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Abstract: This paper describes the use of the probabilistic motion planning technique SBL “Single-Query 
Bidirectional Probabilistic Algorithm with Lazy Collision Checking” or in motion planning for robot 
manipulators. We present a novel strategy to remedy the PRM “Probabilistic Roadmap” paths which are 
both excessively long and velocity discontinuous. The optimization of the path will be done first through 
Coarse optimal lazy A* optimization and then through a Fine cutting-triangles-edge one, the edges 
discontinuities are smoothed with cubic polynomials taking the robot’s specific Dynamic and Cinematic 
constraints. The whole strategy is applied to the 6 axes robot Manipulator MOTOMAN SV3X. 

1 INTRODUCTION 

The motion planning problem has been in a great 
difficulty solving path planning for real industrial 
robot manipulator which are usually 6 or above 
degrees of freedoms (dofs). The traditional 
techniques (Latombe, 1991) can hardly solve 
problems until 4 or 5 dofs, while its known to be 
definitely impossible for 6 dofs in 3D space. 

The introduction of random techniques in 
roadmap generation (Kavraki, 1996) has greatly 
simplified the planning problem, theirs greatest 
advantages being, easiness of understanding, 
implementing, they can deals with complicated 
scene and can solve problem with high number of 
dofs. 

Their idea consists of randomly sampling the 
configuration space (Lozano-Péréz, 1979) of the 
robot in order to capture the connectivity of free 
space, static configurations are tested using fast 
hierarchical collision checking algorithms (Larsen, 
1998), the configurations are then connected with a 
simple but very fast local planner to obtain the so 
called Roadmap. Roadmap techniques are generally 
classified in two branches, the Multiple Query and 
the Single Query, for the first one a roadmap is pre-
calculated and used later for multiple queries, the 
second one does not precompute such roadmap but it 
explores the free space starting from given initial 
configuration in search for a final one, the 
constructed graph is valid only for one query. but 

PRM generated paths are know to be discontinuous 
and far from optimal. 

Among all PRM variants, we have chosen the 
SBL (Sanchez-Ante, 2001) because it is the most 
successful one due to its speed and behaviour even 
in cluttered environment. Still, the path generated is 
far from optimal due to the fact that the algorithm 
generates nodes randomly and diffuses them 
homogeneously in the free space, which is not 
necessarily the shortest path. The SBL is called: 

-Single query: the network is recalculated for 
each start/goal pair. 

-Bidirectional: because the network construction 
is started simultaneously from the start and goal 
configuration. 

-Lazy collision: because the collision checks are 
delayed until they are extremely needed (Bohlin, 
2000). 

Our work consists at optimizing the Raw PRM 
path in some sense by modifying the PRM path; this 
path is the optimal among those using only the nodes 
on the raw path and connected with straight line in 
C-space. Then using a fine optimization scheme we 
optimize further the path from the previous step, 
finally we smooth the sharp corners with cubic 
polynomial taking the robot specific dynamic and 
kinematic constraints. The result is an optimized 
smooth trajectory ready for execution.  
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2 REALTED WORKS 

The use of smoothing on paths was already 
suggested in 2D workspaces but less in 3D 
workspaces. In (Quinlan, 1993) the authors represent 
the path as an elastic band under tension forces to 
pull the path tight. Repulsion forces from the 
obstacles are added to keep the path from “hugging” 
the obstacles. B-splines are used in (Foley, 1990) 
(Kant, 1987) to construct smooth paths from a cell 
decomposition of the free space. Cubic splines are 
also used in (Tondu, 1999). The use of smoothing 
techniques on PRM paths has been already 
proposed, the authors often use shortcutting segment 
or parts of segment methods already used in 
(Laumond, 1990) (Berchtold, 1994). In most of the 
cases after such smoothing, paths are shorter but still 
not optimal in any sense and discontinuous in 
velocity. 

3 COARSE OPTIMIZATION 

Given a graph of nodes relating the initial and final 
nodes, many search technique are available to obtain 
the path composed of a sequence of nodes relating 
the start and goal nodes. 

The A* algorithm obtains the optimal path out of 
the graph of nodes without the need to explore the 
whole graph, this is done is by guiding the search 
with a cost function describing heuristic rules.  

The evaluation function f̂  is defined such that 
its value ( )nf̂  at any node n is an estimate of the 
minimum cost path constrained to go through n. This 
is calculated using an estimate of the cost of the 
minimal path from the start node to node n plus an 
estimate of the cost of the minimal path from node n 
to the goal node. 

       ( )nf̂ = ĝ (n) + ĥ (n) 
It is straightforward to calculate a value for ĝ  

by summing the arc costs of the path already found 
from the start node to node n. Finding a value for ĥ  
is not so simple and heuristic information obtained 
from the graph has to be relied upon. For example, 
the straight line distance from node n to ng can be 
used as the value for ĥ . If ĥ is an underestimate of 
h then A* is guaranteed to find the minimum cost 
path and the algorithm is said to be admissible. A 
proof is given in (Doyle, 1995). 

In the usual A* and graph searching algorithms 
require a graph containing all admissible edges or 
segment between nodes, whereas we have only 
edges between consecutive nodes of the PRM path 
so we will need to construct a graph out of the path 
nodes by testing the straight line segments between 
each pair, this may be costly especially in 

complicated scene where the number of triangles is 
extremely high. In order to avoid collision testing all 
edges, we propose to “lazify” the A* algorithm. 

 

3.1 Postponing Collision Checks 

The idea is delay segment collision testing until it is 
“necessary”, the necessity in our case is when a node 
is sorted to be placed in the optimal path.  

In the beginning all pair of nodes are assumed to 
have and admissible edge joining them except for 
the (ns,ng) as we know it is not admissible (this 
trivial solution should have seen tested before the 
launching the planner) 

Initially a node can be expanded to all other 
nodes in the graph, except for the initial node that 
cannot be expanded to the goal node.  

In traditional A* the use pointers to specify 
relation between nodes resulting from a certain node 
expansion, here we use a parent-child notion, each 
node expand as a father of the resulting child node. 

Also, each of the raw PRM path nodes can be 
expanded to all other nodes with two exceptions: 

- The starting node does not expand to the goal 
one. 

- The goal node does not expand to any node. 
 
Lazy A* algorithm 

1. insert start node ns in a list called OPEN 
2. While  
3. n ← SORT 
4. if TEST(n) is true then 

4.1. if n is the goal node then terminate the 
algorithm & use pointers to extract optimal 
path  else EXPAND(n). 

       else REALOCATE(n) 
5. end while loop 

 
The OPEN that will hold all nodes to be 

expanded; nodes are added and removed in each 
iteration. The While loop is an indefinite loop, 
whereas standard A* the condition is the OPEN list 
not empty, this was so because we are sure that the 
algorithm will find a solution before OPEN is 
empty, the loop is terminated once the solution is 
found 

3.2 List Sorting 

The SORT procedure will return the node with 
minimum cost path constrained to go through this 
later in the OPEN list, this also means that we do not 
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sort all the OPEN list in any given order., the 
minimum cost node n is also removed from OPEN. 

3.3 Testing segments 

Algorithm for TEST  
1. let n p the parent of node n 
2. if edge E(n p, n) belong to PRM path return 

true 
3. if CLEAR(E(n,np)) return true 
4. return false 

 
The TEST(n) is an algorithm that will test if the 

segment relating the current node n to its father node 
(the one which has ENGENDERED n in OPEN) is clear 
or notIf the segment joining node n and its parent 
node belongs to the raw path generated by RPM 
planner then the segment is declared safe (there is no 
need to test the segment since it is have been tested 
during PRM planning,), otherwise the segment is 
tested for collision.  

3.4 Reallocating a node 

If the segment relating node n to its parent node 
happens to be colliding, then reallocated will try to 
add n as a child to another node already in CLOSED 
list. Among all nodes in CLOSED that have not 
already been tested with n, n will be added to the 
one with minimum cost path constrained to go n. 

If there are no such node in CLOSED then n will 
remain "orphan" and out of the OPEN list until it is 
inserted back by some node. 

Algorithm for REALLOCATE 
1. for all nodes in CLOSED that have not been 

already tested with n 
1.1. choose node np with minimum cost path 

constrained to go through n 
1.2. set n p as the father of node n 

2. if a node n p was found then insert node n in 
OPEN 

3.5 Node Expansion 

The EXPAND procedure is responsible for inserting 
a node’s children to OPEN taking care the following 
conditions: 

- If a child is already in CLOSED or in OPEN 
it will not be added to neither of the lists. 

- If a child node is already in OPEN and its 
current cost path is higher than the cost of 
going through the current parent node n, this 
later is set as its new parent with the cost 

updated to the new one. 
The cost function is usually the distance from 

initial and final configurations criterion, the cost of 
the path through a stain number of nodes is the sum 
of the costs of individual segments or edges costs. 
We could choose the Euclidian norm of the edge, or 
more generally a weighted Euclidian norm 

4 FINE OPTIMIZATION 

Here we use a simple cut-triangle-edge scheme, 
many variant are found in (Berchtold, 1994); for 
each two consecutive segments E(n1,n2) , E(n2,n3) , 
we try to cut the triangle edge  represented by n1n2n3 
(figure 1 ) with a segment E(n’,n”) where n’, n” are 
at the middle of segment E(n1,n2) , E(n2,n3) 
respectively .This techniques will have two 
advantage: 

1- Smooth the path by replacing the sharp 
angles with wider ones.  

2- Optimize the path in any norm (triangle’s 
inequality 

 

Cutting-tiangle-edge Algorithm 

1. Input path T  
2. For each segment E(ni, ni+1) of path T ,i=1, m-1 

2.1. Calculate node ni' at the middle of segment 
E(ni, ni+1) 

3. For each segment E(ni',n'i+1) ,   i=1, m-2 
3.1. If segment E(ni',n'i+1) is Clear 

3.1.1. replace segments E(n'i, ni+1) and 
E(ni+1, n'i+1) in T with E(ni',n'i+1) 

4. Return T  

5 CUBIC SMOOTHING 

Since the PRM path are inherently peace-wise 
curves.  The transition from one line segment to the 
next induces an abrupt change in direction. The 
robot cannot execute the corresponding trajectory 
without coming at rest at each of these points. In 

Figure 1: cutting-triangle-edge technique 
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order to avoid this, we should have a continuous 
joint velocity. So we have to smooth path , we will 
accomplish this taking care to modify the least 
possible the original one, to achieve this , we smooth 
the corners using a polynomial with a given degree 
and parameters. 

First and second order polynomial are easy to 
calculate but they fit poorly, fourth order and higher 
polynomials provides seamless fit but they are very 
difficult if not impossible to calculate, that is why 
we believe the compromise would be to choose the 
cubic polynomial (Brock, 1999). The parameters are 
not complicated to calculate, the curve has C2 
continuity and it enables tighter approximation to the 
turn compared to quadratic polynomial. We will 
here explain the procedure for a single joint; the 
same applies to all remaining joints. The joint 
position turn is governed by the following cubic 
polynomial: 

3
3

2
210)( tatataatq +++=                     (1) 

The duration d of the cubic turn (Figure 2) is thus : 

max

2

q

q
d

∆
=       (2) 

 Figure 2: cubic smoothing. 
∆ q  is the change in velocity of the two 

consecutive segments. The detailed description of 
the calculation of the start and the end 
configurations of the cubic turn and the cubic 
parameters are found in (Brock, 1999). The Cubic 
turns are tested for collision by sampling the 
polynomial to a number of configuration m linearly 
separated by a distance ε sufficiently small, if all m 
configurations are collision free than the cubic turn 
is collision free.  

6 SIMULATION RESULTS 

SBL planner, smoothing techniques are written in 
C++, the animation and visualization API was also 
implemented in C++ using COIN visualization 
library and its binding SoQt.  

The tests were run on a 1.7GHZ Pentium 4 PC 
with 128 Mbytes of main memory running Linux 

OS. We have constructed a 3D CAD model for the 6 
axes MOTMAN SV3X manipulator.For the PRM 
planner, the maximum number of milestones 
allowed to be generated is 10000 and the distance 
threshold ρ for the segment discretization was set to 
0.015. We have simulated a robot Gross movement 
from initial configuration to a final configuration  in 
the scene shown in figure 3a, 3b respectively. 
Running the SBL planner for the given query gives 
the results shown in table 1.  

 

 
 

Table 1: result of SBL planner query for the given 
example. 

 
Here the generated raw path is a 7 node path, 

figure 4a shows path traced by a point on the end 
effector along the SBL path. It is apparent that the 
path is lengthy and requires optimization.  

6.1 Lazy A* application 

Using a simple Euclidian path cost, the path is 
shown on figure 4b with a cost of   6.66959. 

If we place a weight of 10 on the shoulder axis 
weighted Euclidian norm, while we put a weight on 
only one, this lead to more Minimization of 
Euclidian distance along that axis,. The path is 
shown in figure 5a and its cost being 9.58155.  

 

 

Total
-time 
(s) 

#nods  
In trees 

#nodes 
In path 

#total 
CC 

#CC  
in path 

# 
sampled 
nodes 

total CC 
time(s) 

0.39 55 9 448 123 136 0.38 

di 

qstarting 

qending

t
(s) 

q

 (a)                                         (b) 
Figure 4: (a) raw trajectory, (b) Euclidian norm A* path. 

 

(a)                                         (b) 
Figure 3: configurations, (a) initial, (b) final . 
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L∝ norm minimization: In this example we 
penalize the maximum joint movement of the edge 
between two nodes; the generated path is shown in 
figure 5b with a cost of 5.7734. 

 

 
      a)         b) 

Figure 5: a) lazy A* with shoulder axis penalty path; 
b)  L∝ minimization lazy A* path. 

 

6.2 Lazy A* versus A* 

In order to evaluate the efficiency of the lazy A* 
with the standard A* we have run the SBL planner 
for 10 times for the same query, hence 10 different 
path have been generated. We have calculated the 
number of collision checks required for each 
technique in order to find the optimized path in some 
sense. The results are: 

- average Collision checks for Lazy A*: 107.7 

- average Collision checks for A*: 823.4 

The ratio of the two averages is ≈1/8 

- Lazy A* time is  = 0.25 s 

- A* time is  = 0.95 

Using scenes that are extremely complicated will 
favour more and more the use of the lazy A* 
algorithm. 

6.3 Lazy A* versus random 
shortcutting 

Random shortcutting (Laumond, 1990) segments 
techniques are frequently used to reduce the number 
of segments on the path, but the resulting path is not 
necessarily optimal in any sense.  

Figures 5a and 5b show the result of the 
application of the Lazy A* and the Shortcutting 
method respectively, in the chosen Euclidian norm, 
only the A* managed to find the Optimal path, the 
cost function being 6.3212, the cost for the 
Shortcutting method is 7.7305. 

 

 
a)          b) 

Figure 6: a) shortcutting path. b) Lazy A* path. 
 

6.4 Cutting-triangle-edge 
application 

We apply this technique on the optimal A* path 
(figure 4b), it is clear that the application of this 
technique will not dwarf any optimization gained 
from the A* because it only shortcut parts of 
segments which is more optimized in any norm used 
(this is the triangle’ inequality which is a condition 
of normality). 

The results are: 
- the algorithm managed to cut all segment 
- the cost of path generated is : 5.77343 
- the time taken is : 0.05 seconds 

Figure 7a shows the generated path. 
 

 
a)            b) 

Figure 7: a) cutting-triangle-edge path: b) cubic smoothing 
path. 

6.5 Cubic smoothing and trajectory 
generation 

Up to now, we where dealing with C-space spatial 
paths, in order to execute the path parameterized 
with time or simply the trajectory, we need to 
associate joint velocities with each segment of the 
path. It is clear that if we require the robot to follow 
a C-space straight line segment of the path, then we 
should synchronize all joints with constant velocities 
so that the joint movement is linear.  

What we have done is chose a velocity v that is 
smaller or equal than any of the physical maximum 
joint velocities. v is fixed for all segments making 

C1 
C2 C2 
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the path. Using v and the maximum joint 
displacement in the given segment, we calculate the 
segment duration di, di is used to calculate the joint 
velocities for the remaining 5 joints. In this way, we 
guarantee our piece-wise path following and prevent 
assigning later joint velocities that exceed actual 
ones.  

Choosing v to be 0.10s-1, we calculated the 6 
joints velocities and durations for all 4 segments 
making the path issued from the fine optimization 
step (figure 7a).  

The total duration of the trajectory is 9.6246 
seconds. Using this trajectory along with typical 
maximum normalized acceleration of 0.20s-2 we 
calculated the 3 cubic durations and polynomial’s 
parameters. Table 2 shows the calculated cubic 
durations for the three corners smoothed.  

Figure 7b shows the path with smoothed corners. 
 

Table 2: cubic smoothing durations 
 

  q1 q2 q3 q4 q5 q6 
c1 d(s) 0.1851 0.3350 0.1122 0.0125 0.1466 0 

c2 d(s) 0.2867 1.3977 0.1125 0.0462 0.1749 1.0765 

c3 d(s) 0.4878 0.1580 0.4982 0.1064 0.5288 0.9235 

 
The cubic duration that is null means no cubic 

turn is needed due to the velocities of the two 
consecutive segments being equal. It is clear that the 
total trajectory duration can be reduced by using 
higher joint velocities, but the cubic deviation will 
be consequently higher. 

7 CONCLUSION AND FUTURE 
WORKS 

The results show that the PRM paths can be 
optimized through any criterion thought the Lazy A* 
algorithm instead of blind shortcutting techniques, 
the proposed lazy A* calculate the optimal path with 
minimum collision checks compared to standard A*, 
the remaining edges are smoothed thought cubic 
polynomial resulting in minimum deviation from 
original path, the final trajectory is an optimized 
smooth trajectory ready for execution. 

We are implementing the approach on the 
physical MOTOMAN SV3X 6-axes manipulator, 
and also working on a scheme to optimize 
furthermore the PRM path by using an enhanced A* 
algorithm along with other techniques.   
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