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Abstract: The problem of localization is well known in mobile robotics. A solution is to use a model-based technique 
such as a kalman filter with multi sensor data fusion. For a car-like mobile robot, the nonlinear dynamic 
model is suitable for robot movement representation. This work presents the discrete extended kalman filter 
including a nonlinear dynamic model for the mobile robot localization. As inputs for the kalman filtering, 
gyroscope and compass sensors provide the relative and absolute yaw angles. The experiments are 
performed on several path types and the averages of the final position errors and the final heading errors are 
proposed. 

1 INTRODUCTION 

The localization problem is a well known important 
problem in mobile robotics. No matter how the 
environment is or how the functionalities of the 
robot are, whether the robot navigates autonomously 
or semi-autonomously, it is useful to know where 
the robot is. The mobile robot localization can be 
classified into two main categories that are relative 
(local) localization and absolute (global) localization 
as described in (Goel et.al., 1999).  

For large scale outdoor environment, the 
positioning resolution is effective to have absolute 
localization regarding disturbances resulting from a 
missing smoothness of the ground surface. The 
absolute positioning sensors such as global 
positioning system (GPS), differential GPS, beacon 
system, natural landmarks are exploited with the 
relative positioning sensors e.g. gyroscope to obtain 
accurate robot position. On the other hand, in indoor 
environment with a smooth and flat surface, the 
disturbance is small. However, the satellite signals in 
buildings with many walls often fail regarding to 
weakness and blindness. Therefore, a good 
performance of at least relative localization is 
necessary.  

Sensors used for relative positioning are e.g. 
odometer, compass and gyroscope. These sensors 
have different strength and weakness (Nehmzow, 
2003). Odometer is a common device used to 

provide travelled distances. The relative position 
provided by odometers has sometimes an 
accumulated error from wheel slippage. The 
gyroscope and compass sensors provide the yaw 
angle. The gyroscope measures angular velocity. 
The integration of this signal provides the relative 
yaw angle. The gyroscope has a drift in 
measurement. The compass sensor provides the 
ready-to-use absolute yaw angle.  

The robot’s nonlinear dynamic model realization 
and the robot localization using discrete extended 
kalman filter is proposed. The comparison of the real 
robot position and heading errors by using odometer, 
gyroscope, and compass sensor are presented.  
This paper is organized as follows: Section 2 
explains the robot modelling, section 3 describes the 
extended kalman filter, section 4 shows the 
calculation of robot estimated positions and 
headings, section 5 presents the experimental results 
while section 6 contains the conclusion. 

2 ROBOT MODELLING 

The first step in model based localization is to 
develop a suitable mathematical model for the robot. 
When considering the structure of the mobile robot, 
it is a four wheel vehicle with the driving principle 
of a car, steering the front wheels and propelling the 
rear wheels. The nonlinear dynamic model 
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represents the dynamic movement of the robot with 
the nonlinear characteristics of the side force at the 
wheels. This property has majority effect when the 
car moves along curvature path. In the following, the 
nonlinear dynamic model is introduced and 
subsequently the application on the mobile robot is 
described. 

 
 

Figure 1: Dynamical variables of the vehicle 

2.1 Nonlinear dynamic model 

The nonlinear dynamic mathematical model for a 
four wheel vehicle was determined as a single track 
model describing transverse and longitudinal 
dynamics, neglecting roll and pitch angles and 
comprising front and rear wheels to one fictitious 
wheel (Riekert and Schunck, 1940, Mayr, 1991).  

Fig. 1 shows the dynamic variables of a vehicle 
as follows:  

• the yaw angle ψ, vehicle orientation,  
• the yaw velocity ψ’, the first derivative of the 

yaw angle,  
• the longitudinal velocity v,  
• the sideslip angle β,  
• the actual position X and Y of the center of 

gravity in Cartesian coordinates, 
• the front side force Sv and the rear side force 

Sh,  
• the rear longitudinal forces H resulting from 

the driving motor, 
• the steering angle δv. 
 
In addition, there are the following constants: 

Vehicle mass m, moment of inertia θ and the 
distances lv (lh) between the front (rear) wheels and 
the longitudinal axes of the car.  

Based on the balance of the forces acting on the 
vehicle in the longitudinal and lateral directions, the 
torques and  the kinematic conditions, the nonlinear 
dynamic vehicle model is presented as follows:  
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The front and rear side forces Sv and Sh of the 
vehicle depend on the slip angles αv and αh, while αv 
depends itself also on the steering angle δv. The 
nonlinear functions Γv and Γh determine the 
dynamics in the tires as follows: 

 
)( vvvS αΓ=  (5) 
)( hhhS αΓ=  (6) 

 
By these functions representing a characteristic 

line, the behavior of the wheels and the tires is taken 
into consideration. This characteristic line includes 
limitations and descending behavior for high values 
in the argument. As shown in Fig. 2, here the 
functions are approximated by three straight lines 
describing the dependence of side force values S on 
their argument α. For low arguments, a nearly 
proportional ascend of the side force can be 
recognized, while beyond the value αmax the side 
force is descending. At αmax the value for the 
corresponding side force reaches its maximum. The 
area below αmax is called the ascending part, while 
the area, where the side force descends is called the 
descending part of the characteristic line. As a 

 

 
 
Figure 2: Characteristic line Γ of the wheels and tyres 
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consequence of the gradual inverse dynamics, the 
car would begin to skid when driving in the 
descending part. During a normal maneuver without 
skidding, every wheel of the vehicle is working in 
the ascending area of the characteristic line. This 
nonlinear characteristic coming from automotive 
technology is also applicable to a car-like mobile 
robot in indoor environment over dry and flat floor.  

As here, high absolute values for αv and αh will 
never come up, the functions Γv and Γh can be 
simplified to the amplification factors cv and ch. 
Then, (5) and (6) result in  
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2.2 Model realization 

The mobile experimental robot for locomotion and 
intelligent navigation (MERLIN) has been designed 
and developed for both, indoor and outdoor 
environments. The sensors onboard are odometer, 
gyroscope, 3D compass, ultrasonic sensor, infrared 
sensor, and bumper as shown in Fig. 3. The semi-
autonomous tele-control using joystick and path 
commands are available via internet (Kuhle et. al., 
2004). 

The moment of inertia from calculation is equal 
to 0.169167 kg·m2. The side force constants cv and 
ch are from experiments. By keeping a constant 
steering angle δv and a constant driving motor force 
H, the robot drives on a circular path with a constant 
speed and the robots position is externally recorded 
by a V-scopeTM positioning sensor. The data are 
exploited with the model equations to obtain the side 
force constant. The results are cv = 168450 and ch = 

152290. The length from the center of gravity to the 
front wheels is lv = 0.15 meter and to the rear wheels 
lh = 0.15 meter. The mass of the robot is m = 7 kg 
including the batteries. Due to the surface of the 
robot is small and as the robot drives with low 
speed, the air resistance is neglected. 

3 EXTENDED KALMAN FILTER 
(EKF) 

The kalman filter is a model-based sensor fusion 
technique. Two main processes are time update and 
measurement update. For a nonlinear dynamic 
system, the discrete extended kalman filter is applied 
(Brown, 1983, Welch and Bishop, 2002). Assume 
that a nonlinear process has a state vector and 
is governed by the non-linear stochastic differential 
equation with a measurement  that is 

nx ℜ∈

mz ℜ∈
 

xk = f (xk-1,uk-1,wk-1), (9) 
 

zk = h(xk, vk), (10) 
 
where wk and vk represent the process and 
measurement noise. After linearization, the 
linearized state transition matrix is represented 
without noises. The Jacobian matrix of the partial 
derivatives of f with respect to x is 
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where the state vector x is  
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and the Jacobian matrix of partial derivatives of h 
with respect to x is 

 

 
 

Figure 3: MERLIN 
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where h is  
Txxxxh ][ 4321= . (14) 

 
The kalman filtering process starts from 

initialization of all state variables and matrices. 
Assume that the process and measurement noises are 
Gaussian with zero mean and are constant 
throughout the process. The priori estimate state 
variable  and the priori estimate error covariance 

 at time step k are  

−
kx̂

−
kP
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Figure 4: Architecture of the robot localization system 
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where Q is the process noise constant matrix. After 
that the kalman gain Kk, the posteriori estimate state 
variable , and the posteriori estimate error 
covariance P

kx̂
k are calculated as follows: 
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where R is the measurement noise covariance. 

The inputs of the robot model are the steering 
angle δ and the driving motor force H. Let the input 
vector at time step k be 

 
uk = [δk   Ηk ]T, (20) 

 
and let the measurement vector be  
 

zk = [zβ,k   zψ,k    zψ’,k    zv,k]T, (21) 
 

where zβ,k, zψ,k, zψ’,k, and zv,k are the measured values 
of the state variables at time step k. As the robot 
drives very slow and, thus, the sideslip angle, which 
is difficult to sense, is of minor importance, the 
measurement value of the sideslip is set to zero for 
all time steps k. Regarding the system model in (1–
4), the discrete system is first obtained using Euler’s 
method (Franklin, 1998). The process and 
measurement noise covariance matrices Q and R are 
tuned off-line in the simulation for appropriate value 
and kept constant during the iterative process. The 
selected values are 1x10-6 for all diagonal matrix 
elements.  

 
 

Figure 5: Variables based on odometer (cont.) 
 

4 POSITION AND HEADING 
CALCULATIONS 

As shown in Fig. 4, three different estimated paths 
are from using measurement of odometer, 
gyroscope, and compass estimation. The odometer 
estimated position and heading is the non-model 
based whereas the other two estimations are based 
on kalman filter and the nonlinear dynamic model.  

4.1 Odometer position and heading 
estimation 

The position xodo,k, yodo,k and heading ψodo,k at step k 
are calculated from 
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where ∆dR,k is the difference of driven distances of 
the right wheel between the time steps k and k-1 as 
shown in Fig. 5. Note that similar calculation is 
applied to the difference of distances left ∆dL,k. Here, 
dL,k represents the already driven distance of the left 
wheel at time step k, while dR,k is the driven distance 
of the right wheel. These driven distances since the 
beginning of the ride can be computed from the 
amount of pulses from the odometer on each wheel. 
The wheel base W is the distance between the center 
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of the left wheel to the center of the right wheel and 
is equal to 23.5 cm.  

4.2 Position and heading estimation 
using gyroscope and compass 

The estimated positions of the relative yaw angle of 
the gyroscope and absolute yaw angle of the 
compass are calculated by using 
 

( ) 1cos −+−⋅= kkkkk xvstx βψ , (27) 
( ) 1sin −+−⋅= kkkkk yvsty βψ , (28) 

 
where vk, ψk, and βk are posterior estimated state 
variables as in (18). The estimated robot heading is 
ψk. st is the time step. Here also the kalman filtering 
is applied. 

5 EXPERIMENTAL RESULTS 

The experiments were performed in indoor and the 
sensor data were collected for off-line plots using 
MATLAB. All graphs scale has unit in meter and 
the data sampling rate is 0.2 sec. The test is designed 
for testing the performance of localization when the 
robot moves straight on, in a curve path, and the 
combination of both.  

5.1 Test results 

As already mentioned, in order to improve the 
quality of the measurement signals, the data coming 
from the gyroscope as well as the data from the 
compass was subsequently processed by the kalman 
filter using the measured velocity signal from the 
odometer.  

Odometer: Please note that for comparison, the 
data coming from the odometer itself (dot line) is 
plotted directly using (22-26) and, thus, not updated 
by the kalman filter. Due to (24), (25) and (26), 
relevant odometer data is not only the average of the 
wheel movements but also the difference of the 
movements of the left and right wheel in order to get 
information about the change of orientation of the 
robot. 

Gyroscope: The measured yaw angle by 
gyroscope are applied as inputs to kalman filter 
measurement updates and the positions are obtained 
from (27) and (28) shown as solid line. Please note, 
that here the odometer only provides the 
measurement value for the velocity.  

Compass: Similarly, by using the compass yaw 
angle with kalman filter, the position estimation 
from (27) and (28) are represented by dash-dot line. 
Please note, that here also the odometer only 
provides the measurement value for the velocity. 

 
 

Figure 6: Wall-path estimated positions 

The wall-path is shown in Fig. 6. At the wall 
corners, the robot turns with minimum radius curve. 
The estimated final position using odometer has 
sometimes large error as shown in the figure. The 
gyroscope has drift in some trials whereas the 
compass result is quite static for all trials with error 
of deviation in measurement as in line path.  

For every path type, several driving tests were 
performed. Regarding each driving test, the real final 
position determined was compared to the position 
value measured by the on-board sensors and the 
resulting errors were calculated. Subsequently, the 

Table 1: Average
 

 Odomete
(meters)

Rectangular 0.71 
U 0.88 
Arcs 0.26 
Line1 0.53 
Line2 0.19 
Wall 15.09 

Table 2: Average h

 Odomete
(degrees)

Rectangular -23 
U 7 
Arcs 6 
Line1 5 
Line2 5 
Wall -58 
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 position errors (epos) 

r 
 

Compass 
(meters) 

Gyroscope 
(meters) 

0.33 0.17 
0.38 0.12 
0.32 0.29 
0.27 1.02 
0.78 0.27 
3.35 5.44 

 
eading errors (eheading) 

 
r 
 

Compass 
(degrees) 

Gyroscope 
(degrees) 

14 -1 
12 2 
110 1 
61 6 
-91 0 
-52 -10 
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average error values result from the averages of the 
respective errors of all similar driving tests.  

The average errors in position and heading are 
summarized in Tables 1 and 2, respectively. The 
position error epos is the error between the actual 
final position and the estimated final position. Based 
on the actual and estimated values for the yaw angle, 
the heading error eheading is the error of robot heading 
at the final position. These errors are calculated by 
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Where xe and 

ye  are the mean of error in x and y 

direction from several driving tests. ψestimate,i and 
ψactual,i are the estimated and actual final heading of 
test number i, respectively.  

In Table 1, the average of final position errors of 
gyroscope are not the largest in all trajectories. Due 
to the localization based on model, the position 
errors of compass and gyro are not much different. 
The gyro and compass with discrete EKF 
outperforms the odometer positioning for wall path. 
As in Table 2, the average of final heading errors of 
the well calibrated gyroscope present the excellent 
performance over compass and odometer. 

5.2 Discussions 

For the line1 path, both average position and 
heading errors of gyroscope are larger than those of 
odometer and compass. This presents the minority 
performance of the gyroscope over the odometer in 
line1 path by the mechanical structure of the robot.  

For the trajectories containing arcs path that are 
rectangular, U, and arcs path, the yaw angle 
measurement dominates in the position estimation 
process. The well calibrated gyroscope presents 
good performance without drift. Nevertheless, for 
the large scale scenario as for wall path, the 
gyroscope provides good estimation, because here 
the drift is not relevant. 

The compass yaw angle deviation occurs in all 
trajectories. This error shows up in most of all the 
driving tests. The average errors of final heading for 
all trajectories in Table 2 are in most cases larger. 
However, there are some cases that the deviation 
doesn’t exist as shown in Fig. 6. 

For the odometer estimated position, the large 
error is presented in the wall path. This error is 

caused by the slippage in the wheels and does not 
always occur in all driving tests. However, the final 
position and heading errors are larger than those of 
the gyroscope, except in line1 and line2 trajectories 
regarding to the previous discussion of the error in 
the estimation using gyroscope.  

6 CONCLUSIONS 

The discrete extended kalman filter is applied to a 
car-like mobile robot for improvement of 
localization using the nonlinear dynamic model. The 
experiments are performed on six path types and the 
final position error and final heading error using 
odometer, gyroscope, and compass data are 
compared. The well calibrated gyroscope provides 
minority performance in robot final position for 
line1 path. For the other five path types, the 
gyroscope position errors are smaller than those of 
odometer and the in performance in final heading of 
the gyroscope dominates the compass and odometer 
for all trajectories.  
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