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Abstract: By the linear algebraic representation of Petri nets, Desel introduced regularity property (Desel, 1992). 
Regularity implies a sufficient condition for a Petri net to be live and bounded. All the conditions checking 
the regularity of a Petri net are decidable in polynomial time in the size of a net (Desel and Esparza, 1995). 
This paper proves that regularity, liveness and boundedness can be preserved after applying many 
compositional operations to Petri nets. This means that, by applying these compositional operations, a 
designer can construct complex nets satisfying regularity, liveness and boundedness properties from simpler 
ones without forward analysis.  

1 INTRODUCTION 

As a graphical and mathematical tool, Petri nets 
provide a uniform environment for modeling, formal 
analysis, and design of discrete event systems. One 
of the major advantages of using Petri net models is 
that the same model can be used for the analysis of 
behavioural properties and performance evaluation, 
as well as for systematic construction of discrete-
event simulators and controllers (Zhou and 
Venkatesh, 1999).  

One net is regular if it satisfies the conditions of 
the Rank Theorem described in algebraic methods 
(Desel, 1992; Desel and Esparza, 1995). Regularity 
is a sufficient condition for ordinary nets to be live 
and bounded (Desel and Esparza, 1995). In general, 
a system is live if all its operations are eventually 
executable, starting not only from its initial state but 
also from any reachable state. A system is bounded 
if it has a finite number of states. In the terminology 
of Petri nets, liveness requires the firability of every 
transition starting from any reachable marking, 
boundedness implies that the number of tokens 
existing in every place will not exceed a certain limit. 

For system designs specified in Petri nets, the 
major approaches for verification include reach-
ability analysis, direct proving on the basis of 
definitions, mathematical programming, characteri-
zation and property-preserving transformation. This 
paper relates to the fourth approach, i.e., the 

property-preserving transformation. In this approach, 
the original net is assumed to satisfy some specific 
properties and the transformation is required to 
preserve these properties in the transformed net. The 
advantage of this approach is that the transformed 
net is automatically correct without the need of 
forward verification.  

Transformations on Petri nets may be roughly 
classified into three groups, namely reduction, 
refinement and composition. In the literature, there 
has been much work related to transformations that 
preserve liveness and/or boundedness (Berthelot, 
1986; Berthelot, 1987; Esparza, 1994; Koh and 
DiCesare, 1991; Suzuki and Murata, 1983; Valette, 
1979; Souissi, 1991; Zhou, 1996; Huang, Jiao and 
Cheung, 2005). The preservation of regularity has 
not been considered. This paper introduces four 
kinds of composition operations in terms of places 
and transitions. They are: merging two places each 
coming from different net; merging two places 
coming from the same net; merging two transitions 
each coming from different net; merging two 
transitions coming from the same net. For each kind 
of the four composition operations, this paper proves 
that regularity, liveness and boundedness can be 
preserved automatically or under some simper 
conditions.  

This paper is organized as follows: Section 2 
presents some basics about Petri nets including 
algebraic characterizations. Four compositional 
operations in terms of places and transitions are 
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introduced and the preservation of regularity is 
verified in Sections 3. Section 4 proves that liveness 
and boundedness can be preserved under these 
operations. In this section, an example is given to 
illustrate some results of this paper. Some 
concluding remarks are given in Section 5. 

2 PRELIMINARIES OF PETRI 
NETS  

This section outlines the definitions, terminology 
and properties as required in the paper.  

A net is denoted by N = (P, T, F), where P is a 
non-empty finite set of places, T is a non-empty 
finite set of transitions with P ∩ T = ∅ and F ⊆ (P × 
T) ∪ (T × P) is a flow relation. The pre-set of x is 
defined as •x = {y ∈ P ∪ T  | (y, x) ∈ F} and the 
post-set of x is defined as x• = {y ∈ P ∪ T | (x, y) ∈ 
F}. Similarly, for any subset of Y ⊆ P ∪ T, •Y (resp., 
Y•) denotes the union of •y (resp., y•) for all y ∈ Y. A 
net N = (P, T, F) is said to be pure or self-loop-free 
iff •x ∩ x• = ∅ ∀x ∈ P ∪ T. We just discuss pure 
nets in this paper.  
The incidence matrix V of a pure net N is a |P| × |T| 
matrix whose element vij at row pi and column tj is 
denoted as follows: vij = 1 if pi ∈ tj

•; vij = -1 if pi ∈ •tj; 
and vij = 0 if pi •• ∪∉ jj tt . 

A marking of a net N = (P, T, F) is a mapping 
M: P → {0, 1, 2, …}. A place p is said to be marked 
by M if M(p) > 0. A transition t is enabled or firable 
at a marking M if for every p ∈ •t, M(p) ≥ 1. A 
transition t may be fired if it is enabled. Firing 
transition t results in changing the marking M to a 
new marking M', where M' is obtained by removing 
one token from each p ∈ •t and by putting one token 
to every p ∈ t•. R(N, M0) denotes the set of all 
markings reachable from the initial marking M0. 

A transition t is said to be live in a Petri net (N, 
M0) iff, for any M ∈ R(N, M0), there exists M' ∈ 
R(N, M) such that t can be fired at M'. (N, M0) is said 
to be live iff every transition of N is live. A place p 
is said to be bounded in (N, M0) iff there exists a 
constant k such that M(p) ≤ k for all M ∈ R(N, M0). 
(N, M0) is bounded iff every place of N is bounded. 

For x ∈ P ∪ T, the cluster of x, denoted as [x], 
is the smallest subset of P ∪ T satisfying three 
conditions: (1) x ∈ [x]; (2) if p ∈ P ∩ [x] then p• ⊆ 
[x]; and (3) if t ∈ T ∩ [x] then •t ⊆ [x]. N is said to 
satisfy the rank-and-cluster property iff the rank of 
its incidence matrix is less than the number of its 
clusters by 1. 

A net N is said to be connected iff every pair of 
nodes (x, y) satisfies (x, y) ∈ ∗−∪ )( 1FF . A net N 

is said to be strongly connected iff (x, y) ∈ *F , i.e., 
there exists a directed path from every node x to 
every node y. A P-invariant (resp., T-invariant) of N 
is a non-negative integer |P|-vector α (resp., |T|-
vector β) satisfying the equation αV = 0 (resp., 
V Tβ = 0), where V is the incidence matrix of N. A 
P-invariant α (resp., T-invariant β) of a net is called 
semi-positive if α ≥  0 and α ≠ 0 (resp., β ≥  0 and 
β ≠ 0). The support of a semi-positive P-invariant α, 
denoted by 〉〈α , is the set of places p satisfying α(p) 
> 0, and the support of a semi-positive T-invariant β, 
denoted by 〉〈 β , is the set of transition satisfying 
β(t) > 0  (Desel and Esparza, 1995). 

A net N is regular (Desel 1992) iff (1) N is 
connected, (2) N has a positive P-invariant, (3) N has 
a positive T-invariant, and (4) N satisfies the rank-
and-cluster property. 

In N, a non-empty set of places D is said to be a 
siphon (resp., trap) iff •D ⊆ D• (resp., D• ⊆ •D). A 
siphon (resp., trap) is said to be minimal if it does 
not properly contain any other siphon (resp., trap).  

For more details, please refer to (Recalde, 
Teruel and Silva, 1998; Silva, Teruel and Colom, 
1998). 

3 FOUR COMPOSITIONAL 
OPERATIONS AND THE 
PRESERVATION OF 
REGULARITY  

This section considers four compositional operations 
in terms of places and transitions. Two of them are 
very natural and can be found in the literature. The 
other two operations are a little similar to those in 
(Berthelot, 1987). Suppose the original nets are 
regular. We will prove that, for two of the four 
compositional operations, the regularity can be 
automatically preserved. For the other two ones, 
some simple conditions will be provided under 
which the regularity can be preserved. 

3.1 Merging a Pair Of Places From 
Two Nets 

COMPOSITION-BY-PLACE (composition via 
merging a pair of places from two different nets): 
Consider two disconnected ordinary nets N1 = (P1 ∪ 
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{p1}, T1, F1) and N2 = (P2 ∪ {p2}, T2, F2), where T1 
∩ T2 = ∅ and F1 ∩ F2 = ∅. Let N be composed from 
N1 and N2 by merging the pair of places p1 and p2 
into p12, that is, N = (P, T, F), where P = P1 ∪ P2 ∪ 
{p12}, T = T1 ∪ T2 and F = F1 ∪ F2. 

Theorem 1: Let N, N1 and N2 be defined in 
COMPOSITION-BY-PLACE. Then, N is regular if 
N1 and N2 are regular. 

Proof: In order to show that N is regular, we 
must prove that N is connected, has a positive P-
invariant and a positive T-invariant, and satisfies: 
Rank(N) = |CN| – 1. The incidence matrices of N, N1 
and N2 have the forms: 

⎟
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⎟
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⎜
⎜
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(1) Since N1 and N2 are connected, it is obvious that 
N is also connected.  
(2) Since N1 and N2 have positive P-invariants, 
there exist α1 and α2 such that α1 > 0, α2 > 0, α1V1 = 
0 and α2V2 = 0. Let α = (α2(p2)α1|P1  α1(p1)α2|P2  
α1(p1)α2(p2)). Then α > 0 and αV = (α2(p2)α1|P1V11 + 
α1(p1)α2(p2)V31  α1(p1)α2|P2V22 + α1(p1)α2(p2)V32) 
=(α2(p2)(α1|P1V11+α1(p1)V31) 
α1(p1)(α2|P2V22+α2(p2)V32)) =(α2(p2)α1V1  α1(p1)α2V2) 
= 0. This means that α is a positive P-invariant of N. 
(3) Since N1 and N2 have positive T-invariants, 
there exist β1 and β2 such that β1 > 0, β2 > 0, 
V1

T
1β = 0 and V2

T
2β = 0. This means that V11

T
1β = 

0,  V31
T

1β  = 0,  V22
T

2β = 0  and  V32
T

2β = 0.  
Let β = (β1 β2), then V Tβ = 

TTTTT VVVV )( 232131222111 ββββ +  = 0. That 
is, β is a T-invariant of N.  
(4) Since Rank(V1) = |C(N1)| − 1 and Rank(V2) = 
|C(N2)| − 1 and |C(N1)| ≤ |P1| and |C(N2)| ≤ |P2|, 
Rank(V1) < |P1| and Rank(V2) < |P2|. Hence, the 
bottom row V3i is a linear combination of the other 
rows of Vii and Rank(Vi) = Rank(Vii) for i = 1 and 2.  
This also implies that the bottom row of V is a linear 
combination of the other rows of V and Rank(V) = 
Rank(V11) + Rank(V22) = (|C(N1)| − 1) + (|C(N2)| − 1). 
Since the only change in clustering after 
COMPOSITION-BY-PLACE is that the two clusters 
([p1] in N1) and ([p2] in N2) are merged to one, we 
have |C(N)| = |C(N1)| + |C(N2)| −1. Thus, Rank(V) = 
(|C(N1)| − 1) + (|C(N2)| − 1) = |C(N)| − 1. □ 

3.2 Merging Two Non-neighboring 
Places In A Net 

MERGE-N-PLACE (merging two non-neighboring 
places in a net): Let a net N = (P0 ∪ {p1, p2}, T, F) 
be a net and p1 and p2 satisfy: (•p1 ∪ p1

•) ∩ (•p2 ∪ 
p2

•) = ∅. Let N' = (P0 ∪ {p12}, T, F') be obtained 
from N by merging the places p1 and p2 into a single 
place p12, where F' = F ∪ {(t, p12) | (t, p1) ∈ F or (t, 
p2) ∈ F} ∪ {(p12, t) | (p1, t) ∈ F or (p2, t) ∈ F} − {(t, 
pi) | (t, pi) ∈ F, where i = 1, 2} − {(pi, t) | (pi, t) ∈ F, 
where i = 1, 2}. 

Note that since this paper just considers pure 
and ordinary nets, we add some conditions to p1 and 
p2, i.e., just considering non-neighboring places to 
be merged. 

Theorem 2 below proposes a simple condition 
under which the regularity can be preserved after 
applying MERGE-N-PLACE. 

Theorem 2: Let N and N' be involved in 
MERGE-N-PLACE, where N = (P0 ∪ {p1, p2}, T, F) 
and N' = (P0 ∪ {p12}, T', F'). Then, N' is regular if 
the following conditions hold:  
(1) N is regular. 
(2) there exists a positive P-invariant of N α such 

that α(p1) = α(p2). 
(3) p1 and p2 belong to the same cluster, and 
(4) there exists at least one P-invariant α such that 

〉〈α ∩ {p1, p2} = {pi}, where i = 1 or 2. 
Proof: The incidence matrices of N and N' have 

the following forms: 
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(1) Since N is regular, N is connected. It is obvious 
that N' is also connected.  
(2) Since there exists a positive P-invariant of N α 
such that α(p1) = α(p2), let 'α = (α|P0 α(p1)) and 

''Vα = α|P0V0 + α(p1)(V1 + V2) = α|P0V0 + α(p1)V1 + 
α(p2)V2 = 0. This means that α is a positive P-
invariant of N'. 
(3) Since N is regular, N has a positive T-invariant. 
Let β be a positive T-invariant of N, then V Tβ = 0. 
It is obvious that 'V Tβ = 0. That is, β also is a T-
invariant of N'. 
(4) Since p1 and p2 belong to the same cluster, 
|C(N')| = |C(N)|. Suppose that there exists one P-
invariant α such that 〉〈α ∩ {p1, p2} = {p2}.  Then, 
the corresponding row of p2 in V can be expressed as 
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a linear combination of the other rows of P0. Hence, 
Rank(V') = Rank(V). This means that Rank(V') = 
Rank(V) = |C(N)| − 1 = |C(N')| − 1. □ 

It is obvious from the proof of Theorem 2 that 
when p1 and p2 belong to different cluster, N' must 
be not regular if N is regular and Condition (3) holds. 

3.3 Merging A Pair Of Transitions 
From Two Nets 

COMPOSITION-BY-TRANSITION (composition 
via merging a pair of transitions from two different 
nets): Consider two disconnected ordinary nets N1 = 
(P1, T1 ∪ {t1}, F1) and N2 = (P2, T2 ∪ {t2}, F2), 
where P1 ∩ P2 = ∅, (T1 ∪ {t1}) ∩ (T2 ∪ {t2}) = ∅, 
T1 ∩ {t1} = ∅, T2 ∩ {t2} = ∅ and F1 ∩ F2 = ∅. Let 
N be composed from N1 and N2 by merging the pair 
of transitions t1 and t2. That is, N = (P, T, F), where 
P = P1 ∪ P2, T = T1 ∪ T2 ∪ {t12} and F = F1 ∪ F2. 

Theorem 3: Let N, N1 and N2 be defined in 
COMPOSITION-BY-TRANSITION. Then, N is 
regular if N1 and N2 are regular. 

Proof: Similar to that of Theorem 1.□ 

3.4 Merging Two Non-neighboring 
Transitions In A Net 

MERGE-N-TRANSITION (merging two 
transitions in a net): Let a net N = (P, T0 ∪ {t1, t2}, 
F) be a net and satisfy the following conditions: (•t1 
∪ t1

•) ∩ (•t2 ∪ t2
•) = ∅. Let N' = (P, T0 ∪ {t12}, F') 

be obtained from N by merging the transitions t1 and 
t2 into a single place t12, where F' = F' = F ∪ {(t12, p) 
| (t1, p) ∈ F or (t2, p) ∈ F} ∪ {(p, t12) | (p, t1) ∈ F or 
(p, t2) ∈ F} − {(ti, p) | (ti, p) ∈ F, where i = 1, 2} − 
{(p, ti) | (p, ti) ∈ F, where i = 1, 2}. 

Note that since this paper just considers pure 
and ordinary nets, we add some conditions to t1 and 
t2, i.e., just considering non-neighboring transitions 
to be merged. 

Theorem 4: Let N and N' be involved in 
MERGE-N-TRANSITION, where N = (P, T0 ∪ {t1, 
t2}, F) and N' = (P, T0 ∪ {t12}, F'). Then, N' is 
regular if the following conditions hold: 
(1) N is regular, 
(2) there exists a positive T-invariant β such that 

β(t1) = β(t2), 
(3) t1 and t2 belong to the same cluster, and  
(4) there exists at least one T-invariant β such that 

〉〈 β ∩ {t1, t2} = {ti}, where i = 1 or 2. 
Proof: Similar to that of Theorem 2. □ 

4 PRESERVING LIVENESS AND 
BOUNDEDNESS  

Desel and Esparza have shown that the regularity 
guarantees the existence of a live and bounded 
marking. This section will decide if a given initial 
marking M0 ensures liveness and boundedness of (N, 
M0), where N is the net obtained by applying the 
four compositional operations defined in Section 3. 

Lemma 1 below characterizes liveness and 
boundedness of regular nets.  

Lemma 1: (Desel and Esparza, 1995) Let N be 
a regular net. Then, a marking M of N is live and 
bounded iff it marks all minimal siphons of N. 

In order to check whether the liveness and 
boundedness of a marked regular net, it is important 
to know whether all siphons are marked after 
applying the four compositional operations. The 
following propositions state the relationship of 
siphons of nets of before and after transformation.  

Proposition 1: Suppose that N, N1 and N2 are 
defined in COMPOSITION-BY-PLACE. Let D be a 
siphon of N. Then, Di = D ∩ Pi is a siphon of Ni if 
p12 ∉D, otherwise Di = (D ∩ Pi) ∪ {pi} is a siphon 
of Ni, where i = 1 and 2. 

Proof: Since D is a siphon of N, •D ⊆ D•. Since 
P1 ∩ P2 = ∅, T1 ∩ T2 = ∅ and D = (D ∩ P1) ∪ (D ∩ 
P2) =D1 ∪ D2 if p12 ∉D, it is obvious that •D1 ⊆ D1

• 
and •D2 ⊆ D2

•. This means that Di = D ∩ Pi is a 
siphon of Ni if p12 ∉D. If p12 ∈ D, then •p12 in N = 
(•p1 in N1) ∪ (•p2 in N2) and p12

• in N = (p1
• in N1) ∪ 

(p2
• in N2). Since •D ⊆ D• and T1 ∩ T2 = ∅, •((D ∩ 

Pi) ∪ {pi}) ⊆ ((D ∩ Pi) ∪ {pi})•, this means that (D 
∩ Pi) ∪ {pi} is a siphon of Ni, where i =1 and 2.  □ 

Proposition 2: Suppose that N and N' are 
defined in MERGE-N-PLACE. Let D' be a siphon of 
N'. Then, D' is a siphon of N if p12 ∉D', otherwise D 
= D' ∪ {p1, p2} − {p12} is a siphon of N. 

Proof: Since D' is a siphon of N', •D' ⊆ D'• in 
N'. It is obvious that •D' ⊆ D'• in N if p12 ∉D'. This 
means that D' is a siphon of N. If p12 ∈ D', then •p12 
in N' = (•p1 ∪ •p2) in N and p12

• in N' = (p1
• ∪ p2

•) in 
N. Since •D' ⊆ D'•, •(D' ∪ {p1, p2} − {p12}) ⊆ (D' ∪ 
{p1, p2} − {p12})•, this means that D' ∪ {p1, p2} − 
{p12} is a siphon of N.  □ 

Proposition 3: Suppose that N, N1 and N2 are 
defined in COMPOSITION-BY-TRANSITION. Let 
D be a siphon of N. Then, Di = D ∩ Pi is a siphon of 
Ni, where i = 1 or 2. 

Proof: Since P1 ∩ P2 = ∅, T1 ∩ T2 = ∅ and D 
= (D ∩ P1) ∪ (D ∩ P2) =D1 ∪ D2, it is obvious that 
•D1 ⊆ D1

• and •D2 ⊆ D2
• because of •D ⊆ D•. □ 
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Proposition 4: Suppose that N and N' are 
defined in MERGE-N-TRANSITION. Let D' be a 
siphon of N'. Then, D' is a siphon of N if {t12} ∉•D'. 

Proof: Since D' is a siphon of N', •D' ⊆ D'• in 
N'. It is obvious that •D' ⊆ D'• in N if {t12} ∉•D', i.e., 
D' is a siphon of N if {t12} ∉•D'. □ 

Theorem 5: Suppose that N and Ni are defined 
in COMPOSITION-BY-PLACE. Let Mi be an initial 
marking of Ni and M be obtained from Mi such that 
M(p) = Mi(p) if p ∈ Pi − {p1, p2} and M(p12) = 
Max{M1(p1), M2(p2)}. Then, (N, M) is live and 
bounded if Ni is regular and (Ni, Mi) is live and 
bounded, where i = 1 and 2.  

Proof: Since N1 and N2 are regular, by Theorem 
3.1, N is regular. Since (N1, M1) and (N2, M2) are live 
and bounded, according to Lemma 1, all siphons of 
N1 and N2 are marked. Let D be a siphon of N. By 
Proposition 1, if p12 ∉D, then Di = D ∩ Pi is a 
siphon of Ni. Hence, Di is marked. If p12 ∈ D, then 
(D ∩ Pi) ∪ {pi} is a siphon of Ni by Property 1 and 
thus (D ∩ Pi) ∪ {pi} is marked. In this case, if pi is 
marked for i = 1 or 2, then p12 is marked, otherwise, 
D ∩ Pi is marked. This means that all siphons of N 
are marked. Thus, (M, N) is live and bounded 
according to Lemma 1.  □ 

Theorem 6 Suppose that N and N' are defined 
in MERGE-N-PLACE, and M is an initial marking 
of N. Let M' be obtained from M such that M'(p) = 
M(p) if p ∈ P − {p1, p2} and M'(p12) = Max{M(p1), 
M(p2)}. Then, (N', M') is live and bounded if the 
following conditions hold: 
(1) N is regular,  
(2) p1 and p2 belong to the same cluster,  
(3) there exists a positive P-invariant of N α such 

that α(p1) = α(p2), 
(4) there exists at least one P-invariant α such that 

〉〈α ∩ {p1, p2} = {pi} for i = 1 or 2,  and 
(5) (N, M) is live and bounded. 

Proof: By Conditions (1)-(4) and Theorem 2, 
N' is regular. Condition (5) implies that all siphons 
are marked according to Lemma 1. Consider any 
siphon D' of N'. By Proposition 2, if p12 ∉D', then D 
= D' is a siphon of N. Hence, D is marked. If p12 ∈ 
D', then (D ∩ P) ∪ {p1, p2} is a siphon of N and thus 
is marked. This means that all siphons of N' are 
marked. Thus, (N, M) is live and bounded according 
to Lemma 1.  □ 

The example below shows the application of 
some results obtained in Section 3 and this section. 

Example 1: In Figure 1, both (N1, M1) and (N2, 
M2) are live and bounded marked graphs. Of course, 
N1 and N2 are regular. After applying 
COMPOSITION-BY-PLACE to them, p1 and p2 are 

merged into r1 and (N, M) shown in Figure 2 is 
obtained. By Theorem 1 and Theorem 5, N is regular 
and (N, M) is live and bounded. After applying 
MERGE-N-PLACE to (N, M), p3 and p4 are merged 
into r2 and (N', M') shown in Figure 3 is obtained. 
Since, in N, p3 and p4 belong to the same cluster and 
{p3, p12, p13} is a P-component, by Theorem 2 and 
Theorem 6, N' is also regular and (N', M') is live and 
bounded. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Theorem 7: Suppose that N and Ni are defined 
in COMPOSITION-BY-TRANSITION. Let Mi be 
an initial marking of Ni and M be obtained from Mi 
such that M(p) = Mi(p) if p ∈ Pi. Then, (N, M) is live 
and bounded if Ni is regular and (Ni, Mi) is live and 
bounded, where i = 1 and 2. 

Proof: Similar to the proof of Theorem 5.  □ 
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Figure 1: Two live and bounded Petri nets 
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Figure 2: Petri net (N, M) obtained from Figure 1 
by merging p1 and p2 into r1. 
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Figure 3: Petri net (N', M') obtained from Figure 2 
by merging p3 and p4 into r2. 
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Theorem 8: Suppose that N and N' are defined 
in MERGE-N-TRANSITION. Let M be an initial 
marking of N and M' be obtained from M such that 
M'(p) = M(p) for any p ∈ P. Then, (N', M') is live 
and bounded if the following conditions hold: 
(1) N is regular,  
(2) t1 and t2 belong to the same cluster, 
(3) there exists a positive T-invariant β such that 

β(t1) = β(t2), 
(4) there exists at least one T-invariant β such that 

〉〈 β ∩ {t1, t2} = {ti} for i = 1 or 2, and 
(5) (N, M) is live and bounded, and  
(6) all input places of t1 and t2 are marked or every 

minimal siphon D' of N' with t12 ∈•D' is marked.  
Proof: By Conditions (1)-(4) and Theorem 4, 

N' is regular. Condition (5) implies that all siphons 
are marked according to Lemma 1. Consider any 
siphon D' of N'. By Property 4, D' is a siphon of N if 
{t12} ∉•D' and thus D' is marked. By Condition (6), 
D' is marked if t12 ∈•D'. This means that all siphons 
of N' are marked. Hence, (N, M) is live and bounded 
according to Lemma 1.  □ 

5 CONCLUSION 

This paper studied four compositional operations in 
terms of place and transition for pure and ordinary 
nets and showed that regularity, liveness and 
bounded-ness can be preserved automatically or 
under some simper conditions. These compositional 
operations are quite natural. COMPOSITION-BY-
PLACE and COMPOSITION-BY-TRANSITION 
are usually be used to obtain more complex nets 
from some subnets. Liveness and boundedness 
preservations on the two operations for different 
subclasses of Petri nets have been studied under 
different conditions. Our results are based on the 
regularity preservation. MERGE-N-PLACE and 
MERGE-N-TRANSITION are two operations used 
in a net, a little similar to (Berthelot, 1987). Of 
course, these results that this paper are contributed 
are new and can accommodate the design of 
complex systems. 
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