SYNTHESIZING DETERMINISTIC CONTROLLERS IN
SUPERVISORY CONTROL

Andreas Morgenstern and Klaus Schneider
University of Kaiserslautern, Department of Computer Science
P.O. Box 3049, 67653 Kaiserslautern, Germany

Keywords: Controller Synthesis, Supervisory Control, Discrete Event Systems.

Abstract: Supervisory control theory for discrete event systems is based on finite state automata whose inputs are par-
titioned into controllable and uncontrollable events. Well-known algorithms used in the Ramadge-Wonham
framework disable or enable controllable events such that it is finally possible to reach designated final states
from every reachable state. However, as these algorithms compute the least restriction on controllable events,
their result is usually a nondeterministic automaton that can not be directly implemented. For this reason, one
distinguishes between supervisors (directly generated by supervisory control) and controllers that are further
restrictions of supervisors to achieve determinism. Unfortunately, controllers that are generated from a super-
visor may be blocking, even if the underlying discrete event system is nonblocking. In this paper, we give
a modification of a supervisor synthesis algorithm that enables us to derive deterministic controllers. More-
over, we show that the algorithm is both correct and complete, i.e., that it generates a deterministic controller
whenever one exists.

1 INTRODUCTION The controller synthesis problem is not new; sev-
eral approaches exist for the so-called supervisory

New applications in safety critical areas require the control problem. In particular, the supervisory control
verification of the developed systems. In the past theory initiated by Ramadge and Wonham (Ramadge
two decades, a lot of verification methods for check- and Wonham, 1987) provides a framework for the
ing the temporal behavior of a system have been de-control of discrete event systems. The system (also
veloped (Schneider, 2003), and the research lead tocalled a plant) is thereby modeled as a generator of a
tools that are already used in industrial design flows. formal language. The control feature is represented
These tools are able to check whether a systesat- by the fact that certain events can be disabled by a so-
isfies a given temporal specificatipn There are alot ~ called supervisor. One result of supervisory control
of formalisms, in particular, the-calculus (Kozen, theory is that in case of formal languages, i.e., finite
1983),w-automata (Thomas, 1990), as well as tempo- state machines, such a supervisor can be effectively
ral (Pnueli, 1977; Emerson and Clarke, 1982; Emer- computed.
son, 1990) and predicate logicsi(&hi, 1960b; Bichi, However, if an implementation has to be derived
1960a) to formulate the specificatiam (Schneider, from a supervisor, several problems have to be solved
2003). Moreover, industrial interest lead already to (Dietrich et al., 2002; Malik, 2003). A particular
standardization efforts on specification logics (Ac- problem that we consider in this paper is theriva-
cellera, 2004). tion of a deterministic controllefrom a supervisor
Besides the verification problem, where the entire that guarantees th@onblocking property. A system
systemkC and its specification must be already avail- is thereby called nonblocking, if it is always possible
able, one can also consider the controller synthesisto complete some task, i.e. to reach some designated
problem. The task is here to check whether there is a(marked) state from every reachable state. If we con-
systenmC such that the coupled systéth|| C satisfies sider the events as signals that can be sent to the plant,
. Obviously, this problem is more general than the a valid controller should decide in every state what
verification problem. Efficient solutions for this prob- signal should be sent to the plant to ensure that the
lem could be naturally used to guide the development marked state is actually reached. However, even if
of finite state controllers. the generated supervisor is nonblocking, a controller

24

Morgenstern A. and Schneider K. (2005).

SYNTHESIZING DETERMINISTIC CONTROLLERS IN SUPERVISORY CONTROL.

In Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Robotics and Automation, pages 24-31
DOI: 10.5220/0001164500240031

Copyright © SciTePress

SYNTHESIZING DETERMINISTIC CONTROLLERS IN SUPERVISORY CONTROL

(a) uncontrolled behavior (b) supervised behavior (c) blocking controller

Figure 1: Generation of a Blocking Controller

that is derived by simply selecting in each state one of stronger than the nonblocking property. Our algo-
the allowed events/signals could be blocking. rithm guarantees that a marked state will be reached,

As an example, consider the automaton that is No matter how the plant behaves. In contrast, the non-
given in Figure 1(a). This automaton represents a blocking property only requires that the pldras the
system with two taskgask A andtask B that can be ~ chanceto reach a marked state. Although our prop-
started with eventstart A andstart.B, respectively. erty is more general than nonblocking, our algorithm
These events are controllable, i.e. they can be disableds just a slight adjustment of the original supervisor
by a supervisor. If one of the machines completes synthesis algorithm which is known to have moderate
its task, the (uncontrollable) event#A andf.B oc- complexity bounds.
cur, respectively, leading again to the initial stialie. The paper is organized as follows: In the next Sec-
Whenever both machines work at the same time, thetion, we present the basics of supervisory control the-
system breaks down, since the stdtsvnis reached ory. In Section 3, we present our new algorithm to
from where on no further progress is possible. Su- compute deterministic nonblocking controllers from
pervisory control theory can fix the problem that state supervisors whenever this is possible. Finally, the pa-
downis reached by disabling evenstart B in state per ends with some conclusions and directions for fu-
task A andstart A in statetask B (Figure 1(b)). How- ture work.
ever, when we have to implemendlaterministiacon-
troller that has to select one of the signsiart A and
start B, we get a serious problem: if the controller al-
ways selectstart A, the marked statiaskB is never 2 SUPERVISORY CONTROL
reached, and therefore the nonblocking property is vi- THEORY
olated (Figure 1(c)).

In (Malik, 2003; Dietrich et al., 2002), the gen- In this section, we will give a brief introduction to the
eration of deterministic controllers is restricted to supervisory control theory as initiated by Ramadge
cases where certain conditions hold. It is proved that and Wonham (Ramadge and Wonham, 1987). For a
these conditions guarantee thatery deterministic more detailed treatment of the topic we refer to (Won-
controller derived from the supervisor is nonblock- ham, 2001).
ing. However, no controller can be constructed in Traditionally, control theory has focused on con-
case the discrete event system does not satisfy theserol of systems modeled by differential equations, so-
conditions. In particular, a valid controller may exist, called continuous variable dynamic systems. There,
even if the conditions of (Malik, 2003; Dietrich etal., the feedback signal from the controller influences the
2002) do not hold. For example, this is the case for behavior of the system, enforcing a given specifica-
the automaton given in Figure 1. A valid controller is tion that would not be met by the open-loop behavior.
obtained by selectingtart B in stateidle. Another important class of system models are those

In this paperwe present a new approach to gen- where states have symbolic values instead of numeri-
erate deterministic controllers from supervisdtat cal ones. These systems change their state whenever
does not suffer from the above problem. To this end, an external or internal event occurs. This class of sys-
we introduce a more general property than nonblock- tems, calleddiscrete event systems (DE®) the fo-
ing which we callforceable nonblockingA discrete cus of supervisory control theory (Ramadge and Won-
event system satisfies this property if and only if there ham, 1987).
exists a deterministic controller that ensures that every The theoretical roots of supervisory control theory
run (either finite or infinite) of the controlled system explain some of the terminology used. In the Ra-
visits a marked state. Obviously, this requirement is madge Wonham (RW) framework, one speaks of a

25

ICINCO 2005 - ROBOTICS AND AUTOMATION

Note that in a statép, ¢) of the synchronous prod-
uct, the active events are exactly those events that are

events events : . S
active both in the plant and the supervisor,i.e.
generated by enabled by P P
plant : supervisor act A, x4s ((p,q)) = acta, (p) Nactag (q) -
superviso . . .
Disabling controllable events in the states of the su-
pervisor will therefore also disable them in the prod-
Figure 2: The Ramadge-Wonham Framework uct. This is how the supervisor enforces his control

function.

The behavior of the plant represented by a finite
automaton is closely related to two formal languages
over the alphabet of events the generated language
L (A) and the marked languade, (A). The gener-
ated languagé (A) represents sequences of events
that the plant generates during execution while the
marked languagé,, (A) represents those event se-
plant through a communication channel that allows quences that lead to a markgngieie Forally, the two

the supervisor to influence the behavior of the plant Iangu-a.ges are defined as folldws
by enabling those events that may be generated inDefinition 3 (Generated and Marked Language)

plant, a system which generates events and encom-
passes the whole physically possible behavior of the
system to be controlled (including unwanted situa-
tions). Thespecificationis a subset of this behav-
ior that should be matched by adding a controller.
A supervisoris an entity that is coupled with the

the next state of the system (see Figure 2). Usu- L * . 500
ally, in a physical system, not all of the events can L(A)={we X"+ 6(g,w) I}
be influenced by an external supervisor. This is cap- Lm (A) = {w € % : 6(¢°, w) € M}

tured by distinguishing between events that can be
prevented from occurring, callegbntrollable events
and those that cannot be prevented, caliedontrol-
lable eventsWe denote the sets of uncontrollable and
controllable events a&,, and X, respectively, and
defineX = X.UX,.

The Ramadge Wonham formulation of the supervi- L (Ap/As) :=L(Ap x As) =L (Ap)NL(As)
sory control problem makes use of formal language
theory and automata: A finite automaton is a 5-tuple Lm (Ap/As) : =L (Ap x As)
A=1(Q,%,0,¢°, M) whereX is a set of events)) is = Lo (Ap) N L (As)
a set of state9), : () x X — @ is a transition function,)) o
and¢® € Q is the initial state. The states in the set When we consider algorithms, it is also necessary
M C Q are chosen to mark the completion of tasks that the specification is given as a finite automaton.
by the system and are therefore calfedrker states The assumption that the uncontrollable events can not
We write §(¢, o) | to signify that there exists a tran- be prevented from occurring, places restrictions on
sition labeled withr, leavingq. It is often necessary the possible supervisors. Therefore, a specification
to refer to the set of events for which there is a transi- automatonA; is calledcontrollable with respect to
tion leaving statg. We refer to these events as active @ plant.Ap, if and only if for every statep,) of

Given both the plantd» and the supervisads, the
generated and marked language of the controlled sys-
tem are denoted by (Ap/As) and L, (Ap/As)

and defined by the generated and marked language of
the product automaton:

events: Ap x Ag thatis reachable by a stringinAp x Ag)
Definition 1 (Active Events) Given an automaton ﬁg%gyery uncontrollable evente 2., the following

A=1(Q,%,6,¢°, M) and a particular statey € Q,

the set of active events ¢fs: o € acta, (p) = o € acta, (q).

acta(q) = {o € % d(g,0) |} In other words,A¢ is controllable if and only if no
If the plant and the supervisor are represented usingword of L (Ap) that is generated according to the
finite automata, the control action of the supervisor is specification, exits from the behavior permitted by

captured by the synchronous product: the specification if it is followed by an uncontrollable
Definition 2 (Automata Product) Given automata €vent. Specifications that do not fulfill this require-
Ap = (%, Qp, 0p, ¢% Mp) and As = (%, Qs, ment are calledincontrollable If a specification is
8s,q2, Ms), the productdp x As is the automaton ~ uncontrollable, the product automaton contains one or
(%, Qp x Qs, 6pxs, (4%, q2), Mp x M), where more reachablbad stateswhich are state®, ¢) that

fail to satisfy the following condition:

dpxs((pq),0) = (', q') iff B v—
, , *As usual, we allows to process also words instead of
op(p, o) =p' Nds(q,0) =¢q only single events.

26

SYNTHESIZING DETERMINISTIC CONTROLLERS IN SUPERVISORY CONTROL

actupxAe ((,q)) 2 acta, (p) N2y

Given a specification automatadg, the language

K = Ly, (Ag) is controllableif and only if Ap x Ag

has no bad states. Besides controllability, another im-
portant property of discrete event systems isrtbe-
blockingproperty which states that it is always possi-
ble to complete some task, i.e. that from every reach-
able state € @, itis possible to reach a marked state.
Formally, an automaton is nonblocking, if and only if
for each reachable stajec @, we have

L (q) = {w € £ | 8(q,w) € M} # 0.

States that have a path to a marked state are called

coreachable Ramadge and Wonham have shown that
given a specificatio which is not controllable, it is
possible to construct for every plaptp and every
specificationA¢ the supremal controllable sublan-
guageof K, denotedsupC (K). This result is of
practical interest: Given that the specification lan-
guagekK is uncontrollable, it is possible to compute
supC() and to construct a supervis@ls such that

Lm (As/Ap) = supC (K). This implies that the con-

Algorithm 1: Supervisor Synthesis Algorithm
xG = Q4 \{q € Q| qisinitial bad};

7 =0;
repeat
x(CO’]) =M Nay;
1 =0;
repeat
g"rlﬂ) — r]Gm
_ Jdo € acta (q).
zpUSqgeq ..
da(a,0) € 2?)
1=1+1;
until xc = x’c L.
xJGH =N
Yo € actA(P
Q (; (4,3) J
A q, 6 To ﬁazG
i=7+1

e A P
until xd =zl

3 CONTROLLER SYNTHESIS

trolled system is nonblocking, meaning that the con- We have seen by the example given in Figure 1 that

structed supervisor does not prevent the plant from the nonblocking property is too weak to guarantee
completing a task. This supervisor is a solution to the thata marked state is reached under control by a deter-

following problem:

Definition 4 (Supervisory Control Problem)

Given a plant Ap, a specification language
K C Ly (Ap) representing the desired behavior of
Ap under supervision, find a nonblocking supervisor
As such that., (As/Ap) C K.

Given a specification automatoty, we can construct
the least restrictive solution from the product automa-
ton Ap x Age. The marked language of this least
restrictive solution4s is equal tosupC (K). If an
automatond = (Q, X, 4, ¢%, M 4) is given that rep-

resents the product of the plant and the specification,

algorithm 1 can be used to compute this supervisor
(Ziller and Schneider, 2003).

Essentially, this algorithm consists of two loops.
The inner loop calculates the coreachable statgs
and the outer loop computes the good states

ministic controller. This is due to the fact that a state
is coreachable even if there exists an infinitely long
sequence of events that never visits a marked state.
We therefore sharpen the coreachability property as
follows:

Definition 5 (Forceably Coreachable States)A
state is forceable coreachable, if it is coreachable
and

In € NVt € ¥,
(g, t) L Alt] > n =3t Ct.6(q,t') € QmA

5(g,0) L Alt] <= (fﬁtiz-)égg,@t) e va>

Intuitively, a state is forceable coreachable, if there
exists a threshold after which a marked state is un-
avoidable. In contrast to the definition of coreachabil-
ity that imposes a condition on the future, we demand

i.e. states that are not bad states. Since removing badomething about the past: we demand that after a cer-

states could destroy the coreachability property and

tain amount of steps (referencedby a marked state

removing non-coreachable states could result in new must have been visited. As long as this bourid not
bad states, the two loops have to be nested. Basedeached, we demand that either the system does not

on this algorithm, we will provide an algorithm that
calculates a supervisor with the property that every
deterministic controller generated from this supervi-
sor is a valid controller, i.e. guarantees that a marked
state is reached, irrespectively of the behavior of the
plant.

stop or that a marked state has already been reached.
In terms of temporal logics, we demand tloatall

paths a marked state must be reachdd contrast,

the nonblocking property only states tifiat all states

there exists a path wher® is reached.We call an

automatonforceable nonblockingif each reachable

27

ICINCO 2005 - ROBOTICS AND AUTOMATION

state is forceable coreachable. The Controller Syn- coreachable and all events lead to forceable coreach-
thesis Problem is now given as follows: able states. State and event pairs that guarantee this

Definition 6 (Controller Synthesis Problem) property are co_llected in the sefoves. This implie_g
Given a plant Ap, a specification language that all destination states of uncontrollable transitions

K C L., (Ap) representing the desired behavior of leaving a state must be identified as forceable core-

; ; ; achable before we can add any transition frgrto
Ap under control, find a nonblocking supervisde moves. Otherwisegy is bad, which is identified in the

such that xg-loop. This ensures that the controllability prop-
Lm (Ac/Ap) C K. erty is not violated. To prevent the plant from looping,
e A- x Ap is forceable nonblocking. we forbid adding new moves, if we had already found

a move that lead to a marked state. This is done due
to the fact that those newly found moves will need a

longer path to reach a marked state than the already
introduced moves and may therefore introduce loops.
We collect the forceable coreachable states in the set

a marked state is actually reached. This is due to the bv adding those states that have a path to a marked
fact, that we demand that all paths leaving a forceable rc Dy 9 P
state where this can be guaranteed. Altogether, we

coreachable state sooner or later reach a marked state[hus have develobed alaorithm 2.
Therefore, it is irrelevant which of the active control- P 9
lable events we select.

Theorem 1 Given Ap = (Q, %,6,¢%,,, Ma,) and

Hence, a controller ensures that a marked state is ac-
tually reached. It is very easy to derive a determinis-
tic controller from such a solution: in every step, we
can simply select a controllable event to ensure that

Algorithm 2 : Controller Synthesis Algorithm

0 J=0;
Ac =(Q,%,0,q3,, Ma,) such that 2% = Q4 \ {q € Q4| ¢is initial bad};
L(Ac) € L(Ap) ALm (Ac) C L (Ap), FEpeal _

209 = Ml
then, the following holds: A is forceable coreach- 7 A 0: A
able thenA. x Ap is forceable coreachable. move®9 = {};
Proof: Let(q,p) € Q4. X Qa, be reachable, such repeat N
ot s Ac A move"t13) = moveltU
that d 4. x4, (65,40 7),s) = (¢,p). Then, also i)
g € Q.. must be reachable . Thereforeq is da(g,0) € x5’
forceable coreachable with a constantNow, choose A
at € ©* such that 4. x4, ((¢,p),t) |. We distin- (4.0) Vo € acta (q) N X,
guish between two cases: First, we assuthe> n. © 5a(g,0) € 207
Then, there exists & C ¢ such thati(q,t’) € M4.. A
Therefore, st € Ln(Ac) C Lm((Ap)) holds. Vo € 2. (¢,0) ¢ move(i)
Since all automata are deterministic, it follows that G+1.9) _ g
5((g,p),t') € (M, x M4,,) holds. In the remaining ro = rgh (i+1.5)
case, we havét| < n. Then, either there exists a <x(w’) U{ ’ (g, 0) € move })
t' C t that visits a marked state as in the first case or © dalg,o) € x(é 9
acta. (q) # 0. Again, since the language inclusion i=1+1;
holds, we havact 4, x 4, (5((¢,p),t)) # 0. n until o, = x5t

x,grl _

; Vo € acta (q) N By

76 " { Q' Sala0) € wg? Naf; }

4 CONTROLLER SYNTHESIS j=j+1
ALGORITHM until g = a5

The above algorithm may only loop for a finite
number of iterations, since there are only finitely
many states: Incg, only finitely many states may
be added and fromxg only finitely many states
may be removed. Therefore, there existé auch

that zF, = =& finally holds. Addltlonally, for
Do gl

In this section, we develop a controller synthesis al-
gorithm based on the supervisor synthesis algorithm
of Section 1. In order to guarantee the forceable non-
blocking property, we have to adopt the calculation of
the coreachable states. In contrast to the coreachabil-
ity property, which only demands that a marked state
is reachable, i.e. that it is possible to directly reach every: there exists d such thatz
a marked state or to reach a state which is known to and moves*") = moves(*'*1), For this reason,
be coreachable, a state is forceable coreachable if itiswe use the foIIowing notatiom‘g’; = 2z and also

28

SYNTHESIZING DETERMINISTIC CONTROLLERS IN SUPERVISORY CONTROL

x(é’oo) = mg’k) as well asmove»>®) := move(®-) and thusi 4. (¢,0) € mgfl’oo).]
for every i, and finally z5°° = 2" and _ (i,00) - -
moves(®®) = moves"®) for the last iteration .Slnce therg ™ i € .Nare .m°”9t°”e in, the follow-
step. ing Lemma follows inductively:

Note that according to the definition ofo, it Lemma 3

holds thatarg’j) C xl, for everyi,j and thus also

. _ _ Vg € 250Vt € £,
™ C 2 holds. Sincenove does only contain

- . . (00,00
transitions leading to forceable coreachable states, it 6ac(q,t) | = 0a.(q:t) € ¢ :
thus contains only transitions to good states. While the above lemma only guarantees that the
0 (00,00) . forceable coreachable states are never left, the next
If g4 €z~ holds, we define a controller as jemma shows that the plant may not stop until a
follows: Ac = (Qa, %, 6.4c, 4% M.a) With marked state is reached:
Sac(q.0) {Mq,o) if (g,0) € move>oe) Lemmad
Aclg,0) = ,
¢ 7 ,else Vi > 0Vq € x(é’m)ﬂa € acty, (q).
The following lemma shows that we decrease the dis- 54,(q,0) € g;gfl’“)

tance to a marked state whenever we use an event en- . rim
abled by the controller: Proof: According to the definition and the monotony

of xo,
Lemma 1 V)
P 1o qexy™ & qe TN
Vi>OVq€(xg’)\x(c b))VaeactAc(q). © . (i.00)
(i—1,00) qE MyV H(q,_a) € move'»>)(gq).
6.Ac (Q7 U) €ETo 5Ac (q, O‘) c .’1?871’00)
Proof: Letq € Q 4 such thaty € 217129\ 2>), If ¢ € M4 we are done, otherwise the lemma follows
This implies that there must exist a move from tvhe definition ofé 4, and the monotony of
(g,0) € (movel™1:°) \ move™>)) such that move!>>) with respect ta. m

(i,00) . . . y
Oalg;0) € J(UC) But this directly |mpl.|es s Finally, we now have the following theorem:
Sa(q,0) € x> for every(q,0) € moveli 1), (00,00) .
We thus have the statement for those moves addedTheorem 2 All ¢ €z, are coreachable itc.
in thei + 1-th iteration step. Additionally, if follows
from the definition ofnove that there can be no move
(q,0") € movel®>) \ moveli+1:%) Therefore

(i,00

dac(g,0) € xp,

Proof: Take some; € x5, Then,q € =\ for

somek. If ¢ is marked, we are done. Otherwise, we

) can iteratively apply Lemma 4 to generate a string
for everyo € act4, (q). = t € ¥* that reaches a marked state. This is due to the

fact that if we apply Lemma 4, then tliendex of the

The above lemma does not apply to marked statesqdestination state decreases in each step. Therefore,

(those are contained im(co"”)). And indeed, with- after at most iteration steps, we have constructed a

out the additional set, this would not be true. The word¢ such tha#(q, t) € xg?m) —Mys=My,. m

next lemma fixes this deficiency.

Lemma 2 We will show in the next lemma that also the stronger

property of forceable coreachability holds:

Vg € (MA n 96<c°°’°°)) Vo € acty (q)- Theorem 3 All ¢ € 25>, are forceable coreach-
(00,00) able
6.Ac (qa U) e :CC . .y

Proof: The coreachability property follows from the
Proof: Choose an arbitrary stateq € last theorem. We will now show the rest of the force-
Ma. N x(coo,oo) C 2. The proof follows directly able coreachability property for any € z, " ’:

(o0,

for uncontrollable events because of the definition of Sinceq € >), there exists an € N such that
x¢;. Thus, consider a controllable event. According , ¢ x(cf»oo) \x(gflyoo)_ If i = 0, we are done, because
to the definition 0fo 4., o € acta. (9) N X implies theny, is marked. Otherwise we show that this the
that(¢, o) € move(>>). According to the definition threshold that is required for forceable coreachability.
of move, we must haveq, o) € move(»>) for a Lett € ¥* be such thab 4. (q,t) | holds. Apply-

suitablei. Therefore, we havé(q,0) € mg*m), ing Lemma 3 shows that,.(q,t) € xgm“ holds.

29

ICINCO 2005 - ROBOTICS AND AUTOMATION

We distinguish two cases: || < ¢ holds, then ei- Lemma5 For every forceable coreachable automa-
therd 4. (q,t) € M4 or3Jo € acta, (q) .04.(q,0) € ton A the following holds:

(i=1,00 according to Lemma 4. Both cases satisfy

the condition of forceable coreachability for the case Vi > 0q € .

It <. ' o Vo € actq (q) .64(q,0) € U FIA
Now consider any stringwith lengthi and assume j<i

thatd4.(q,t') ¢ M4 for everyt’ C ¢. Then, we i

can iteratively apply Lemma 2-times to conclude Jo € actu (q) da(q.0) € |J F4

thatd 4. (q,t) € 29 C M4 holds. The forceable g<i

coreachability property therefore holds for every Proof: Let ¢ in Fy. For the first part, as-
string with lengthi and thus also for every string of gyme that there exists € acty (¢) such that
length greatet. " 64lg,0) ¢ U, F) holds. Then, we can distin-

guish two cases: i’ = d4(q,0) is not forceable
coreachable, then there exists an infinite strimgth
4(¢’,t) | that avoids all marked states. Accordingly,

¢ can not be forceable coreachable, because other-
wise all marked states are avoidable by the infinite
stringot. On the other hand, if 4(g, o) is forceable
coreachable, but with a constant greater or edual
theng can not have a minimal constantTo prove the
second part of the lemma, we first note thaian not

be marked, because otherwigec FY. Therefore,

T (c0.00)) there exists a successor state, because otherwise
In g™ The first part of the statement now can not be coreachable. However, this successor state

follows from theorem 3. For the second part, we note myst be contained i), F, according to the proof
that the generated language is necessarily containegys ihe first part. 2 -

in the specification, because of the construction of

A = Ap x Ag¢. The forceable nonblocking property)
follows now from theorem 1. The controllability Lemma 6 If there exists an automatad such that

property can be seen as follows: Similar to the A Ac is forceable nonblocking and. respects the
original supervisor synthesis algorithm, we can be controllability property with respect tot, theng}, €
sure that no initial bad state is reached, because Wea:(c°°’°°).

removed those states from the good states and OnlyProof'

good states may be visited. On the other hand, we :
never remove single uncontrollable transitions due to
the definition ofmove. Rather, we remove all states
that have an uncontrollable transition to a non-good
or non-forceable coreachable state in the condition _ ,
for the good states. Sinegy C ¥ andga € zF, if (p,q) € F4y 4. for somei, theng € x(c’x”)

we can be gre tiiat only goggisiatexete visited The above lemma follows then from the fact that the
initial state(¢%, ¢%_,) must be forceable nonblocking
and therefore contained in somg,, 4.

The following theorem gives us the correctness of our
algorithm:

Theorem 4 (Correctness of the Algorithm) If
¢% € z557°, then A is forceable nonblocking and
the generated supervisotc is a valid solution to the

controller synthesis Problem.

Proof: Sinceq’ € 5> holds, we can conclude
from Lemma 3 that every reachable state is contained

Since A x A¢ is forceable nonblocking, every
reachable state is forceable coreachable, therefore
contained in somé,, ,.. We will show by induc-
tion oni:

We have shown that the above algorithm is correct.
To show also its completeness, i.e. that the algorithm
generates a controller, whenever a controller exists,
we need the next definition and some additional lem- we are done
mata. According to the definition of forceable core- A il

achability, for ev%ry forceable coreachable state, there. Inductive Step: Le{p, q). € F AJFXA_c' Then accord-
exists a constant after which a marked state is un- "9 to lemma 5 the following holds:

avoidable. Thus, we can define an ordering on the v, o ;¢ 5 c i
states by taking the minimal constanfor which the 0 € actaxac (1)) axae(:0).0) € U Pl

Inductive Base:i = 0. Then(p, q) is marked and

forceable coreachable property holds. Thus, we de- - I<t
fine for every automatonl: Since the controllability property holds, we have that
every uncontrollable event ipis also active in(p, q).

q is forceable coreachabl Therefore

with a minimal constant j
Yo € acty (Q) N Zu'(S.AX.Ac((pa Q)v U) € U F.,]alx_Ac
j<t

Fﬁ{f]EQA

30

SYNTHESIZING DETERMINISTIC CONTROLLERS IN SUPERVISORY CONTROL

It now follows from the inductive hypothesis and the Averest (2005). www.averest.org.

determinacy of4, that Biichi, J. (1960a). On a decision method in restricted second
(i,00) ___(i,00) order arithmetic. In Nagel, E., editonternational
Vo € acta(q) N Xudalg,0 U to —To Congress on Logic, Methodology and Philosophy of
< Sciencepages 1-12, Stanford, CA. Stanford Univer-
Again considering Lemma 5, we obtain: sity Press.
Jo € actaxac (P, q)) -0axac(p,q),0) € Flaya, Buichi, J. (1960b). Weak second order arithmetic and finite
Therefore, using the inductive hypothesis, we obtain g;tomata. Z. Math. Logik Grundiagen Math6:66-
Jdo € actax 4. ((p,q)) C acta (q). Dietrich, P., Malik, R., Wonham, W., and Brandin, B.
5) e (G.00) _ (Z o) (2002). Implementation considerations in supervisory
A q, U Lo control. InB. Caillaud, P. Darondeau, L. Lavagno,
J<i and X. Xie, editors, Synthesis and control of dis-

crete event systempages 185-201. Kluwer Acad-
emic Publishers.

Emerson, E. (1990). Temporal and modal logic.Hand-
book of Theoretical Computer Scienceolume B,
chapter Temporal and Modal Logics, pages 996-1072.

Now either(q, o) is added tanove'*!, or there ex-
ists another movéy, o’) that has been already added

to move. In both cases, we havec x (i+1,00) [|
We are now ready to show completeness of the algo-

rithm: Elsevier.

Theorem 5 (Completeness of the Algorithm) Emerson, E. and Clarke, E. (1982). Using branching-time
Given a plantApr and a specificationds where temporal logic to synthesize synchronization skele-
the controller synthesis problem is solvable. Then, tons. Science of Computer Programming(3):241—
29 € 22°°) i.e. the presented algorithm generates 266.

a valid Controller. Kozen, D. (1983). Results on the propositiopatalculus.

Proof: Let A be an automaton that solves the Theoretical Computer Scienc27:333-354.
controller synthesis problem. Then, necessar- Malik, P. (2003). From Supervisory Control to Nonblock-

iy L(Acx Ap) < L(Ag) holds as well as ing Controllgrs for Djscrete Event SysterrBhD the-
m(Ae X Ap) C L (Ag). Ac x Ap is forceable sis, University of Kaiserslautern, Kaiserslautern, Ger-

nonblocking. Thereforede x Ap x Ag = Ac x A [pany.

is forceable nonblocking. According to the definition Pnueli, A. (1977). The temporal logic of programs Sym-

of controller synthesis problemA:; needs to be posium on Foundations of Computer Science (FOCS)

controllable with respect tols. Therefore,4c must volume 18, pages 46-57, New York. IEEE Computer

be also controllable with respect #p x As = A. Society.

The statement follows now from Lemma 6. [| Ramadge, P. and Wonham, W. (1987). Supervisory control

of a class of discrete event process&AM Journal
of Control and Optimization25(1):206—230.

Schneider, K. (2003).Verification of Reactive Systems —
Formal Methods and Algorithm&exts in Theoretical
S5 CONCLUSION Computer Science (EATCS Series). Springer.

: : Thomas, W. (1990). Automata on infinite objectsHand-
In this paper, we have developed an algorithm for book of Theoretical Computer Sciepcelume B,

the generation of valid con_trollers from a supervi- chapter Automata on Infinite Objects, pages 133-191.
sory control model as used in the Ramadge-Wonham Elsevier.

framework. To this end, we have strengthened the
coreachability property in order to guarantee that a "0 1 " ical Report ECE 1636F/1637S 2001-02,
marked state is eventually reached, irrespective of the Department of Electrical and Computer Engineering,
plant’s behavior. We have proved the correctness and University of Toronto.

the completeness of our algorithm. In the future, we
plan to implement our Algorithm on top of our toolset

Wonham, W. (2001). Notes on control of discrete-event sys-

Ziller, R. and Schneider, K. (2003). A generalized ap-
proach to supervisor synthesis. Formal Methods

Averest (Averest, 2005) to evaluate the runtime be- and Models for Codesign (MEMOCODEages 217—

haviour of the algorithm. 226, Mont Saint-Michel, France. IEEE Computer So-
ciety.

REFERENCES

Accellera (2004). PSL/Sugar.

http://www.haifa.il.ibm.com/projects/verification/sugar.

31

