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Abstract: The goal of this paper is to show a predictive supervisory method for the trending of variables of 
technological processes and devices. The data obtained in real time for each variable are used to estimate the 
parameters of a mathematical model. This model is continuous and of first-order or second-order (critically 
damped, overdamped or underdamped), all of which show time delay. An optimization algorithm is used for 
estimating the parameters.  Before performing the estimation, the most appropriate model is determined by 
means of a backpropagation neural network (NN) previously trained. Virtual Instrumentation was used for 
the method programming. 

1 INTRODUCTION 

The antecedents are methods for supervising 
technological processes (Juricek, Seborg and 
Larimore, 1998) and more specifically, the 
algorithms that devices use to detect special or 
abnormal conditions. These conditions will be 
determined by the values taken up by their variables 
in the chosen algorithm. Alarm algorithms by limits 
and hysteresis may be used, but they are limited to 
diagnose conditions that exist already or that are 
likely to occur in a short period of time. This paper 
aims at developing more detailed algorithms using 
mathematical models representing the dynamics of 
the processes that will be supervised. The presented 
method makes it possible to predict, in short time, 
possible abnormal conditions. This will give rise to 
one of two possibilities.  The first is a series of 
preventative actions to prevent the system from 
operating in such a way.  The second is a series of 
actions for the successful operation of the process 
upon reaching the critical state that may or may not 
be abnormal (as it happens with hydraulic canals 
whose dynamics are complex).    

The backpropagation network (NN) was chosen 
due to it’s ability to successfully recognize diverse 
patterns. In our case, it is used to recognize signal 
patterns of first and second order dynamic systems 
(Ogata, 2001) in which the dynamics of a 
considerable amount of technological processes can 
be represented. The methodology used consists of 
estimating the parameters of the models through an 
optimization algorithm (Edgar and Himmelblau,  
1988). Before such parameters are estimated, the 
most appropriate model is determined by means of a 
NN, thus reducing the total processing time.  

A broad range of mathematical techniques, 
ranging from statistics to fuzzy logic, have been 
used to great advantage in intelligent data analysis 
(Robins, 2003). 

The following  transfer functions are used: 
First order model: 

-θs

1

KeGm(s) =
T s +1

                           (1) 

Second order model: 
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-θs

2 2
KeGm(s) =

s /ωn + 2ξ s/ωn +1
          (2) 

where the parameters to be estimated are:  
1T  : time constant; K : gain; : natural oscillation 

frequency; θ   : time delay. 
nw

ζ: coefficient of damping. ζ<1 (underdamped). ζ=1 
(critically damped). ζ>1 (overdamped). 

2 BLOCK CHART OF THE 
METHOD 

Figure 1 displays the simplified flow chart of a cycle 
of the predictive alarm algorithm. A circular buffer 
of changeable dimensions is used. This cycle begins 
with the permanent storing of N last data of the 
variable of the technological process or device under 
supervision. 

As shown in Figure 2, the instant for 
recognizing and estimating the parameters of the 
model representing by the points stored in the 
circular buffer is determined by an algorithm of 
lineal trend prediction. On predicting by lineal trend, 
the behavior of the variable is considered to be that 
of a straight line from the current sampling instant.         
Figure 2 shows an example of a variable versus time 
plot V(t) with the following parameters: 
HAL: high alarm limit; v(k): current value; v(k-1): 
previous value; T: sampling period. The current 
sampling instant in this example is 2T.   

Regarding Figure 2, it can be stated that: 

( ) ( ) ( )V k - V k -1 LSA - V k
=

2T - T tp
                 (3) 

Obtaining tp as: 

            
( ) ( )

( )Ttp = LSA - V k    
V k - V k -1

⎛ ⎞⎟⎜ ⎡ ⎤⎟⎜ ⎟ ⎢ ⎥⎜ ⎣ ⎦⎟⎜ ⎟⎜ ⎟⎝ ⎠
      (4) 

 
The minimum prediction time Tmp must be set, 

such that if tp < Tmp, then the recognition process of 
the signal pattern represented by the samples stored 
in the circular buffer begins. 

Afterwards, digital filtering by the moving 
average filter (Oppenheim, Schafer and Buck, 1999) 
is performed according to the following expression:  

            
+M1Y(k) = X(k - i)

2M +1   i=-M
∑            (5) 

where M = 2 was used. 
The latest data are selected if it is the time for 

recognizing and estimating the parameters of the 
model. 

 
 
 
 
 
 

 
 
 

 

 

 

       

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Then, a sampling frequency conversion with a 
non-integer factor combining interpolation and 
decimation is performed (Oppenheim, Schafer and 
Buck, 1999) which makes it possible to obtain  30 
points. This is the number of input neurons of the 
NN. Later, the selection of the weights of the NN is 
accomplished in accordance with the sign of the 30-
point-curve slope, since it was trained for the 
patterns with a positive and negative slope. As an 
output, the NN will produce the most suitable model 
with its parameters estimated through an 

Figure 1: Flow diagram of the predictive alarm algorithm 
cycle 
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optimization algorithm for the fitting of curves 
using all the selected points. Hooke and Jeeves´s 
(Hooke and Jeeves, 1961) optimization method of 
direct search is used. This method returns the 
minimized index. If the returned index is smaller 
than a value that has been pre-established as fair, 
then it is considered that the curve fitting is good 
(estimation of the parameters of the model), and the 
prediction by means of the model will be made in  
order to predict the time when  the variable will 
reach its limit value. The algorithm establishes the 
value considered as fair for the optimization index 
by default. The user can increase or reduce this 
value considered as fair if he wants the model to 
have more or less accuracy. The prediction error is 
calculated periodically. If the fitting of the model is 
not good, the prediction by lineal trend is made. 

 

  

 

 

 

 

 

 

 

 

 

 

2.1 Prediction error 

Whenever the prediction is made, an approximate 
prediction error (Pe) is calculated. If this error is 
smaller than a pre-established  value ε (Pe<ε), the 
prediction is continued according to the model; 
otherwise, as points keep on being stored in the 
circular buffer, another process for estimating 
parameters is performed. \ 

3 NEURAL NETWORK 
TRAINING PATTERNS  

The selection of the NN training patterns was based 
on the behavior of the dynamic responses of first- 
and second-order systems to step input function, 

because this is the most frequent type of disturbance. 
In other cases, even though it might not strictly be an 
ideal step, it can be considered as such, provided that 
for instance, the time constants of the process are 
relatively larger than the time constants of an 
exponential signal. Figure 3 displays the responses 
of critically damped second order systems, with 
natural oscillation frequencies wn equal to 1, 0.5 and 
0.25 respectively. 30 points are shown for every 
curve. They have been taken up from sampling 
frequencies of 4, 2 and 1 samples per second, 
respectively. That is why every time interval in axis 
X will be the sampling period of each curve. If the 
points of the three curves were graphically 
represented using the same time interval for axis X, 
they would be superimposed, as shown in Figure 4. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 3: Responses of critically damped systems
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Figure 4: The three curves of Figure 3, superimposed

Figure 2: Prediction based on the linear-trend of the 
variable 
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A similar behavior will occur in first order 
systems with respect to the time constant, as well as 
in overdamped and underdamped second order 
systems, in which only its coefficient of damping 
will show any difference. 

For NN training patterns, the variations in signal 
amplitude are taken up in %, standardized, from 
40% to 90%. 

After numerous tests, training was carried out 
with 858 input patterns, distributed in the following 
way: 
•  For overdamped second order systems (OSO): 

For every ζ value, 11 patterns are obtained 
corresponding to the variations of the 
amplitude from 40 to 90, with an increase of 5 
(40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90). 
The ζ varies from 1.2 to 3, with an increase of 
0.09, thus obtaining a total of 220 patterns. 
For ζ greater than 3, the behavior of the system 
is similar to a first order system.   

•  For underdamped second-order systems (USO): 
As for every ζ value, 11 patterns corresponding 
to amplitude variations are obtained. 
The ζ varies from 0.1 to 0.7, with an increase 
of 0.0667, thus obtaining a total of 99 
patterns. 

• For first- (F) and critically damped second-order 
(CSO) systems, 11 patterns are created, 
respectively, corresponding to amplitude 
variations from 40 to 90.  

In order to have a similar number of patterns for 
each model and achieve a better training of the NN, 
the F and CSO patterns are repeated 20 times, 
respectively, for a total of 440 patterns. For the USO 
pattern they are repeated twice for 198 patterns. 858 
PATTERNS IN ALL. 

Once the patterns were chosen, varied topologies 
were used until the simplest with the most suitable 
response was obtained. Eventually, a 30-input neural 
network was used, 11 neurons in the hidden layer 
and four-output neurons. Very good results were 
obtained in the training and generalization of the 
NN. The training error was 0.15%. Over 1000 test 
patterns were used, obtaining a correct response, 
with an error of 0.9% of failures. 

4 CONCLUSIONS AND FUTURE 
WORK 

Satisfactory results were obtained on training the 
neural network, having a high level of 

generalization. During the operation, the neural 
network recognized the signals used, even those 
affected by noise.  

The research and the technological advances 
presented are a satisfactory step forward in 
facilitating the use of advanced and efficient 
algorithms of predictive alarm by trend, with 
minimum processing time. The presented algorithm 
guarantees that the prediction will be corrected in 
each period of analysis of the alarm condition states.    
This method of predictive alarm has been applied 
with good results on several occasions, in managing 
hydraulic canals for irrigation and research purposes, 
and in controlling sequential processes. For 
example, a more efficient operation of a set of tanks 
was developed by predicting the time in which a 
tank level will reach a limit value.  

Moreover, work has began to enhance the neural 
network to not only select the most appropriate 
model, but also make a pre-estimation of such a 
model. This optimization algorithm would be 
extremely efficient as its initial operation conditions 
would be the values pre-estimated by the neural 
network. 
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