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Abstract: Interpreting laser data to allow autonomous robot navigation on paved as well as dirt roads using a fixed 
angle 2D laser scanner is a daunting task.  This paper introduces an algorithm for terrain classification that 
fuses four distinctly different classifiers: raw height, step size, slope, and roughness.  Input is a single 2D 
laser scan and output is a classification of each laser scan range reading.  The range readings are classified 
as either returning from an obstacle (not traversable) or from traversable ground.  Experimental results are 
shown and discussed from the implementation done with a department developed Medium Mobile Robot 
and tests conducted in a national park environment. 

1 INTRODUCTION 

Safe autonomous navigation in unstructured or semi-
structured outdoor environments presents a 
considerable challenge.  Solving this challenge 
would allow applications within many areas such as 
ground-based surveillance, agriculture, as well as 
mining. 

To achieve this level of autonomy, a robot must 
be able to perceive and interpret the environment in 
a meaningful way.  Limitations in current sensing 
technology, difficulties in modelling the interaction 
between robot and terrain, and a dynamically 
changing unknown environment all makes this 
difficult.  

Imperative for successful and safe autonomous 
navigation is the identification of obstacles which 
either can be damaged or hurt, or in turn can disable 
or cause damage to the robot. Analogous to this it 
must also be possible to identify traversable terrain 
(e.g. the road). Bertozzi and Broggi (1997) argues 
that this problem can be divided into lane following 
and obstacle detection.  This paper concentrates on 
the detection of obstacles. 

Much current work in laser scanner classification 
tends to focus on using 3D laser scanners, vision or a 
combination of 3D laser scanners and vision.  
Vandapel (2004) used a 3D laser scanner to classify 

point clouds into linear features, surfaces, and 
scatter. Classification was based on a learnt training 
set. Montemerlo and Thrun (2004) identified 
navigable terrain using a 3D laser scanner by 
checking if all measurements in the vicinity of a 
range reading had less than a few centimetres 
deviation.  Wallace et al (1986) used a vision-based 
edge detection algorithm to identify road borders.  
Jochem et. Al (1993) followed roads using vision 
and neural networks. Macedo et al (2000) developed 
an algorithm that distinguished compressible grass 
(which is traversable) from obstacles such as rocks 

Figure 1: The robot platform tested in the dirt-road semi-
structured environment from a Danish national park 
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using spatial coherence techniques with an omni-
directional single line laser. 

Wettergreen et al (2005) extracted three metrics 
from stereovision data and used these to traverse a 
rock field. Iagnemma et al (2004) followed quite 
another route and proposed a tactile and vibration-
based approach to terrain classification. 

This paper proposes a terrain classification 
algorithm that discriminates between obstacles and 
traversable terrain using a fixed 2D laser scanner as 
the main sensor. This is notoriously harder than 
using 3D sensor inputs as there is much less 
information available. 

In the classification algorithm proposed here, four 
essential environment features are associated with 
signatures in the 2D laser scan range readings, and 
classification is done using a combined classifier on 
the extracted features.  The salient features looked at 
are: terrain height, terrain slope, increments in 
terrain height, and variance in height across the 
terrain.  
This work is a contribution towards demonstrating 
that it will become feasible to achieve autonomy 
over long distances (>4km) in a natural outdoor 
terrain using only a 2D laser scanner for terrain 
classification. 

The paper shows results of testing the classifier 
on the Medium Mobile Robot (MMR) platform from 
the Technical University of Denmark on various 
paved and dirt roads in a national park (see Figure 
1).  The quality of classification is discussed for 
different cases of natural environment encountered 
in the tests. The contribution of the paper is to 
demonstrate that the proposed classification 
techniques suffice to navigate the MMR safely and 
to demonstrate that the proposed method is robust to 
the variation encountered in the natural environment 
using simple equipment: 2D laser scanner, a cheap 
commercial GPS sensor and odometry. 

2 TERRAIN CLASSIFICATION 

The terrain classification algorithm combines four 
distinctly different terrain classifiers: raw height, 
step size, slope, and roughness.   

Input for each run of the algorithm is a single 
laser scan.  Output as stated in the Introduction is a 
classification for each range reading as returning 
from either an obstacle or as traversable terrain.  The 
terrain classifiers all work on point statistics. 

2.1 Coordinate System 

On the MMR the laser scanner is tilted at 8° down 
towards the ground and gives 180 range readings in 
a 180° frontal arc.  Only the range readings in a 120° 
arc in front of the robot were used for terrain 
classification as this approximately corresponds to 
which range readings would hit the ground with the 
given scanner tilt. 

Each laser scan range reading is converted to a 
3D point expressed in the vehicle frame.  The 
vehicle stands in (0, 0, 0).  Assuming the robot is 
standing on level ground then up (height) is the Z-
axis in the positive direction.  The robot looks out 
the positive Y-axis, and the X-axis increases towards 
the right of the robot.  The raw height and step size 
classifier only look at the height (Z-axis).   

In the following sections P will denote a set of 
range readings converted to 3D points.  The 
hypothesis is that each 3D point can be mapped to 
either belonging to an obstacle or traversable terrain.  
This is explained in Eq. (1). 
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A single element of P is denoted ip  where i  
represents the range reading angle (inside the 180° 
frontal arc).  The coordinates of a point are given by 

 ( ,  ,  )i iy izixp p p p= .  The conversion from range 
readings to 3D coordinates is shown in Eq. (2). 

irange  is the measured range at angle i .  tiltθ  is the 
angle the laser scanner is tilted (in our case 8°). 

heightS  is the height the laser scanner is mounted at 
relative to the plane of the robots wheel-base (on the 
MMR this is 0.41m).  
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2.2 Raw Height  

This classifier looks at the height of each range 
reading (point) in the vehicle frame. If a point is 
higher or lower (on the Z-axis) than a value decided 
by a height threshold then the point is labelled as 
returning from an obstacle.  In the tested system if a 
point had a height of ±20cm it was labelled as an 
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obstacle.  In practice its purpose is to identify 
obstacles such as people, tree trunks and pits.  
Obstacles inside the ±20cm thresholds cannot be 
detected.  The robot has no sensors to measure pitch 
and yaw of the laser scanner relative to the ground 
surface.  As such, the height thresholds are chosen to 
allow for variations in measured height of the 
ground due to lack of attitude determination.  The 
classifier is shown in Eq. (3) where heightmax and 
heightmin are the height thresholds.  

max
( )

min

p heightizH obstacle p Pi p heightiz

>⎧ ⎫⎪ ⎪= ∈⎨ ⎬∨ <⎪ ⎪⎩ ⎭
 (3) 

Here, the threshold min 0height <  enables 
detection of non-traversable cavities in the ground. 

2.3 Step Size  

A step size classifier looks at the difference in height 
between neighbouring points where neighbouring is 
defined as a range within 1° of the specific point. If 
the difference in height is higher than a threshold 
(here 5 cm) a terrain step is detected that is too high 
for the robot to traverse.  The algorithm labels both 
points that form the border between the step as 
obstacles.  As it only looks at the step size, 
neighbouring points from an obstacle with similar 
height may be erroneously labelled as traversable.  
The 5 cm threshold was set based on the robot’s 
physical specifications, the limiting factor being that 
the front wheel cannot reliably climb anything taller.  
The classifier is shown in Eq. (4) where stepmax 
represents the threshold for difference in height. 
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2.4 Slope  

Slope classification aims at identifying terrain which 
has too high an incline to be traversed.  The 
classification is done by calculating a 2D line fit 
using least squares around a point sample.  For each 
point, the neighbouring points within ±2° are used.  
The least squares line is then calculated using the X 
and Z-axis values.  The point examined is 
subsequently classified based on its slope.  If 
exceeding a limit slopemax = ±0.1 it is classified as 

belonging to terrain that is too steep for the robot 
and is labelled as an obstacle.  The assumption here 
is that the best-fit line approximates the steepness of 
the terrain around this point sample.  The value of 
±0.1 was chosen for two reasons.  First, it represents 
what the robot can physically handle.  Secondly, it 
keeps the robot on reasonably level ground where 
lack of attitude determination is less critical.  The 
classifier can be seen in Eq. (5) where slopemax is the 
slope threshold. 
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2.5 Roughness  

The roughness classifier looks at the variance in 
height in the vicinity of a specific point.  The 
purpose is to identify areas with low variance as 
these areas are more likely to be easily traversable.  
For example, heavy underbrush in a forest may have 
a high variance; a flat road will appear as a region of 
points with a low variance.  Trend removal is also 
essential as a slightly sloping surface relative to the 
vehicle frame may give a high variance in height 
relative to the zero height plane {Z|Z=0}. The 
variance in height is hence calculated relative to a 
2D best-fit line.  This line is calculated in the same 
manner as in the slope classifier.  The variance is 
then calculated as the shortest distance from each 
point (using again the two neighbouring points on 
either side of the point) to the best-fit line using only 
the X and Z-axis coordinates. If the variance in a 
point sample in this method was found to be larger 
than variancemax = 2.5e-10 the point was labelled as 
an obstacle.  This classifier can give more accurate 
results than the other classifiers (see Table 1) but it 
cannot stand alone since, for example, a flat wall 
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obstacle would return a low variance.  The value of 
the variance threshold was tuned based on several 
kilometre long recorded datasets from the national 
park environment (along both paved as well as dirt 
roads).   The roughness classifier algorithm is shown 
in Eq.(6). 
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2.6 Combining Classifiers 

A combined classifier is created by running the 
terrain classifiers in the sequential order: raw height, 
step size, slope, and then roughness.  Initially all 
points are labelled as traversable.  If a point is 
classified as an obstacle by one of the classifiers it is 
not further attempted classified in the subsequent 
classifiers.  Once all the classifiers have been run, 
points that lie in gaps between obstacles which are 
too narrow to allow the robot to traverse are labelled 
as obstacles.  The gap size is calculated using the 
Euclidean distance between the obstacles in the XY 
plane.  As raw height and step size are 
computationally less expensive than the two other 
classifiers, it is computationally favourable to 
classify points between obstacles as non-traversable 
early in the algorithm.   

3 EXPERIMENTAL RESULTS 

The quality of the classification was tested using a 
dataset of 30 laser scans taken using the MMR 
travelling autonomously 200m along a forest dirt 
road (see Figure 2).  The laser scans have been 
sampled at regular intervals along the 200m run.  
Each of the points in the laser scans have been 
manually classified as belonging either to 
traversable terrain (the dirt road) or obstacles.  This 
manual classification was done to establish a ground 
truth.  The laser scans were compared to 
photographs and time-stamped GPS/odometry data.  
In certain situations along the forest dirt road, there 
was ambiguity in what constituted the edge of the 
road.  In these cases, if the terrain appeared 
navigable from photographs it was assumed to be so. 

Each of the separate classifiers that compose the 
combined classifier was tested individually along 
with the combined classifier.  The number of 
misclassifications compared to the manual 
classification was recorded and results are 
summarised in Table 1. The results clearly show that 
there is significant benefit in combining the different 
classifiers.  

A quality assessment is made using two 
measures: any

missedp  the probability of missed detection 
of an obstacle by any single classifier; all

missedp  the 
misclassification of traversable road by combining 
all available classifiers. 

The measure of missed detection by any of the 
classifiers is  
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Such misclassification for the individual 
classifiers was found to be as high as 
( 95%)any

missedp > . 

The probability of misclassification of traversable 
points all

missedp  when combining all classifiers is  

{ } |
: ( ) ( )

all
missed

i

i

p

p traversable
prob

classifier H p H obstacle

=

∀ ∈⎧ ⎫⎪ ⎪
⎨ ⎬
∀ =⎪ ⎪⎩ ⎭

 (8) 

The misclassification for the individual classifiers 
was found to be as low as ( 5%)all

missedp < . 
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The detailed results in Table 1 show that although 
raw height, step size, and slope all misclassify 
around half the points on their own, they can still 
enhance the combined classifier.  This is because 
they detect different types of obstacles.  For 
example, raw height only looks at the obstacles 
height whereas step size only detects changes in 
height. In the Combined (with gap removal) 
classifier the 4.4% misclassifications have proven to 
be acceptable in practice as often it is just small 
parts of the road which are mislabelled as obstacles 
(the robot simply navigates around the suspicious 
terrain).  

 
Table 1: Experimental results from the classifiers 

Classifier Misclassifications Percentage 
misclassified 

Raw height 2334 64.8% 
Step size 2156 59.9% 
Slope 1657 46.0% 
Roughness 663 18.4% 
Combined 393 10.9% 
Combined (with 
gap removal) 

157 4.4% 

4 SUMMARY 

A classifier fusion algorithm was proposed that 
enable a mobile robot to locate and travel along a 
safe path in a natural environment using a 2D laser 
scanner, a civil GPS receiver and odometry.  

Although performance of individual classifiers, 
based on simple single scan statistics, was not 
impressive, the combined set of classifiers were 
found to perform quite accetably in classifying a dirt 
road from surrounding terrain with less than 5% of 
scanned points being misclassified. The performance 
was documented in a natural environment. This 
work has shown that 2D laser scans can give 
considerable information about a semi-structured 
natural environment.  

Ongoing work includes maintaining an estimate 
of the roads position across the trajectory of multiple 
robot positions and using this information in the 
classifier.  Also, quantifying the accuracy of a given 
classification without ground truth is being looked 
into.  Lastly, attempts are being made to detect the 
type of road surface currently being navigated on.  
This may allow for adaptive tuning of classifiers by 
making the thresholds in the hypothesis tests 
dependant on the road surface. 
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Figure 2: Results of different terrain classifiers on a single laser scan (Y-axis is up and the X-axis increases to the 
right). A photograph shows roughly where the robot was standing.  A double arrow shows how the road in the 
photograph corresponds to its location in the laser scan.  The labels are (a) raw height, (b) step size, (c) slope, (d)
roughness, (e) combined, and (f) combined with gap removal.  Red points represent obstacles and green points the 
traversable terrain 
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