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Abstract: A Recurrent Trainable Neural Network (RTNN) with a two layer canonical architecture and a dynamic 
Backpropagation learning method are applied for identification and control of complex nonlinear 
mechanical plants. The paper uses a Fuzzy-Neural Hierarchical Multi-Model (FNHMM), which merge the 
fuzzy model flexibility with the learning abilities of the RNNs. The paper proposed the application of two 
control schemes, which are: a trajectory tracking control by an inverse FNHMM and a direct adaptive 
control, using the states issued by the identification FNHMM. The proposed control methods are applied for 
a mechanical plant with friction system control, where the obtained comparative results show that the 
control using FNHMM outperforms the fuzzy and the neural single control. 

1 INTRODUCTION 

Recent advances in understanding of the working 
principles of artificial neural networks has given a 
tremendous boost to identification and control tools 
of nonlinear systems, (Narendra and Parthasarathy, 
1990; Hunt et al., 1992; 1995, Miller et al., 1992; 
Omatu et al., 1995). Most of the current applications 
rely on the classical NARMA approach, where a 
feedforward network is used to synthesize the 
nonlinear map, (Narendra and Parthasarathy, 1990; 
Hunt et al., 1992). This approach has some 
disadvantages, (Hunt et al., 1992), like that: the 
network inputs are a number of past system inputs 
and outputs, so to find out the optimum number of 
past values, a trial and error must be carried on; the 
model is naturally formulated in discrete time with 
fixed sampling period, so if the sampling period is 
changed the network, must be trained again; 
problems associated with stability, convergence and 
rate of convergence of this networks are not clearly 
understood and there is not a framework available 
for its analysis in vector-matricial form, (Gupta et 
al., 1994; Jin and Gupta, 1999); it is a necessary 

condition, that the plant order has to be known. 
Besides to avoid these difficulties, a new Recurrent 
Neural Networks (RNN) topology, and a 
Backpropagation (BP) like learning algorithm, 
(Baruch et al., 2001a, 2002), has been designed. 
This RNN model is a parametric one, permitting the 
use of the obtained parameters during the learning 
for control systems design. Furthermore, the 
designed RNN model is a system state 
predictor/estimator, which permits to use the 
obtained system states directly for state-space 
control. The designed RNN model has the advantage 
to be completely parallel, so its dynamics depends 
only on the previous step and not on the other past 
steps, determined by the systems order which 
simplifies the computational complexity of the 
learning algorithm with respect to the sequential 
RNN model of (Frasconi, Gori and Soda, 1992). 

For complex nonlinear plants, the authors of 
(Baruch et al., 1998, 2001b) proposed to use a 
fuzzy-neural multi-model, which is applied for 
systems with friction identification and control. This 
model explore the ideas of (Takagi and Sugeno, 
1985), using in the right hand side of the fuzzy rules 
static or dynamic functions (see Babushka and 
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Verbruggen, 1997), the multiple neural approach 
(see Eikens and Karim, 1999), and further a 
recurrent neural network multi-models (see Baruch, 
et al., 1998; Mastorocostas and Theocharis, 2002). 
The difference between the used in (Mastorocostas 
and Theocharis, 2002) fuzzy neural model and the 
approach of (Baruch, et al., 1998), is that the first 
one uses the (Frasconi, Gori and Soda, 1992) FGS-
RNN model, which is sequential one, and the second 
one uses the Recurrent Trainable NN (RTNN) model 
(Baruch et al., 2001a, 2002), which is completely 
parallel one. 

2 MODELS DESCRIPTION 

2.1 Recurrent Neural Model and 
Learning 

The RTNN model is described by the following 
equations, (see Baruch et al., 2001a, 2002): 

 

X(k+1) = JX(k)+BU(k) (1) 

Z(k)=S[X(k)] (2) 

Y(k) = S[CZ(k)] (3) 

J = block-diag (Ji); ⏐Ji⏐< 1 (4) 

 
Where: X(k) is a N - state vector; U(k) is a M- input 
vector; Y(k) is a L- output vector; Z(k) is a L- 
auxiliary vector; S(x) is a vector-valued activation 
function with compatible dimension; J is a weight-
state diagonal matrix with elements Ji ; the equation 
(4) is a stability condition, imposed on the weights 
Ji; B and C are weight input and output matrices 
with compatible dimensions and block structure, 
corresponding to the block structure of J. As it can 
be seen, the given RTNN model is a completely 
parallel parametric one, with parameters - the weight 
matrices J, B, C, and the state vector X(k). The 
controllability, observability and stability of this 
model are considered in (Baruch et al., 2002). The 
general BP learning algorithm is given as:  
 

Wij(k+1) = Wij(k) +η ∆Wij(k) +α ∆Wij(k-1) (5) 

 
Where: Wij (C, J, B) is the ij-th weight element of 
each weight matrix (C, J, B) of the RTNN model to 
be updated; ∆Wij is the weight correction of Wij; η, 

α are learning rate parameters. The weight updates 
∆Cij , ∆Jij, ∆Bij of Cij, Jij, Bij are:  

 

∆Cij(k) = [Tj(k) -Yj(k)] Sj’(Yj(k)) Zi(k) (6) 

∆Jij(k) = R1 Xi(k-1) (7) 

∆Bij(k) = R1 Ui(k) (8) 

R1 = Ci(k) [T(k)-Y(k)] Sj’(Zj(k)) (9) 

 
Where: T is a target vector with dimension L; [T-Y] 
is an output error vector also with the same 
dimension; R1 is an auxiliary variable; Sj’(x) is the 
derivative of the activation function, which for the 
hyperbolic tangent is Sj’(x) = 1-x2. The stability of 
the learning algorithm is proved in (Baruch et al., 
2002), and it is applied for a DC motor control.  

2.2 Hierarchical Fuzzy-Neural 
Multi-Model 

For complex dynamic systems identification, the 
fuzzy rule of (Takagi and Sugeno, 1985) admits to 
use in the consequent part a crisp function, which 
could be a static or dynamic (state-space) model. 
Some authors, referred in (Baruch, et al., 1998; 
Mastorocostas and Theocharis, 2002), proposed as a 
consequent crisp function to use a NN function. In 
(Baruch et al., 1998, 2001b), it is proposed as a 
consequent crisp function to use the RTNN model. 
The fuzzy rule of the proposed model is given by:  
 

Ri: IF x is Ai THEN yi (k+1)= Ni [x(k), u(k)], 

 i=1,2,..,P 

(10) 

 
Where: Ni (.) denotes the RTNN model, given by 
equations (1) to (3); i -is the model number; P is the 
total number of models, corresponding to Ri. In the 
case when the intervals of the variables, given in the 
antecedent parts of the rules are not overlapping, the 
output of the model is a simple sum of the rule 
consequences, and this simple case, called fuzzy-
neural multi-model, has been considered in (Baruch 
et al., 1998, 2001b). In the general case, when the 
membership functions are overlapping, the output of 
the fuzzy neural multi-model system is given by the 
following equation: 

 

Y= Σi wi yi = Σi wi Ni(x,u) (11) 
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Where wi are weights, obtained from the 
membership functions, (see Baruch et al., 2001b). 
As it could be seen from the equation (11), the 
output of the approximating fuzzy-neural multi-
model is obtained as a weighted sum of RTNN 
functions, given in the consequent part of (10). The 
output of the upper level of the Fuzzy-Neural 
Hierarchical Multi-Model (FNHMM) is a complete 
weighted sum, given by (11), and the weighted 
summation is performed by a RTNN model, which 
introduced some kind of filtration of the outputs of 
the lower level RTNN’s. So (11) is converted in the 
next discrete-time nonlinear dynamic equation: 

 

Y(k+1) = N[x(k), (Σi wi yi (k))] = 

 N[x(k), (Σi wi Ni (xi (k), ui (k)))] 

 

(12) 

3 ADAPTIVE FUZZY-NEURAL 
CONTROL SCHEMES 

3.1 An Inverse Model Adaptive 
FNHMM Control Scheme 

The main control objective here is to build an 
inverse model of the plant in such a way that the 
output of the plant tracks the system reference. It is 
obvious that the control here as an open loop 
feedforward learning control. The block-diagram of 
this control is given on Figure 1. It contains a 
FNHMM identifier (FNHMMI), which identifies the 
Jacobean of the plant, and a FNHMM feedforward 
controller (FNHMMC). The output of the plant and 
the reference signal are normalized in the interval 
[+1, -1] and divided in the same three overlapping 
intervals corresponding to its membership functions 
(positive, negative, and zero). The structure of the 
FNHMM identifier is given on Figure 2. The local 
and global errors of identification and control used 
for RTNNs learning are given by the following 
equations: 

 

ei(k) = yPi(k) - yii(k); e(k) = yp(k) - yi(k) (13) 

eci(k) = Ri(k) - yPi(k); ec(k) = R(k) - yp(k) (14) 

 
The FNHMMI has two levels – Lower Hierarchical 
Level (LHL), and Upper Hierarchical Level (UHL). 
The LHL is composed of three parts: 1) 
Fuzzyfication, where the plant output signal is 
divided in three intervals µ : positive [1, -0.5], 

negative [-1, 0.5], and zero [-0.5, 0.5]; 2) Lower 
Level Inference Engine (LLIE), which contains three 
(Takagi and Sugeno, 1985) TS - fuzzy rules, given 
by (10), and operating in the three intervals, and 
three RTNNs, learned by the local errors of 
identification (13); 3) Upper Level Defuzzyfication 
(ULD) which consists of one RTNN, learned by the 
global error of identification (13). This RTNN 
performs a filtered weighted summation of the 
outputs of the lower level RTNNs. The learning and 
functioning of both levels is independent.  

The block-diagram of the FNHMM feedforward 
controller is given on Figure 3. During the learning, 
the control errors are attenuated by the inverse of the 
identified plants gain. The FNHMM feedforward 
controller contains the same elements as the 
FNHMM identifier. They are: fuzzyfication of the 
plant output and the reference signal; lower level 
inference engine, which contain the same number of 
rules and RTNNs, learned by the local errors of 
control (14); upper level defuzzyfication done by an 
upper level RTNN, learned by the global error of 
control (14). 

 

 
Figure 1: Block diagram of the inverse plant model control 
using FNHMM identifier and FNHMM feedforward 
controller 
 

 
 
Figure 2: Block diagram of the Fuzzy Neural Hierarchical 
Multi-Model identifier 
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Figure 3: Block diagram of the FNHMM feedforward 
controller 

3.2 A Direct Adaptive FNHMM 
Control Scheme 

The structure of the system is given on Figure 4. 
 

 
 
Figure 4: Block diagram of the direct adaptive neural 
control scheme using FNMMI, FNMMCfb and FNMMCff 
 
It contains a FNHMM identifier (see Figure 2), 
FNHMM feedforward (see Figure 3) and feedback 
(see Figure 5) controllers. The FNHMM identifier 
and the FNHMM controllers contain fuzzyfier, a 
Fuzzy Rule-Based System (FRBS), a set of RTNN 
models and a RTNN used as defuzzyfier. The 
control fuzzy rules applied and the total control, 
issued by the FNMM control system are: 

 

Ri:    If x is Ai then ui = Ui(k), i=1, 2 ,.., L (15) 

Ui(k) = - Nfb,i [xi(k)] + Nff,i [ri(k)] (16) 

U(k)= Σi wi Ui (k) (17) 

 
Where: r(k) is the reference signal; x(k) is the 
system  state;  Nfb,I  [xi(k)]  and  Nff,I  [ri(k)]  are  the 

 
 

Figure 5: Block diagram of the FNMMC feedback 
controller 

 
feedforward and feedback parts of the fuzzy-neural 
control, performed by RTNN functions, and wi are 
weights, obtained from the membership functions, 
corresponding to the rules (15). As it could be seen 
from the equation (17), the control could be obtained 
as a weighted sum of controls, given in the 
consequent part of (15). In the case when the 
intervals of the variables, given in the antecedent 
parts of the rules, are not overlapping, the weights 
obtain values one and the weighted sum (17) is 
converted in a simple sum. From Figure 5 it is seen 
that the FNHMM identifier approximates the plant 
using three RTNNs, working in three overlapping 
intervals, corresponding to the three membership 
functions (positive, negative, and zero). The state 
vector issued by each RTNN is entry of a feedback 
FNMM controller and the FNHMM feedforward 
controller complements the control part. The 
defuzzification level of both control parts is 
performed by RTNNs (see Figures 3 and 5).  

4 SIMULATION RESULTS 

Let us consider a DC-motor - driven nonlinear 
mechanical system, taken from (Baruch, et al., 
2001b), which has the following friction parameters 
(Lee and Kim, 1995): α = 0.001 m/s; Fs

+   = 4.2 N ; 
Fs

- = - 4.0 N; ∆F+ = 1.8 N ; ∆F- = - 1.7 N ; vcr = 0.1 
m/s; β = 0.5 Ns/m. Let us also consider that the 
position and the velocity measurements are taken 
with period of discretization To = 0.01 s; the system 
gain is ko = 8; the mass is m = 1 kg, and the load 
disturbance depends on the position and the velocity 
(ld(t) = ld1q(t) +ld2v(t); ld1 = 0.25; ld2 = - 0.7). So 
the discrete-time model of the 1-DOF mass 
mechanical system is: 
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x1(k+1) = x2(k) 
x2(k+1)=-0.025x1(k)-

0.3x2(k)+0.8u(k)-0.1fr(k) 

 
 
(18) 

v(k) = x2(k) - x1(k) (19) 
y(k) = 0.1 x1(k) (20) 

 
Where fr(k) is the friction force. Comparative results 
of plant control for both schemes, obtained using 
single RTNNs and that - using FNHMMCs, are 
given on Figure 6 a,b,c,d and Figure 7 a,b,c,d. For 
sake of comparison, simulation results obtained 
using a fuzzy controller, are given on Figure 8 a,b. 
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a) Comparison of the reference signal and the output of the 

plant controlled by one RTNN. 
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b) Comparison of the reference signal and the output of 

the plant controlled by FNHMMC. 
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c) MSE of RTNN control. 
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d) MSE of FNHMM control. 

 
Figure 6: Trajectory tracking control results obtained with 
one RTNN feedforward controller and with a feedforward 
FNHMMC 
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a) Comparison of the reference signal and the output of the 

plant, using single RTNN controllers. 

0 5 1 0 1 5 2 0
- 1

- 0 . 5

0

0 . 5

1

 
b) Comparison of the reference signal and the output of 

the plant using FNHMMC. 
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c) MSE of control with single RTNN controllers. 
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d) MSE of control with a FNHMMC 

 
Figure 7: Trajectory tracking control results obtained with 
single RTNN feedforward/feedback control and with a 
feedforward/feedback FNHMMCs 
 
Values of the Means Squared Error of identification 
and control using FNHMMs, single RTNNs, and 
fuzzy control, are given on Table 1. 
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a) Comparison of the reference signal and the output of the 

plant. 
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b) MSE of control. 

 
Figure 8: Trajectory tracking control results obtained 
using a fuzzy controller 
 
Table 1: Mean Squared Error of identification and control 
Name FNHMM vs. single RTNN 
Systems identification: 0.08%       vs.     0.27% 
Feedforward control: 1.5%         vs.     2.3% 
Feedforward plus feedback 
direct adaptive control: 

 
0.41%       vs.     2.7% 

Fuzzy control: 5.8% (does not use NNs) 
 
From Figures 6, 7, 8 and the MSE% data from Table 
1, we could conclude that: the systems identification 
using FNHMM gives better results than that using 
only one RTNN; the control schemes which use 
FNHMMC works better than that using one RTNN; 
the FNHMM feedforward/feedback direct adaptive 
control gives better results with respect to the 
FNHMM feedforward control; the fuzzy control is 
worse with respect to the neural control, especially 
when the friction parameters changed. 

6 CONCLUSIONS 

A FNHMM for identification and control of 
complex nonlinear plants is proposed. Two control 
schemes of FNHMM has been experimented and 
compared with a respective single-RTNN and fuzzy 
control. The comparison of identification results for 
a 1 DOF mechanical system with friction show that 
the FNHMM identifier has a better performance 
with respect to the identification using one RTNN. 
The same is valid for the schemes of control. The 
better control is the feedforward/feedback control 
and the worse control is the fuzzy control. 
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