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Abstract: The paper considers the discrete-time linear time-invariant systems affected by input disturbances. The goal is
to construct the robust model predictive control (RMPC) law taking into account the constraints existence from
the design stage. The explicit formulation of the controller is found by exploiting the fact that the optimum of
a min-max multi-parametric program is placed on the parameterized vertices of a parameterized polyhedron.
As these vertices have specific validity domains, the control law has the form of a piecewise linear function of
the current state. Its evaluation replaces the time-consuming on-line optimization problems.

1 INTRODUCTION

Model Predictive Control (MPC) enjoys a remarkable
reputation among the control design techniques for
process industries. In the beginnings, practitioners
used MPC in the unconstrained closed forms due to
its simplicity and versatility and dealt with the con-
straints violation a posteriori. In the ’90s, theoreti-
cians proved that constraints could be included at the
design stage with excellent results towards the fea-
sibility, stability or robustness. The inconvenience,
which represented also an impasse in applying the
constrained predictive control to high sampling rate
systems, was the relative high complexity of the op-
timization problem to be solved at each sampling pe-
riod. Lately, the constrained MPC paradigm was re-
formulated in terms of LMI (Kothare et al., 1996)
with a reduction of computational time but the class
of system to be controlled was still limited.

An improvement from the on-line computational
point of view can be achieved if the explicit solution
of the MPC optimization problem is formulated. In
this way, at each sampling time, a piecewise linear
function has to be evaluated. In fact the MPC strat-
egy is based on a multi-parametric optimization prob-
lem as both the global optimum and the set of con-
straints are parameter dependent. In the nominal case
corresponding with a quadratic optimization problem
and linear constraints, the explicit solution was inves-
tigated with success using an algebraic approach in

(Bemporad et al., 2002b), geometrical arguments in
(Seron et al., 2002), (Olaru and Dumur, 2004) and
lately dynamic programming (Goodwin et al., 2004).

In the case of robust MPC, the explicit solution is
somehow more difficult to achieve as the optimization
problem is based on a min-max cost function. It was
successfully tackled in (Bemporad et al., 2001) but
the alternative methods do not present similar solu-
tions so far. The current work is trying to compensate
this setback through an explicit solution for the ro-
bust MPC by geometrical base. The method is based
on the concept of parameterized polyhedra (Loechner
and Wilde, 1997) and their correspondent parameter-
ized vertices where the optimal solution is founded.

2 ROBUST MPC FORMULATION

Consider the MPC problem formulated for a discrete-
time linear time-invariant system affected by an input
disturbance:

xt+1 = Axt + But + Evt (1)

and subject to a set of linear constraints:

Cxt + Dut ≤ d (2)

The vectorsxt ∈ R
n andut ∈ R

m represent the
states and inputs whilevt ∈ R

p is the unknown vector
of disturbances lying inside a polytope containing the
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origin defined by a set of linear constraints:

V = {v |Mv 6 l; l > 0} (3)

In the following, the pair(A,B) is supposed to be sta-
bilizable and it is assumed that the full measurement
of the current state is available at each timet.

MPC is an optimization based technique. In oppo-
sition to the nominal case where quadratic cost func-
tions are used (Maciejowski, 2002), (Rossiter, 2003),
in the case of models affected by disturbance, a min-
max optimization is preferred, resulting a RMPC for-
mulation:

min
ut,...,ut+Nu−1

{

max
vt,...,vt+N−1

{

SPλ
(xt+N |t)+

+

N−1
∑

k=1

∥

∥Qxt+k|t

∥

∥

∞
+

Nu−1
∑

k=0

‖Rut+k‖∞

}} (4)

s.t.: Cxt+k|t + Dut+k 6 d, k = 1, . . . , N

Mvt+k 6 l, k = 0, . . . N − 1

xt+k+1|t = Axt+k|t + But+k + Evt+k,

k > 0, xt+N |t ∈ Pλ

(5)

with Q,R weighting matrices,‖∗‖∞ ,

maxi=1,...,r

(

∗i
)

, where ∗i is the i-th element
of the vector∗ ∈ R

r. The state predictionsxt+k|t

are obtained based on the current state vectorxt and
by applying the input sequenceut, . . . , ut+Nu−1, to
model (1) over a control horizon. Note that, in the
general case, the control (Nu) and the prediction (N )
horizons might be different if the control vector has
a fix formulation forNu 6 k 6 N . Conversely,
the disturbance sequencevt, . . . , vt+N−1 affects the
prediction over the whole prediction horizon.

The stability of the MPC scheme depends on the
chosen horizons and on the terminal cost. In order to
guarantee the stability, an infinite prediction horizon
should be used. Such a choice transforms (4)-(5) in an
intractable problem. The solution is then to choose a
finite prediction horizon and to consider that after this
point the system trajectory is brought inside a posi-
tively invariant set,P , that can be computed off-line
(Kerrigan, 2000). To this terminal region a function
SPλ

(x) can be associated, appearing in (4) as a termi-
nal cost penalizing the evolution fromN to∞.

Applying areceding horizon strategy the optimiza-
tion (4)-(5) is solved at each sampling timet us-
ing the measured state vectorxt (playing the role
of parameter for the optimization). Ifk∗

u
(xt) =

{

u∗
t , . . . , u

∗
t+Nu−1

}

is the solution to (4)-(5), the in-
put applied to the system (1) is the first value of this
sequencek∗

u
(xt) such thatut = u∗

t , the other values
are abandoned and the procedure is restarted.

A special concern must be given to the choice of the
control horizon. Indeed, this parameter is sensitive

as it reflects the number of degrees of freedom avail-
able to ensure the constraints fulfillment for all possi-
ble combinations of disturbances. On the other hand,
with less control alternatives the computational load
is diminished. In the robust MPC case, the control
horizon is generally equal with the prediction horizon
Nu = N , as the cumulative effect of the worst case
disturbances needs an important control counterpart.

min
ut

(
max
vt

(
min

ut+1

. . . min
ut+Nu−1

(
max

vt+Nu
,..,vt+N−1

SPλ
(xt+N|t) +

N−1X
k=1




Qxt+k|t





∞

+

Nu−1X
k=0



Rut+k




∞

9=; . . .

9=;
(6)

or equivalently in a ”closed loop” formulation:

min
ut

�
‖Rut‖∞ + max

vt

n


Qxt+1|t





∞

+

+ min
ut+1

{. . . + min
ut+Nu−1

n

Rut+Nu−1




∞

+

+ max
vt+Nu−1,...,vt+N

n
SPλ

(xt+N|t)+

N−1X
k=Nu




Qxt+k|t





∞

9=; · · ·

9=;
3 ROBUST MPC AS A MULTI-

PARAMETRIC OPTIMIZATION

The robust model predictive control problem formu-
lated before is based on the on-line solving of the as-
sociated min-max optimization problem:

min
ku

max
kυ

J(xt,ku,kυ)

subj. toFinku + Ginkυ 6 hin + Hinxt

(7)

with ku =
{

ut, .., ut+Nu−1

}

, kυ = {vt, .., vt+N−1}
and a convex cost functionJ(xt,ku,kυ) based on a
sum of∞-norm terms. Fin, Gin, hin,Hin translate
in a compact form the set of constraints in (5). Both
the cost function and the set of constraints depend on
the current state vectorxt which plays the role of a
parameter. This parameterization of the optimization
problem to be solved at each sampling time trans-
forms the on-line location of the minimum argument
in a computationally prohibitive task. The alternative
solution is to explicitly formulate off-line the optimal
solutionk∗

u
(xt) in terms of a piecewise linear func-

tion and further evaluate this function on-line.

3.1 The inner optimization

The influence of the disturbances in the form (7) can
be examined by the reconsideration of the extremal
possible combination of vertices inV for each pre-
diction stage completing the sequencekυ.

vt ∈ V ⊂ R
p ⇒ kυ ∈ V N ⊂ R

N×p (8)

Remark: For the inner optimization, the set of con-
straints is constituted only by the inequalities defining
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the polyhedral domain as in (3) and the constraints
imposed by the system dynamics in (1). This fact
is transparent from the definition of the predictive
control law, which allows any combination of distur-
bances satisfying (3). If one of these combinations is
not allowed by the set of constraints in (7), it means
in fact that the MPC law is infeasible.

Taking into account the convexity of the objective
function and the previous remark, it can be concluded
that the optimum for the inner optimization in (7) is
on the border of the feasible domain, more precisely
on one of the vertices ofV N as long as it is defined
as a polytope. Thus (7) becomes:

min
ku

max
vkυ

J(xt,ku,kυl
)

subj. toFinku + Ginkυl
6 hin + Hinxt

l ∈ L,kυl
∈ V N

(9)

with L = {1, 2, . . . , Nv} andNv the number of ver-
tices inV N .

This means that the inner optimization in (7) will
act only on the set of vertices inV N . Further this
may be written as:

min
ku,µ

µ

subj. toFinku + Ginkυl
6 hin + Hinxt

J(xt,ku,kυl
) 6 µ

l ∈ L,kυl
∈ V N

(10)

3.2 The outer optimization problem

An impediment in finding the explicit solution for (7)
is the expression of the cost function, given as a col-
lection of ∞-norm terms. In order to avoid the in-
herent difficulty of handling it, an equivalent linear
program (LP) (Kerrigan, 2004) formulation must be
achieved based on the idea that each∞-norm term
can be bounded. The optimization problem is equiva-
lent with the minimization of the sum of these bounds.
This is resumed by the following result where the cost
function is considered as a sum of∞-norm terms lin-
ear in the vector of unknownsx and parametersp (to
identify them, one can observe that for a fix sequence
kv = ct and notingx = ku andp = xt in (7), the
cost function is a sum of‖Six + Pip + si‖∞ terms,
with Si, Pi, si defined after case).

Proposition 1. The formulations (1) and (2) are
equivalent:

(1)
K(p) = min

x
J(x, p) = min

x

nX
i=1

‖Six + Pip + si‖∞

subject toAinx 6 bin + Binp

(2)

K(p) = min
ρ,{σi},x

ρ

subject to

8>>>>><>>>>>: - 1σi 6 Six + Pip + si 6 1σi, 1 6 i 6 n

nX
i=1

σi 6 ρ

Ainx 6 bin + Binp

whereσi, ρ ∈ R and1 is a vector with unit entries.

3.3 RMPC multi-parametric
optimization problem

With the previous two transformations, the optimiza-
tion (7) can be rewritten as:

ku ∗ (xt) = min
ρ,k

u
,{σ

j
i}

ρ















































































- 1σj
i 6 Siku

+ Pixt + Wikυl
+ si 6 1σj

i ,

1 6 i 6 n, 1 6 l 6 Nv




















n
∑

i=1

σ1
i

...
n
∑

i=1

σNv

i





















6 1ρ

Finku + Ginkυl
6 hin + Hinxt,

1 6 l 6 Nv

(11)
Example 1: To illustrate these transformations, con-
sider the parameter-free optimization (Fig. 1):

min
x1

max
x2





 2x1 + x2 − 3
x1 − x2 + 1






∞

+





 x1 − 2x2 + 1
2x1 + 3x2 − 7






∞

subject to

�
x2 ∈ [ - 1,1]
x1 ∈ [0, 6]

equivalent with:
min

x1,σ1,σ2,σ3,σ4,ρ
ρ

s.t. -

�
σ1

σ1

�
6

�
2x1 − 2

x1

�
6

�
σ1

σ1

�
;

-

�
σ2

σ2

�
6

�
2x1 − 4
x1 + 2

�
6

�
σ2

σ2

�
;

-

�
σ3

σ3

�
6

�
x1 − 1
2x1 − 4

�
6

�
σ3

σ3

�
;

-

�
σ4

σ4

�
6

�
x1 + 3

2x1 − 10

�
6

�
σ4

σ4

�
;

σ1 + σ3 6 ρ; σ2 + σ4 6 ρ; x1 ∈ [0, 6]

which can be tackled by any LP solver with solution:

[x1 σ1 σ2 σ3 σ4 ρ]
∗

= [2.33 4.33 5.33 1.33 2.66 9.66]
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Figure 1: Cost function for example 1.
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4 THE EXPLICIT SOLUTION

In the following, the closed form of the RMPC law
is the main objective. It can be expressed as a func-
tion of parameters if a procedure of describing the
explicit solution of multi-parametric linear programs
(MPLP) is available. The literature on MPLP con-
tains the works of Gal and Nedoma (Gal and Nedoma,
1972) and further developments to linear, quadratic,
non-linear or mixed-integer solvers (Borelli, 2003).
Another procedure will be proposed here focusing on
the set of constraints and its geometrical represen-
tation. The feasible domain will be expressed as a
parametrized polyhedron. Due to the reformulation
of the optimization problem, the use of mixed vari-
ables is avoided. Thus the resulting algorithm dif-
fers from the solutions based on branch and bound
methods or other mixed integer linear solvers, being
mainly focused on the enumeration of the edges of an
augmented dimension polyhedron.

4.1 Parameterized polyhedra

A system of linear constraints define a polyhedron:
P = {x ∈ R

n |Aeq x = beq;Ainx 6 bin} (12)
by dual Minkowski representation of generators
(Schrijver, 1986):

P = conv.hull {x1, . . . ,xv}+

+cone {y1, . . . ,yr} + lin.spaceZ
(13)

whereconv.hullX denotes the set of convex combi-
nations of points inX, coneY denotes nonnegative
combinations of unidirectional rays andlin.spaceZ
represents a linear combination of bidirectional rays.
It can be rewritten as:

P =

{

x|x =

v
∑

i=1

λixi +

r
∑

i=1

γiyi +

l
∑

i=1

µizi

}

0 6 λi 6 1,

v
∑

i=1

λi = 1 , γi > 0 , ∀µi

(14)
Remark: The generators saturate all the equalities, the
lines saturate all the constraints and only the rays and
the vertices can verify but not saturate a part of the
inequalities.

The geometrical computations might be burdened
by the differences that have to be taken into consid-
eration between rays and lines. These problems are
overcome with anhomogenous representation (Wilde,
1993):

D =















(

ξ x
ξ

)

∈ R
n+1

∣

∣

∣

∣

∣

∣

∣

∣

Âeq

(

ξ x
ξ

)

= 0

Âin

(

ξ x
ξ

)

> 0















(15)

Âeq = [ Aeq−beq ] Âin =

[

Ain −bin

0 · · · 0 1

]

(16)
The original polyhedronP is found intersectingD
with the hyper-plane of equationξ = 1. Following
the same change of dimension, the rays, vertices and
lines have a similar unified homogenous description:

Ŷ =

[

Y X

0 · · · 0 1 · · · 1

]

; Ẑ =

[

Z

0 · · · 0

]

(17)

and the generators representation will be:

D =

{(

ξ x
ξ

)∣

∣

∣

∣

(

ξ x
ξ

)

= Ŷ λ′ + Ẑµ;λ′ > 0

}

(18)
A parameterized polyhedron is defined in the implicit
form by a finite number of inequalities and equali-
ties but the affine part depends linearly on a parameter
vectorp for both equalities and inequalities:

P
′
(p) =

n
x ∈ ℜ

n ��Aeq x = Beqp + beq ;Ainx 6 Binp + bin

o
=

8<:x(p)| x(p) =

vX
i=1

λi(p)xi(p) +

rX
i=1

γiyi +

lX
i=1

µizi

9=;
0 6 λi(p) 6 1,

vX
i=1

λi(p) = 1 , γi > 0 , ∀µi

(19)
wherezi are the lines,yi are the rays,xi are the ver-
tices andµi, γi, λi the corresponding coefficients.

Remark: Only the vertices are concerned by the pa-
rameterization of the polyhedron (parameterized ver-
tices xi(p)), the rays and the lines do not change with
the parameters’ variation.

The parameterized polyhedronP ′(p) can be writ-
ten as a non-parameterized polyhedron in an aug-
mented space as:

P̃ ′ =

{

(

x

p

)

∈ R
n+m

∣

∣

∣

�
Aeq

�� − Beq

� � x

p

�
= beq

[Ain| − Bin]

�
x

p

�
= bin

}

(20)
with a homogenous representation given by:

D̃ =

8>>>>><>>>>>:0� ξ x

ξ p

ξ

1A ����������� Ãeq

0� ξ x

ξ p

ξ

1A = 0

Ãin

0� ξ x

ξ p

ξ

1A > 0

9>>>>>=>>>>>; =

=

8<:0� ξ x

ξ p

ξ

1A������ 0� ξ x

ξ p

ξ

1A = Z̃λ̃ + Ỹµ̃; µ̃ > 0

9=; (21)

whereỸ, Z̃ are as in (17), the matrices:

Ãeq = [Aeq| −Beq| − beq] ;

Ãin =

[

Ain −Bin −bin

0 · · · 0 0 · · · 0 1

]

andλ̃, µ̃ are free-valued column vectors.
The form (19) faces an important difficulty as it

contains unknown parts, i.e. the parameterized ver-
ticesxi(p).
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The parameterized vertices corre-
spond to m-polyhedra in the augmented
(data(Rn)+parameter(Rm)) space as in (20);
consequently the original vertices are:

xi(p) = Projn
(

Fm
i (P̃ ′) ∩ S(p)

)

(22)

where Projx (.) projects the combined spaceRn+m

onto the original spaceRn andS(p) is the affine sub-
space:

S(p̂) =

{(

x
p

)

∈ R
n+m

∣

∣p = p̂

}

(23)

and Fm
i (P̃ ′) is a m-face of P̃ ′ found as the inter-

section betweeñP ′ and the supporting hyperplanes
(Loechner and Wilde, 1997).

For each face of the polyhedroñP ′, a set of ac-
tive constraints is well defined, resulting in the fact
that each point

(

xi(p)T pT
)T

∈ Fm
i (P̃ ′) lies in a

subspace of dimension m and thusx andp are related
by:
[

Aeq

Āini

]

x =

[

A′
eq

Ā′
ini

]

p +

[

beq

b̄ini

]

(24)

whereĀini
, Ā′

ini
, b̄ini

are the subset of the inequal-
ities defined previously, satisfied by saturation. If the

matrix
[

AT
eq ĀT

ini

]T
is not invertible, it corre-

sponds to facesFm
i (P̃ ′)where for one givenp more

than one pointx ∈ R
n is feasible and such combi-

nations do not match a vertex ofP ′(p). In fact this
case corresponds to the zones whereP ′(p) changes
its shape.

In the invertible case, the dependencies could be
rewritten:

xi(p) =

[

Aeq

Āini

]−1 [

A′
eq

Ā′
ini

]

p+

+

[

Aeq

Āini

]−1 [

beq

b̄ini

]

(25)

For the implementation of these theoretical results,
an enumeration of them-faces must be available to-
gether with thek(> m) generators of each face
Fm

i (D̃) in a homogenous representation. If the pro-
jections:

Prn

(

ξ xi(p)
ξ p
ξ

)

=

(

ξ xi(p)
ξ

)

; (26)

Prm

(

ξ xi(p)
ξ p
ξ

)

=

(

ξ p
ξ

)

(27)

are defined, then (22) could be rewritten as:
(

ξ xi(p)
ξ

)

= Pr
n

(Fi) Pr
m

(Fi)
−1

(

p
ξ

)

;

Fi =

[(

ξ xij(p)
ξ p
ξ

)]

, j = 1..k

(28)

The case when the right inversePrm(Fi)
−1 does not

exist results in the already mentioned conditions of an
m-face that does not define a unique vertex ofP ′(p).

Remark: Numerical methods (Leverge, 1994) exist
for implementing the double description of polyhedra.
The polyhedral duality allows both transformations,
from constraints to generators and conversely ((Lev-
erge, 1994), (Loechner and Wilde, 1997), (Motzkin
et al., 1953), (Schrijver, 1986), (Wilde, 1993) ).

4.2 Explicit solution of LP

Recalling the problem to be solved similar to (11):

x∗(p) = min
x

fT x

subject toAinx 6 Binp + bin

(29)

with the optimal solution as a piecewise affine func-
tion of the parameter.

Consider now a fixed parameterpct . When ana-
lyzing the optimization problem (29) corresponding
to this value, a geometrical point of view can be used,
as in Chernikova algorithm (Leverge, 1994).

Proposition 2. For a linear problem three cases may
arise:

a) If the associated polyhedronP =
{x|Ainx 6 Binpct + bin} is empty, the problem is
infeasible;

b) If there exists a bidirectional rayz such that
fT z 6= 0 or there exists a unidirectional rayy such
thatfT y 6 0, then the minimum is unbounded;

c) If all bidirectional rays z are such that
fT z = 0 and all unidirectional raysy are such
that fT y > 0, then the minimum is defined by:
min

{

fT xi|xi vertex ofP
}

and the solution is:

S = conv.hull {x′
1, . . . ,x

′
s}+

+cone {y′
1, . . . ,y

′
r} + lin.spaceP

wherex′
i are the vertices attaining the minimum and

y′
i are such thatfT y′

i = 0.
Now extending this perspective to the multi-

parametric case for eachp ∈ R
n , a similar result

can be established.
Proposition 3. The solution of a multi-parametric

linear optimization problem is characterized by the
followings:

a) If there exists a bidirectional rayz such that
fT z 6= 0 or there exists a unidirectional rayy such
thatfT y 6 0, then the minimum is unbounded;

b) For the sub domains of the parameter space
Difez ∈ R

n with the associated polyhedronP =
{x|Ainx 6 Binp + bin} empty whilep ∈ Difez,
the problem is infeasible (this can be restated in
terms of parameterized vertices: ”for the sub domains
where no parameterized vertex is available, the prob-
lem is infeasible”);
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c) If all bidirectional raysz are such thatfT z = 0
and all unidirectional raysy are such thatfT y > 0,
then the sub domainsDk can be defined such that the
minimum:

min
{

fT xi(p)|xi(p) vertex ofP (p)
}

is attained by the same subset of vertices of . The
complete solution for this sub domain is:

Sk(p) = conv.hull {x′
1k(p), . . . ,x′

sk(p)}+

+cone {y′
1, . . . ,y

′
r} + lin.spaceP (p)

wherex′
i are the vertices corresponding to the mini-

mum andy′
i are such thatfT y′

i = 0.
One has to observe that our goal is to find the ex-

plicit solution for the LP derived from the optimiza-
tion problem in robust MPC which has some particu-
larities:

• The linearity space is empty since the cost function
is positive convex.

• There is no unidirectional ray such that because this
will imply that the cost function is not convex.

• A single value inSk(p) is to be used on-line in
MPC.

Proposition 4. The solution of a multi-parametric
linear optimization problem within robust MPC satis-
fies:

a) The problem is infeasible for the sub domains
Difez ∈ R

n where no parameterized vertex is avail-
able;

b) Sub domains Dk are defined as the
zones for which the solution Sk(p) =
conv.hull {x′

1k, . . . ,x′
sk} is given by the same

set of parameterized vertices satisfying:

fT x′
1k = . . . = fT x′

sk =

= min
{

fT xi(p)|xi(p) vertex ofP (p)
}

Remark: As the parameters in (29) vary inside the
parameter space, the vertices of the optimization do-
main may split, shift or merge. The global optimum
will follow this evolution within the parameter space
as the optimum is a continuous function of parameter.

From a practical point of view the implementation
of this result is direct and follows the steps:

1. Find the expression of the parameterized feasible
domain in the augmented data+parameter space:

Ainx 6 Binp+bin ⇔ [ A in|−Bin ]

[

x
p

]

6 bin

2. Find them-vertices wheren is the dimension of the
parameter space.

3. Retain only those corresponding to parameterized
vertices by ignoring those with non-invertible pro-
jection on the parameter space

4. Compute validity domainDk for each parameter-
ized vertex

5. Compare each pair of vertices. In the case of a non-
empty intersection of their validity domains, split
them using the linear cost function. The final ex-
pression will be a union of regions corresponding
to the parameterized vertices containing the opti-
mum.

A special attention must be given to the step 5 with
the iterative comparison of the vertices and their va-
lidity domains. A possible routine may be based on
the following procedure.
procedure CutDomains (VD: the set of

all validity domains)

n=cardinal (VD)
i=1; j=2
while i<n+1
while j<n+1
if V Dj ∩ V Di 6= ∅
if fT xi 6 fT xj then V Dj = V Dj − V Di

if fT xj 6 fT xi then V Di = V Di − V Dj

j=j+1
endif
end
i=i+1
end

Remark: The procedure is initialized with the set
of validity domains obtained after the edges’ enumer-
ation (step 2).

Remark: The difference of two convex domains is
not a close operation and thus the output of the proce-
dure is a union of convex sub domains of the parame-
ters space which do not necessarily cover the entire
R

m (step 4).
From the RMPC point of view, the difference:

ℵ = R
m\ {∪Dk; k = 1..nD} (30)

describes the regions of infeasible parameters.
Once the set of parameter space sub domainsDk

created, it can be used in an on-line optimization find-
ing the control sequence for robust MPC.

Algorithm 2 (on-line solver)
1. Find the appurtenance setDk; k = 1..nD for the

current parameterp. Return infeasible if noDk is
found.

2. ComputekuMP C
= xk(p) using the piecewise for-

mulation of the parameterized vertices as in (25)
and effectively apply the first component.

3. Restart from 1 with the newp.

5 EXAMPLE

Consider the model (Scokaert and Mayne, 1998):
xt+1 = xt + ut + vt
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In order to illustrate the ideas of RMPC presented ear-
lier, a two step prediction is considered and thus the
following optimization problem is to be solved at each
sampling time:

V (xt) = min
ut,ut+1

1
∑

k=0

∣

∣xt+k|t

∣

∣+ 10 |ut+k|

s.t.











- 1.26 xt+k|t 6 2, k = 0, 1, 2

- 1 6 xt+2|t 6 1,

- 1 6 vt+k 6 1, k = 0, 1

(31)

Ignoring the disturbances, the explicit solution of the
problem can be found using the geometrical approach
presented in the previous section by inspecting the 22
parameterized vertices. After the stage of discrimina-
tion of the validity domains, the explicit RMPC law is
found as:

Affine control law Validity domain
ut = −xt − 1 −1.2 6 xt 6 −1

0 −1 6 xt 6 0
0 0 6 xt 6 1

ut = −xt + 1 1 6 xt 6 2

It can be observed that there are two domains with
the same control law due to the fact that the cost
function changes its slope and thus the maximum lies
on different parameterized vertices in the augmented
space. In this case, as their union is a convex set, they
can be collated in a single set. In the general case, this
operation can be done using tools of convex recog-
nition of union of polyhedra (see (Bemporad et al.,
2002a) for details).

Simulating this control law for an initial condition
x0 = −1.2 proves to keep the system trajectory in-
side the constraints in the disturbance free case (Fig-
ure 2a). If the same controller is used withvk =
−1/k, k > 1 , the trajectory will violate the con-
straints (Figure 2b).

Further if the robust MPC explicit formulation is to
be achieved then the min-max version of (31) is to be
solved:

V (xt) = min
ut,ut+1

max
vt,vt+1

1
∑

k=0

∣

∣xt+k|t

∣

∣+ 10 |ut+k|

s.t.











- 1.26 xt+k|t 6 2, k = 0, 1, 2

- 1 6 xt+2|t 6 1,

- 1 6 vt+k 6 1, k = 0, 1
(32)

In this form, there is no solution as the optimization
is infeasible. In fact there is no control law at first
sampling time:

ut|t = a1xt + b1

ut+1|t = a2xt + b2ut|t + c2

which can keep robustly the system trajectory within
the constraints. This fact is obvious as long as an
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b) Nominal MPC with disturbance
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0.4
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b) Command - u - MPC w.d.
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0

0.05

0.1

0.15

0.2
a) Command - u - MPC d.f.

Figure 2: a) Left: Nominal MPC - disturbance-free case;
b) Right: Nominal MPC for the system affected by distur-
bances.

”open-loop” type of RMPC is considered, where the
cumulative damage of the disturbances can not be
mitigated. When writing explicitly the end-point con-
straints in (32) for the extremal combinations of dis-
turbances, this becomes evident as:

[

νt

νt+1

]

=

[

1
1

]

⇒

−1 6 xt + ut|t + ut+1|t + 2 6 1 ⇒

−3 6 xt + ut|t + ut+1|t 6 −1;
[

νt

νt+1

]

=

[

−1
−1

]

⇒

−1 6 xt + ut|t + ut+1|t − 2 6 1 ⇒

1 6 xt + ut|t + ut+1|t 6 3

which means that there is no control combination to
maintain the law feasible without a prior knowledge
of disturbances. However the so called ”closed loop”
formulation provides the necessary degrees of free-
dom in this sense. One has to solve:

V (xt) = min
ut

max
vt

min
ut+1

max
vt+1

1
∑

k=0

∣

∣xt+k|t

∣

∣+ 10 |ut+k|

s.t.











- 1.26 xt+k|t 6 2, k = 0, 1, 2

- 1 6 xt+2|t 6 1,

- 1 6 vt+k 6 1, k = 0, 1
(33)

Following the theoretical result in section 4, the ex-
plicit solution can be achieved by solving the inner
minimization:

V (xt, ut, vt) = min
ut+1

max
vt+1

|xt|+

+ |xt + ut + νt| + 10 |ut| + 10 |ut+1|

s.t.











- 1.26 xt+k|t 6 2, k = 0, 1, 2

- 1 6 xt+2|t 6 1,

- 1 6 vt+k 6 1, k = 0, 1

(34)
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The solution using the geometrical approach is imme-
diate as there are exactly 2 parameterized vertices on
which the minimum lies and associated control law is:

ut+1|t = −(xt+ut|t+νt) = −xt+1 for - 1.26 xt 6 2
Notice that the control law uses the additional infor-
mation available in comparison with (32). With this
result, for the outer optimization problem:

min
ut

max
vt

|xt| +
∣

∣11xt+1|t

∣

∣+ |10ut|

s.t.

{

- 1.26 xt+k|t 6 2, k = 0, 1

- 1 6 vt 6 1

(35)

the explicit solution is once more immediate as there
are only two non-degenerate parameterized vertices
describing the geometric locus of the minimum. Ap-
plying this RMPC law:

ut = −xt for - 1.26 xt 6 2
the system affected by disturbances is regulated to the
origin (Figure 3). The solutions of the optimization

0 5 10 15 20 25
-2.5

-2

-1.5
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0

0.5
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Robust MPC
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0
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0.4

0.6

0.8

1

1.2

1.4
Command - u

Figure 3: System trajectory with robust MPC law.

problems in (31), (34), (35) were obtained using pa-
rameterized polyhedra routines in 2, 0.39 and 0.91
seconds respectively. However for complex system
the computational time may explode as the number
of parameterized vertices has an exponential depen-
dence on the number of constraints added during the
transformation stages.

6 CONCLUSION

The paper used a unified approach for the con-
straints handling in the context of RMPC confirming
the formulation of the optimal sequence as a multi-
parametric quadratic problem. The explicit solution
of this problem was synthesized by means of para-
meterized polyhedra. This geometrical approach pro-
poses an alternative to the recent methods presented
in the literature. Its advantages might be the fact that
optimum lies on the parameterized vertices providing
a natural constant linear affine dependence in the con-
text parameters. An aspect which may receive further
attention is the enumeration of faces for the parame-
terized polyhedra which may turn to be a computa-
tionally demanding task.
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