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Abstract: This paper presents the basic characteristics of a prototype fuzzy expert system for condition monitoring
applications, in particular, oil analysis in Diesel engines. The system allows for reasoning under absent or
imprecise measurements, providing with an interval-valued diagnostic of the suspected severity of a particular
fault. A set of so-called metarules complements the basic fault dictionary for fine tuning, allowing extra
functionality.

1 INTRODUCTION

In diagnosis of industrial processes, there is a signif-
icant practical interest in developing technologies for
a more effective handling of the information available
to ease the procedures of inspection and maintenance
(I/M) by means of greater automation.

Computer-aided diagnosis is one of the earliest
fields of applications of artificial intelligence tools
(Russell and Norvig, 2003). Logic and statistical in-
ference have been tried in previous applications.

Indeed, the full diagnostic problem under uncer-
tain data would need to be considered in a proba-
bilistic framework. Taking into account the “gradu-
alness” of the symptoms and possible diagnostics of
varying degree of severity (captured by fuzzy logic),
the most complete approach would be setting up a
continous Bayesian network. This paradigm arose in
the last decade as a probabilistic alternative to rea-
soning, superior to truth-maintenance approaches in
some cases (see (Russell and Norvig, 2003) and ref-
erences therein). However, inference on this para-
digm is intractable in a general case (NP-hard). If the
amount of uncertainty is low (if a significant subset
of the possible measurements is always obtained and
the “determinism” of the underlying system is accept-
able), then fuzzy logic-based approaches to reason-
ing may be a viable solution in practice. This is the
case of some industrial diagnosis problems, such as

oil analysis, to which the system in development is
targeted.

Logic uncertainty can be accommodated by pos-
sibility theory (Cayrac et al., 1996), or by interval-
valued fuzzy logic (Entemann, 2000). The second ap-
proach is the one followed in this work. Other works
discussing condition monitoring (diagnostic and su-
pervision tasks) using fuzzy logic are, for instance
(Carrasco andet. al., 2004; Chang and Chang, 2003).
Condition monitoring can also be dealt with with
model-based approaches (Isermann and Ballé, 1997),
if enough quantitative descriptions of the system are
available.

This paper presents the structure of a fuzzy infer-
ence module that incorporates some innovations eas-
ing the setting up of rules and improving the quality
of the final diagnostic conclusions. In particular, the
use of interval fuzzy logic, the methodology to deal
with exceptions and the possibility of expressing dif-
ferent alternatives for the same diagnostic and, if they
do not aggree, firing a fuzzy contradiction warning.

An application of the system is presently being
tried on an oil analysis task whose main requirements
appear in (Macían et al., 1999).

This paper presents, in two sections the structure of
the fuzzy condition monitoring module being devel-
oped and the key concepts of the oil analysis applica-
tion in which the possibilities of the system are being
tested.
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2 THE FUZZY CONDITION
MONITORING MODULE

The presented fuzzy condition monitoring module is
structured in the following main submodules:

• measurement preprocessing

• fuzzy rule base inference

• postprocessing of the conclusions

2.1 Measurement preprocessing

Raw data from sensors may need some sort of pre-
processing prior to rule evaluation. Indeed, if non-
linearity inversion, statistical calculations, dynamic
processing, etc. is carried out beforehand, then the
subsequent rules will be simpler. This preprocessing
is, however, application-specific in most cases (see
Section 3).

Incomplete or absent measurements:In the case
of incomplete information, the measurements can be
given in interval form, and fuzzy reasoning will be
carried out via generalisation of ordinary rules to
interval-valued logic values, as described in Section
2.3, giving rise to an interval output of estimated
severities.

2.2 Fuzzy inference module

The fuzzy inference module has been also built with
different submodules. It has a “variable definition
submodule”, a “rulebase definition submodule” and
an “inference engine”.

Variable definition.The name, operating range and
applicable ”concepts” (fuzzy sets) on the variables are
defined via a suitable syntax. An example appears
below on the variable ”CU” (copper concentration):

CU NORMAL 5 1 CU HIGH 5 20
CU VERYHIGH 50 150

the first number defining the support of the fuzzy set,
the second one defining the core. The last line de-
fines, for instance, that the concentration of copper
is not ”very high” if it is below 50 ppm, and then,
gradually starts to be considered ”very high” up to
150 ppm where it is considered 100% abnormal, in-
dicating that rules related to this concept would fire
a ”severe” fault. In the intermediate ranges, the rules
would conclude a fault with an ”intermediate” sever-
ity.

Rulebase definition. The rulebase is defined by
means of a set of rules in the form:

Disorder Symptom-List END

They conform the core of the rulebase, and the ele-
ments in the symptom list are assumed to be linked
by an ”AND” connective. For examples, see Section
3. Inference is carried out by evaluating the minimum
of the severity of the symptoms in the symptom list of
a particular disorder, and assigning that value to the
severity of the associated disorder (see later). If some
”OR” connectives were to be used, it can be done by
means of the metarules to be defined.

Symptom relevance modifier.Each symptom may
be affected by a coefficient indicating that its presence
confirms the fault, but its absence (in the presence of
the rest) indicates a milder severity.

Metarules. The basic rules can be used to detect
particular situations of interest, with an estimated in-
terval of severity as a result. These situations are,
many times, the ultimate faults to be detected.

However, there are occasions where they must be
combined. This combination may have a logical in-
terpretation in terms of AND, OR, NOT; in this case,
the so-called metarules are introduced to handle the
situation. One possible structure is:

DISORDER IF LOGIC-EXPRESSION

where LOGIC-EXPRESSION is any user-defined
combination of symptoms or previously inferred
atomic disorders, with conjunction, disjunction and
negation operators. This rules will be denoted asMIF
rules.

Note that the basic rules could have been embed-
ded into this syntax. However, the proposed one al-
lows for the incorporation of relevance modifiers that
might be more cumbersome in the middle of a logic
expression.

Another type of metarule is the one in the form:

DISCARD Disorder IF LOGIC-EXPRESSION

used, for instance, to discard a ”general” fault if a
more specific situation sharing the same symptoms
(plus some other ones) is encountered, or to set up
“exceptions” to rules. Again, in Section 3, some ex-
amples appear. Other types of metarules (UNION and
ALTERNATIVE ) will be later described.

2.3 Inference Methodology

This section discusses the inference mechanism used
to evaluate the presented rules and metarules. The
core of the inference system works with fuzzyinterval
uncertain propositions. In these propositions, their
truth value is aninterval [ν, π], where0 ≤ ν ≤ 1
and0 ≤ π ≤ 1. It describes partial knowledge: the
minimum value it can attain given the present infor-
mation is callednecessityν and the maximum value
will be denoted aspossibilityπ. If they do coincide,
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then the proposition can be considered an ordinary
fuzzy proposition. The interpretation of possibility
and necessity is related but not equivalent to other ap-
proaches such as (Cayrac et al., 1996).

Connectives. Connectives allow combination of
atomic propositions into more complex ones by con-
junction, disjunction and negation. Assuming a par-
ticular connective for a fuzzy proposition is given
(such as T-norms for AND, T-conorms for OR, etc.
(Weber, 1983) in a non-intervalic fuzzy logic) in the
fuzzy-uncertain framework, the resulting interval will
be evaluated with interval arithmetic,i.e., given a
fuzzy connectiveC : [0, 1] × [0, 1] → [0, 1], Y =
C(X1,X2), its interval version is1:

[νY , πY ] =

[ min
µ1 ∈ [ν1, π1]
µ2 ∈ [ν2, π2]

C(µ1, µ2), max
µ1 ∈ [ν1, π1]
µ2 ∈ [ν2, π2]

C(µ1, µ2)]

(1)

Regarding negation, the truth degree of¬p1 is de-
fined as the interval[ν = 1 − π1, π = 1 − ν1].

For instance, using the minimum and maximum as
conjunction and disjunction operators, the intervalisa-
tion of AND andOR operations is:

[ν1, π1]∧[ν2, π2] = [min(ν1, ν2), min(π1, π2)] (2)

[ν1, π1]∨[ν2, π2] = [max(ν1, ν2), max(π1, π2)](3)

Let us consider now how inference is carried out in
the basic rules and in the metarules.

Basic Rules:The AND intervalic operation (2) is
used (or its trivial generalisation to more intervals).
Furthermore, if a particular symptom has an “irrele-
vance factor”ρ its membership valueµ is transformed
to ρ∗ (1−µ)+µ before carrying out the interval con-
junction.

In fact, the implemented approach considers the
so-called inference error (Sala and Albertos, 2001)
so that given a logic valueµ, the inference error is
e = 1 − µ (extended to interval arithmetic). Then,
given a list ofq symptoms in a rule, the overall infer-
ence error is:

E = p

√

√

√

√

q
∑

i=1

(ei)p (4)

So withp = 2 the methodology could be denoted as
Euclidean inference. Withp → ∞, the result is the

1Those expression apply when the propositions refer
to independent, non-interactivevariables. As in ordinary
interval arithmetic, the above expression (1) in complex
propositions yields conservative (excessively uncertain) re-
sults with correlation and multi-incidence in the arguments.

same as the interval AND (using minimum) described
above. By fixing the value ofp the user may specify a
different behaviour (the lowerp is, the more severity
is substracted due to partially non-fired symptoms).
The formula (4) can be generalised to intervals, ob-
taining the lowest inference error by using the norm
of the minimum inference error of each symptom, and
the highest one with the maxima of the inference error
intervals. Membership values are recovered from the
resulting inference error figures by means of a nega-
tion formula.

Metarules:The logic operations will use the above
intervalar expressions when evaluating anyLOGIC-
EXPRESSIONin MIF metarules.

In theDISCARD metarules, the interval-arithmetic
substraction will be used,i.e.:

DISCARD [ν1, π1] IF [ν2, π2]

will give as a result the interval[ν′

1
, π′

1
]:

ν′

1
= max(0, ν1 − π2) π′

1
= max(0, π1 − ν2)

Membership value transformations.In some cases,
one would like to introduce a set of rules detecting
conditions for an intermediate fault and different con-
ditions for a severe one (say, F1):

IF COND1 THEN F1INTERMEDIATE

IF COND2 THEN F1SEVERE
(5)

To deal with this case, the tool under discussion al-
lows linear transformations of membership via the so-
calledUNION metarule:

UNION FAULTNAME
IDENT1 l11 l12 IDENT2 l21 l22 ...

The coefficientsli1 andli2 define a linear transfor-
mationµ = li1 ∗ (1 − µ) + li2 ∗ µ to be carried out
on the membership of identifier ”IDENT-i”. After-
wards, an interval-logic OR is carried out. Obviously,
to combine a particular condition with no member-
ship transformation, the settingli1 = 0 and li2 = 1
must be used2. For instance, the above case (5) would
be encoded by:

UNION F1
COND1 0 0.5 COND2 0.5 1

2The linear mapping actually implemented is not exactly
the one above. It is:

µ
′ =

(
li1 ∗ (1 − µ) + li2 ∗ µ µ ≥ 0.02

0 µ < 0.02
(6)

In that way, it can be specified that an intermediate severity
fault must be suspected if any nonzero activation of a partic-
ular condition holds, but no firing will occur if none of the
conditions are active above a significant threshold (0.02).
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Alternatives. A closely related situation arises
when several alternatives for diagnosing the same
fault exist. If all measurements were available, all
of them should produce the same result so specifying
only one of them in the rulebase will do. However, to
improve results accounting for missing or imprecise
measurements, several of these alternative rules may
be intentionally specified. In that case, to allow com-
bining different alternatives into one diagnostic, the
intersectionof the intervals produced by inference on
each of them will be the produced conclusion of the
inference.

This is implemented in the current tool by anALT
metarule, with a syntax similar to the union metarule:

ALT FAULTNAME

IDENTIFIER1 l11 l12 IDENTIFIER2 l21 l22 ...

allowing also a linear membership transformation (6)
before the interval intersection is calculated.

For instance, let us assume that, after the mem-
bership transformations, if any, alternativeA yields
[ν1, π1] and alternativeB yields [ν2, π2] as estimated
severity intervals. Ifπ1 > ν2, then the intersection is
not empty and the following estimated severity inter-
val is produced:

[max(ν1, ν2),min(π1, π2)]

Otherwise, the system outputs the interval[π1, ν2]
flagged with acontradiction warning, as the intersec-
tion is empty. If ν2 − π1 is small, then the contradic-
tion level is small and the above interval can be ac-
cepted as an orientative result. If it is a large number,
it means that different alternatives give totally differ-
ent results so an error in the rulebase definition or a
fault in one of the measurement devices providing the
data must be suspected.

The results of the inference is a list of truth values
of the disorders. Those truth values are to be inter-
preted as the “severities” (from incipient to severe) of
the associated disorders.

Post-processing. The output of the expert sys-
tem (interval of estimated severity) is translated onto
a summarised statement. Each value of severity
is mapped to a linguistic tag “negligible, incipient,
medium, severe”, defining an interval of severities for
each tag partitioning the full [0,1] range. If both ex-
treme severities of the conclusions have the same tag,
then a conclusion in the form:

Fault FAULTNAME is TAG (MINI-
MUM,MAXIMUM severity)

is extracted. Otherwise, the produced sentence is:

Fault FAULTNAME severity might range from
TAG(MIN severity) to TAG(MAX severity)

3 OIL ANALYSIS APPLICATION

Oil analysis is a key technology in predictive mainte-
nance of industrial Diesel engines. Indeed, by deter-
mining the amount of wear particles, the composition
of them, and other chemicals in the oil, a sensible set
of rules can be cast to allow a reasonably accurate pre-
diction of the oil condition and/or some likely engine
malfunction.

Expert systems based on binary logic have been de-
veloped for the application (Macián et al., 2000), but
the use of a fuzzy logic inference engine is considered
advantageous and it is being evaluated.

An application of the above ideas is under develop-
ment at this moment. Let us discuss some issues on
its development.

Preprocessing. When acquiring information from
a particular engine, some observations have the same
meaning for all engines to be diagnosed. However,
other ones need the use of historical data to gener-
ate ”normalised” deviations taking into account sta-
tistical information for a particular enginebrand or
model, or a particularunit with special characteris-
tics. In this way, the rulebase conception can be more
general (applied without modification to a larger num-
ber of cases) if the data are suitably scaled and dis-
placed prior to inference or, equivalently, fuzzy sets
are modified according to the particular engine being
diagnosed.

In some measurements, the procedure involves nor-
malising the deviation from the mean expressing it in
variance units, and generating an adimensional quan-
tity. The statistical data are calculated from a database
of previous analysis, classified in brand, model (and
also from historical records from the same engine).

Other variables are transformed to ”engineering”
units, having a more suitable interpretation than the
raw readings (for instance, oil viscosities are ex-
pressed as a percentage of a reference value from
fresh oil characteristics, instead of the centiStoke
measurement).

Also, in order to consider real engine behaviour,
oil consumption and fresh oil additions are consid-
ered leading to obtain acompensatedwear element
concentration more representative of engine status.

Knowledge base. At this moment, the team is in
process of acquiring and refining a knowledge base
with diagnosis rules.

The basics of the knowledge to be incorporated on
the expert system lie on the following facts.

System is focused on automotive engines diagno-
sis (trucks, buses and general and road construction
equipment), and so, the different parameters to mea-
sure are (Macían et al., 1999):
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• Oil properties: viscosity, Total Base Number
(TBN) and detergency.

• Oil contaminants: Insoluble compounds, fuel dilu-
tion, soot, ingested dust (silicon), water and glycol.

• Metallic elements: iron, copper, lead, chrome, alu-
minum, tin, nickel, sodium and boron.

Other measurements could be performed upon the oil
sample, but with these basic parameters a good diag-
nosis can be achieved. Systems developed for other
types of engines could choose other parameters tak-
ing into account the particularities of these types of
engines.

Let us consider, as an example, the kind of knowl-
edge involved on the dust contamination detection.

Silica and silicates are present at high concentra-
tions in natural soils and dusts. It is for this reason that
silicon is used as the most important indicator of dust
entry into an engine. There have been several studies
done on the causes of premature wear in components
and results vary from study to study but one thing is
clear: external contamination of lube oil by silicon is
a major cause of accelerated wear. Particles of air-
borne dust vary in size, shape and abrasive properties
and in an engine the ingress of atmospheric dust takes
place primarily through the air intake. Those parti-
cles, not retained by filters, and similar in size to the
oil film clearance in main lubricated parts of the en-
gine do the maximum damage. Once the dust particle
has entered an oil film it forms a direct link between
the two surfaces, nullifying the effect of the oil film,
thus, the immediate consequence is a ”scratching” of
the surface as the particle is dragged and rolled across
the surfaces. The second and potentially more serious
problem is that once the dust particle is introduced
in between the two surfaces, it changes the loading of
the surface from an even distribution to a load concen-
trated on the particle with a huge increase in pressure
at this point. The increase in pressure causes a de-
flection of the surface, which will eventually result in
metal fatigue and the surface breaking up. As soon as
a dust entry problem occurs there is an increase in the
silicon concentration into the oil and an acceleration
of the wear pattern. As long as the oil samples are
being taken at regular intervals in the correct manner,
the dust entry will be detected at a very early stage. If
an effective corrective action is taken, the life of the
component will be significantly increased, reducing
maintenance costs.

Diagnosis of silicon contamination (dust inges-
tion):

• If normal wear patterns combine with high silicon
readings in oil analysis, there are three possibilities:
a silicone sealant, grease or additive is in use mix-
ing with engine oil, an accidental contamination of
the sample has occurred or dust ingestion is in the

first stage and no others wear patterns are present
yet (too lucky situation). Action recommend to the
maintenance technicians must be to check if an ad-
ditive, grease or sealant has been used recently on
the engine and make sure that the correct sampling
technique was used. An inspection of the air ad-
mission system on the engine will be necessary if
previous action results negative.

• Increased engine top-end wear (iron, chromium, or
aluminium concentration rises up). This increased
engine top-end wear is caused by airborne dust that
has been drawn into the combustion chamber being
forced down between the ring, piston and cylinder.
Dust origin is caused by a defective air cleaner or
a damaged induction system. Actions to be taken
by maintenance technicians are inspect the air filter
element thoroughly, and check its seals and support
frame for damage and distortion and check too the
pleats for damage. If there is any doubt about a
filter element, it should always be changed. If the
leak was found, it is necessary to repair the leak and
determine the condition of the engine by checking
compression or blowby.

• Increased engine bottom-end wear (lead, tin or cop-
per concentration rises up). This situation indi-
cates that dirt is basically getting into the lube oil
directly and not past the pistons and rings. The
likely sources are: leaking seals, defective breather,
damaged seal on oil filler cap or dipstick, or dirty
storage containers and/or top-up containers. Rec-
ommended action to be taken by technicians must
be that any dust that is in the oil will be pumped
through the oil filter before entering the bearings.
Therefore, the first step is to examine the oil filter
looking for dust contamination or bearing mater-
ial. If excessive dust is found, thoroughly check all
seals and breathers, etc. Check the oil storage con-
tainers and top-up containers for finding the source
of contamination.

In the syntax of implemented prototype tool, the
rules are:

CONTS1 SI NOT NORMAL END
WEAR_1 IF
FE NOT NORMAL or CR NOT NORMAL
or AL NOT NORMAL

WEAR_2 IF
PB NOT NORMAL or SN NOT NORMAL
or CU NOT NORMAL

CONTS2 IF CONTS1 and WEAR_1
CONTS3 IF CONTS1 and WEAR_2
SILICON_CONTAMINATION IF CONTS1
DUST_INGESTION IF CONTS2 or CONTS3

As another example, water problems can be divided
into two different sources: an external water contam-
ination or refrigerant leakage, in each case a different
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behaviour is presented. Additionally, water can evap-
orated and not to be present in oil. For this case, other
fingerprints, that remain in oil when water evaporated
must be found, such as: sodium (NA), boron (BO), its
ratio (NABO) or glycol (GLIC) (its absence would fire
ruleCONTW3 at most 70%).

Finally, to take into account a specific situation
such as a refrigerant leakage with greats amounts of
copper from tube wear caused by water surface corro-
sion, an specific rule is defined too (CONTW4). In the
syntax of the implemented tool, the rules are:

CONTW1 WATER NOT NORMAL END
CONTW2 GLIC NOT NORMAL END
CONTW4 CU VERYHIGH END

CONTW3
NA NOT NORMAL
BO NOT NORMAL
NABO ABNORMAL
GLYC NOT NORMAL 0.7

END

WATERFAULT IF
CONTW1 or CONTW2 or CONTW3 or CONTW4

DISCARD WEAR IF CONTW4

So, based on the ideas from the above rules, a full
rulebase is being built at this moment.

4 CONCLUSIONS

This paper presents a prototype fuzzy expert sys-
tem for oil diagnosis. The flexibility of this sys-
tem is greater than those of binary rules, allowing
for gradation of diagnosis. Also, refinements such
as interval-valued memberships, membership trans-
formations, exceptions (discarding), unions and alter-
natives are included. In this way, the diagnostic ca-
pabilities and the readability of the rule base improve
substantially.

The oil analysis application in consideration pro-
vides a quite complete set of measurements from
which expert rules can be asserted with a reasonable
reliability. However, for suitable diagnosis on a par-
ticular engine, a pre-processing module is essential:
this module incorporates records of similar engines
(same brand, model, history of the one being moni-
tored, fresh oil characteristics, analytical calculations,
etc.) so that the fuzzy set definitions are adapted for
each case.

The full system is, at this moment, in development
and prototype testing stage (comparing with human
experts’ conclusions and those from preexistingad
hoc software based on binary logic), but its prelimi-
nary results are promising.
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