 

are required. That requirement is addressed in this 
section. 

As the log likelihood, (6), is in general nonlinear 
and multimodal, efficient optimisation routines 
usually need gradient information, 
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where iθ  denotes the i-th hyperparameter and )(⋅tr  
the trace operation of a matrix. Let us denote 

iC θ∂∂ /  hereafter by P  for notational convenience. 
Clearly, in general, the number of operations in 
solving for  and is of , whilst 

the memory space to store C ,  and 

Cdetlog 1−C )( 3NO
1−C P is 

 (see Table 1 for specific values). For large 
data sets, fast algorithms, that require less memory 
allocation, are required for the basic matrix 
manipulations, ,  and , 
when tuning the Gaussian process prior model 
hyperparameters. 
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Now consider a time series with fixed interval 
between the measurements. The explanatory 
variable, z, in the Gaussian process prior model is a 
scalar, the time t. When the covariance function 
depends on the difference in the explanatory 
variable, as is almost always the case, the covariance 
matrix )(θC  and its derivative matrices P  are 
Toeplitz; that is, 
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Furthermore, )(θC  is symmetric and positive 
definite. 

Here, the Toeplitz nature of )(θC  is exploited to 
derive novel fast algorithms for the Gaussian process 
methodology that require less memory allocation. It 
is well-known that positive-definite Toeplitz 
matrices can be elegantly manipulated in 

operations. For example, Trench's algorithm 

inverts  with  operations, and Levinson's 
algorithm solves for  with  operations 
(Golub & Van Loan, 1996). However, direct 
application of these algorithms to Gaussian process 
regression may fail even with medium-scale datasets 
due to lack of memory space, see Table 1. For 
example, on a Pentium-IV 3GHz 512MB-RAM PC, 

)( 2NO

C 4/13 2N
yC 1− 24N
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a MATLAB-JAVA algorithm usually fails around 
 because storing  almost uses up the 

available system memory. The solution is to adapt 
the fast algorithms to use only vector-level storage. 
From Table 1 that approach is theoretically able to 
handle very large datasets, such as 1-million data 
points, in terms of memory requirements. 

7000=N 1−C

 
Table 1: Memory/storage requirement in double precision 

N Matrix Vector 

1000 7.7 MB 7.6 KB 
7000 373.9 MB 53.4 KB 

15000 1716.6 MB 114.4 KB 
20000  152.6 KB 
30000  228.9 KB 
50000  381.5 KB 
100000  762.9 KB 

1000000  7.629 MB 
 
Two versions of fast Toeplitz-computation 

algorithms are discussed and compared below; 
namely, a full-matrix version and a vector-storage 
version. 

4.1 Full-Matrix Toeplitz 
Computation 

The simplest way of applying Toeplitz computation 
to Gaussian process regression is to compute  
directly as the basis for the other matrix 
manipulations. Specifically, Trench's algorithm of 

 operations can be readily modified to obtain 

 whilst simultaneously determining  as 
the logarithm sum of the reflection coefficients. 
Then, given , the computation 

1−C

)( 2NO
1−C Cdetlog

1−C

∑∑=−
i j ijij pcPCtr )( 1  is easily performed in 

operations, where )( 2NO ijc  and pij are the ij-th 

elements of  and P, respectively. 1−C
 

Table 2: Accuracy and speedup of Toeplitz computation 
 N=1000 N=2000 N=3000 

Accuracy on    
Cdetlog  4.1×10-15 3.4×10-15 3.5×10-15

yC 1−  1.3×10-12 7.0×10-13 2.2×10-12

)( 1PCtr −  8.1×10-14 1.7×10-13 5.5×10-14

Speed up 70.45 91.64 90.84 
 

Note that Trench's algorithm uses Durbin's 
algorithm to solve Yule-Walker equations (Golub & 
Van Loan, 1996). These two algorithms are 
implemented separately; specifically, the matrix-free 
algorithm that generates an instrumental vector and 
the remaining part that generates . The former 
does not contain any matrix or matrix-related 
computation/storage, and is thus able to perform 
very high-dimension Toeplitz-computation. In view 
of this, it is also used in Section 4.2 as a part of the 
vector-storage version of Toeplitz-computation. 

1−C

A large number of numerical experiments are 
performed to verify the correctness of the modified 
algorithms and their implementation. The covariance 
function is 

ijji bda δ+−− ][ 2
2
1 )zz(exp   (11) 

with random hyperparameters, , )3,0(∈a
)05.0,0(∈d , )3.0,0(∈b . The numerical stability, 

accuracy and speed-up of the algorithms are 
compared to the standard MATLAB matrix-
inversion routines, see Table 2 where the mean of 
the relative errors and speed-up ratios are shown. 
Each test is based on 100 random covariance 
matrices.  Trench's algorithm is sufficiently stable 
for the Gaussian process context in the sense that it 
can work well for , though it is slightly 
less stable than the MATLAB INV routine (the latter 
can work well for ). 

1110/ −≥ad

1510/ −≥ad

4.2 Vector-Storage Toeplitz 
Computation 

As discussed above, the full-matrix Toeplitz 
computation works well for medium-scale 
regression tasks with a speed-up of around 100. 
However, the matrix-level memory allocation is still 
an issue for large datasets with N greater than 7,000 
such as the wind-turbine data. It follows from Table 
1, that if possible, a specialized vector-level storage 
version of the algorithms is attractive for specific 
computation task, such as Gaussian regression for 
time series.  

The modified matrix-free Durbin’s algorithm, see 
above, is used to compute  and Levinson’s 

algorithm to compute . The remaining 

manipulation, namely , is obtained with 
the aid of the following theorem. 

Cdetlog

yC 1−

)( 1PCtr −

Theorem 2.  can be computed as  )( 1PCtr −
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where P is Toeplitz with representative vector  
 and ],,,[ 21 Npppp = iϕ  denotes the summation 

of the elements in the i th diagonal of .  1−C
 
Proof. Omitted due to space limitation. 
 
Table 3: Accuracy and run-time of Toeplitz computation. 

 Accuracy in the form 
of mean (std) 

Time 
(seconds) 

N=10000 1.4×10-13 (2.0×10-13)  29.1 (22.5) 
N=20000 2.0×10-13 (3.7×10-13)  264.7 

(154.2) 
N=30000 1.4×10-13 (2.1×10-13)  730.8 

(393.3) 
N=40000 2.5×10-13 (5.6×10-13)  1555.3 

(784.8) 
N=50000 2.8×10-13 (1.4×10-12)  2497.1 

(1339.3) 
N=60000 1.4×10-13 (2.2×10-13)  3641.7 

(1957.0) 
 

Before applying them to Gaussian process 
regression, a large number of numerical experiments 
are also performed for the efficient and economical 
vector-storage version of the Toeplitz algorithms. 
Random covariance matrices are generated and 
tested as in the previous subsection. Table 3 shows 
the numerical accuracy and execution time of the 
algorithms (the standard deviation is given in 
brackets). The results substantiate the efficacy of the 
vector-storage Toeplitz computation on large 
datasets. 

5 WIND TURBINE DATA  

The measurement data for the wind turbine rotor 
speed consist of a run of 600 seconds sampled at 
40Hz. A typical section, from 200s to 400s, is shown 
in Figure 3. The data has a long length-scale 
component due to variations in the aerodynamic 
torque, caused by changes in the wind speed and the 
pitch angle of the rotor blades, and a short length-
scale component due to the structural and electro-
mechanical dynamics of the machine. From Figure 
3, these two components can be clearly seen as can 
the poor quality of the data. 
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Figure 3: Rotor speed measurements from 200s to 400s 
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Figure 4: Rotor speed prediction, confidence intervals and 
data from 265s to 275s 
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Figure 5: Rotor speed prediction with confidence intervals. 
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It is required to estimate the long-length-scale 
component in the rotor speed. Since the structural 
and electro-mechanical dynamics only induce small 
oscillations in the measured values, a prediction of 
the rotor speed using (8) is appropriate with fz and gz 
the long and short-length components respectively. 
The covariance function for fz is chosen to have the 
form (9) with hyperparameters af and df as is the 
covariance function for gz with hyperparameters ag 
and dg. The measurement noise is assumed to be 
Gaussian white noise with variance b. Hence, the 
prior covariance for the measurements, yi, at time, ti, 
are 

ijbda

da

δ+−−+

−−=

])tt(exp[

])tt(exp[]y,y[E
2

jig2
1

g

2
jif2

1
fji    (13) 

Given the data, the hyperparameters are adapted to 
maximize the likelihood. Since there are 24,000 data 
values, it is necessary to use the vector-storage 
Toeplitz algorithms of Section 4.2. 
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Figure 6: Derivative prediction with confidence intervals 

 

265 266 267 268 269 270 271 272 273 274 275
-1.5

-1

-0.5

0

0.5

1

1.5
Derivative prediction with confidence intervals

Seconds  
Figure 7: Derivative prediction with confidence intervals 

A section, from 200s to 400s, of the prediction for 
the rotor speed, i.e. the long length-scale component, 
together with the confidence intervals is shown in 
Figure 5 and a typical short section, from 265s to 
275s, in Figure 4. From the latter, it can be seen that 
the rotor speed has been successfully extracted. 
However, it is not the rotor speed per se that is of 
interest but its derivative. A section, from 200s to 
400s, of the prediction for the derivative of the rotor 
speed together with the confidence intervals is 
shown in Figure 6 and a short section, from 265s to 
275s, in Figure 7. 

6 CONCLUSIONS  

From poor quality wind turbine rotor speed 
measurements, the rotor speed and acceleration are 
estimated within narrow confidence intervals using 
Gaussian process regression. To do so, two issues 
are addressed. Firstly, the rotor speed is extracted 
from a combined rotor speed and generator speed 
measurement. A novel adaptation of Gaussian 
process regression based on two independent 
processes rather than a single process is presented. 
Secondly, efficient algorithms for the manipulation 
of large matrices (24,000x24,000) are required. The 
Toeplitz nature of the matrices is exploited to derive 
novel fast algorithms for the Gaussian process 
methodology that are memory efficient. 
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