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Abstract: This paper presents how a problem of optimal trajectory planning, that is an optimal control problem, can be 
transformed into a parametric optimization problem and in consequence be tackled using efficient 
deterministic or stochastic parametric optimization techniques. The transformation is done thanks to 
discretizing some or all continuous system’s variables and forming their time-histories by interpolation. We 
will discuss three different methods where, in addition to transfer time T, considered optimization 
parameters are: 1) independent state and control parameters, 2) control parameters and 3) independent 
position parameters. The simplicity and the efficiency of the third mode allow us to use it to solve the 
problem of optimal trajectory planning in complex situations, in particular for holonomic and non-
holonomic systems. 

1 INTRODUCTION  

The problem of optimal motion synthesis for robotic 
systems is a fundamental issue in robotics. It is 
generally stated as an optimal control problem OCP. 
Due to its strategic importance, the treatment of this 
problem received a great attention from researchers 
and was the subject of many papers. In fact, we find 
a large diversity of proposed techniques that can be 
classified into two main families, namely direct and 
indirect methods (Stryk, 1993)(Steinbach, 
1995)(Betts, 1999). The indirect methods are based 
on the calculus of variation and lead generally to a 
multipoint boundary value problem BVP. However, 
such techniques suffer from many drawbacks: 

• User must have knowledge of OCP theory in 
order to be able to compute all elements of 
involved solution program (particularly the 
Hamiltonien and its gradients). Further more, 
even if the user has the requisite theoretical 
background, constructing these expressions for 
complicated applications might be very difficult 
(Betts, 1999). 

• The approach is not flexible because each new 
problem requires a new derivation of relevant 
elements. 

• If the problem description includes path 
inequalities, the user must estimate a priori the 
constrained arc sequence. This tends to be quite 
difficult and makes the definition of arc 
boundaries extremely difficult (Bryson, 1999). 

• One main difficulty of implementation is that 
the user must guess values of the adjoint 
variables (co-states) that is not an intuitive task 
because they are not significant physical 
quantities (Chettibi et al, 2004 a, b). 

• Singular arcs, where switching functions are 
nulls (Geering et al, 1986), involve a particular 
treatment for example: by introducing a 
perturbed energy term in the performance index 
(Chen and desrochers, 1988, 1990, Chen et al 
1993). 

• This approach suffer also from proper 
deficiencies of applied numerical methods 
(shooting and finite difference methods) used 
for the treatment of resulting BVP (instability, 
need of accurate initial guess, … ) (Ascher and 
Petzold, 1998).   
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To overcome the indirect method’s lacks, direct 
methods have been introduced. They are based on 
the conversion of the original OCP into a Parametric 
Optimization Problem POP by the parameterization 
of the class of some system variables time functions. 
So, this kind of methods restricts the attention to 
some parameterized family of possible trajectories, 
thus reducing the original infinite-dimensional 
problem to a more tractable finitely parameterized 
optimization problem. This is, of course, done at the 
expense that the solution will be optimal in the 
selected class, i.e., suboptimal with respect to the 
original problem. Nevertheless, this drawback must 
be weighted against the following practical 
advantages (Bryson, 1999)(Chettibi et al, 2004 a, b): 

• Do not require any additional analytical 
derivations. 

• Systematic treatment of path constraints and 
inequality constraints. 

• The number and sequence of constrained arcs do 
not have to be guessed  

• Singular arcs are handled without any special 
coding; their number and location do not have to 
be estimated. 

• Small space of search. 

In what follows, three classes of methods will be 
discussed. The unknowns in each class, in addition 
to transfer time T, are: 

Class 1:  independent state parameters and control 
parameters, 

Class 2:  Control parameters, 
Class 3:  Independent position parameters. 

Of course, according to the adopted conversion 
method, different numerical integration techniques 
will be employed and the amount of calculus effort 
will differ. In fact, classes 1 and 2 are commonly 
used to propose an approximated solution of the 
original OCP (Stryk and Bulirsch, 1993) (Stryk, 
1993) (Steinbach, 1995) (Betts, 1999). In contrast, 
the third class is rarely employed (Chettibi et al, 
2004(a), (b)) (Bobrow et al, 2001). One of the 
objectives of the present paper is to illustrate the 
efficiency and simplicity of this class and its ability 
to handle complex problems arising for example in 
holonomic and non-holonomic robotic systems. 
Once the trajectory parameterization is performed, 
the original problem becomes a nonlinear parametric 
optimization problem that can be treated using 
efficient deterministic or stochastic parametric 
optimization techniques. 

2 DYNAMIC MODEL OF 
ROBOTIC SYSTEMS 

In order to synthesis optimal motions for robotic 
systems, a complete dynamic model is needed. 
Consider a robot or in general a constrained 
mechanical system composed of p unconstrained 
systems, each described by ni coordinates qi with a 
Lagrangian Li(qi, iq )=Ti-Ui, where 

( ) iii
T
ii qqMqT

2
1

=  

is the kinetic energy and Ui is the potential energy for 
the ith 

 system (Angels, 1997). Let the p systems be 
connected through mh holonomic constraints described 
by C(q)=0 (for e.g. closure condition for parallel 
robots), and mn nonholonomic constraints described by 

( ) 0, =qqN  (for e.g. condition of pure rolling and 
non-slipping for mobile robots). We assume that all 

nh mmm += constraints are time-invariant 
(scleronomic) and that they can be jointly written in a 
Pfaffian form as follows (Bicchi et al, 2001): 

( )
( ) ( ) 0==⎥

⎦

⎤
⎢
⎣

⎡
qqAq

qA
qA

n

h  

With nm
h

hA ℜ×ℜ∈ , nm
n

nA ℜ×ℜ∈ , nq ℜ∈ . 
A is supposed of full rank unless constraints are 
redundant and the system is said to be hyperstatic.   

Equations describing the system dynamics are thus 
obtained as: 

( ) τλτ =++ T
extext AfqqHqM ,,,   (1a) 

( ) 0=qC                              (1b) 
( ) 0, =qqN     (1c) 

   
Where [ ]pMMMdiagM ,...,, 21=  is the mass matrix 
of the mechanical system, ( )extextfqqH τ,,,  is the 
non-linear dynamical vector which contains the 
gyroscopic, centrifugal and gravity terms as well as 
any others non conservative forces as external forces 
fext and torques τext. τ  stands for the generalized 
joint forces. The unknown Lagrangian multipliers 
vector mℜ∈λ can be interpreted as a reaction force 
capable of enforcing the constraints. Note that H can 
include discontinuous terms like those due to dry 
friction efforts. In that case, the system (1) is no 
longer differentiable and must be treated with 
precautions from numerical point of view.  
 
The system (1) is a mixed set of differential and 
algebraic equations where q are differential variables 
describing the system’s state and λ are algebraic 
variables. Relation (1) is defined as a set of 
Differential Algebraic Equations (DAE) of index 3 
(Ascher and Petzold, 1998).  If the mechanical 
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system is not under any kind of nonholonomic or 
holonomic constraints, (1) becomes a simple system 
of ordinary differential equations ODE. It is the case 
for open chain robots with tree-like topology 
(Dombre and Khalil, 1999).  
Solving (1) forτ  is known as the Inverse Dynamic 
Model (IDM), while for q  is the Forward Dynamic 
Model (FDM). The two problems are of quite 
different complexity. In fact, the former problem is a 
relative straightforward algebraic operation based on 
the substitution of ( )tq and its time derivatives in 
(1). In contrast, the later problem involves the 
integration of a DAE system using an implicit 
numerical method such as backward differentiation 
formulae (BDF) or implicit Runge-Kutta (IRK) 
methods. However, this approach leads generally to 
ill-conditioned problems. To handle this problem, 
reducing the index of the DAE system by 
differentiating constraints has been proposed 
(Ascher and Petzold, 1998).  
Relation (1) can be transformed as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=⎥

⎦
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⎢
⎣
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Although (2) is mathematically equivalent to (1) but 
its numerical behaviour is better (Bicchi et al, 2001). 
Under the condition of non-singularity of the matrix 
on the left hand side of (2) we can write: 
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By introducing the state vector n

q
q

X 2ℜ∈⎥
⎦

⎤
⎢
⎣

⎡
=  and 

the control vector τ=u , relation (3) becomes: 
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⎥
⎥
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⎢
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⎣

⎡
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qqf
qqf
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a   (4) 

Note that any explicit dependence on t is omitted for 
notational simplicity, but of course all the quantities 
above are function of times. In addition, non-
autonomous problems can be transformed into the 
above form (4) by defining an additional differential 
variable 12 +nX  satisfying the initial value problem 
(IVP) ( ) 112 =+ tX n  with ( ) 0012 =+nX . 

3 CONSTRAINTS 

Any feasible motion of the robot must satisfy at any 
moment, in addition to relation (4), others 
constraints reflecting the limitations of the robot’s 
capacities and the nature of both assigned task and 
the environment. In fact, if obstacles are present in 

the robot workspace, collisions must be avoided.  
Therefore, the following constraint holds during any 
transfer: 

C(q(t)) = False                           (5a). 
Here, C denotes a Boolean function that indicates 
whether the robot at configuration q is in collision 
either with an obstacle or with itself.   

Furthermore, when the robot is asked to move along 
a prescribed geometric path, this can be represented 
by the six-dimensional vector ( )ϕθψ ,,,,, zyxR =  
( ( )zyx ,,  for the position and ( )ϕθψ ,,  for the 
orientation of the end effector relative to an inertial 
frame). The vector R is a known function of the 
distance along the path, s(t), and may be expressed 
in terms of coordinates q(t), using the forward 
kinematic model (Angels 1997) : 

( )( ) ( )( )tqPtsR =             (5b) 
This is an equality constraint that must be hold 
during the whole transfer. 

In addition, we have generally box constraints on the 
following physical quantities:   

•   position:          ( ) maxmin qtqq ≤≤  (5c); 

•  velocity:           ( ) maxmin qtqq ≤≤    (5d); 

• acceleration:   ( ) maxmin qtqq ≤≤  (5e); 

•  jerk:                 ( ) maxmin qtqq ≤≤  (5f); 

• control:    ( ) maxmin τττ ≤≤ t       (5g); 
The above mentioned constraints (5a,…,5g) 
constitute a set of path constraints and can be written 
in the following abstract form: 

( ) ( ) ( )( ) 0,,, ≤ttXtXtg τ                (6) 
Therefore, the set of feasible motions for any robotic 
system is limited by a large number of geometric, 
kinematic and dynamic constraints. The search for 
optimal trajectories in such a set is a quite hard task 
and involves adequate strategies able to tackle 
simultaneously all these constraints. 

4 BASIC FORMULATION OF A 
TRAJECTORY OPTIMIZATION 
PROBLEM 

It can be stated as follows:  
find a state function X(t) and a control τ(t) on time 
interval [0, T] such that a scalar performance 
criterion  
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( )( ) ( ) ( )( )dtttXtLTXTJ
T

∫+=
0

,,, τφ         (7) 

is minimized, subject to path constraints (6),  
differential algebraic constraints (4), and the 
prescribed limit conditions 

 ( ) 00,0 XXt ==     ( ) fXTXTt == ,       (8) 

Relations (4), (6), (7) and (8) constitute a generic 
OCP. In this formulation, the final time is fixed. A 
problem with free final time can be transformed into 
this format by normalising the time and introducing 
a new variable 12 +nX  satisfying the initial value 

problem (IVP) ( ) 112 =+ tX n  with ( ) 0012 =+nX  (the 
same action we proposed for non-autonomous 
problems).  
J denotes the real valued objective criterion to be 
minimized. In general, J contains significant 
physical parameters related to the robot behaviour 
and also to the productivity of the robotic system. 
We propose here the following general expression 
that is a balance between transfer time T and 
quadratic average of actuator efforts : 

∫ ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
+=

T n

i i

i dtTJ
0 1

2

max2
)1(

τ
τµµ               (9) 

µ is a weighting coefficient ( 10 ≤≤ µ ). The case: 
µ = 1, corresponds to the minimum time problem.  
The numerical treatment of above formulated OCP 
with conventional indirect methods seems to be 
abandoned in the favour of direct methods based on 
the conversion of an OCP into a POP.    

5 CONVERSION OF THE 
TRAJECTORY OPTIMIZATION 
PROBLEM INTO A 
PARAMETRIC OPTIMIZATION 
PROBLEM 

The conversion of the problem of trajectory 
optimization into a POP starts with the definition of 
N nodes (Knots), at fixed times, 

Tttt N =<<<= ...0 21 , uniformly or not uniformly 
distributed along the time scale. Then, the system’s 
kinematic or dynamic continuous variables are 
replaced by their values at the nodes ( kkk qqq ,, or 

k
τ ) and some form of interpolation (fig. 1). In 
addition to final time parameter T, parameters of the 
new parametric optimization problem can be chosen 
in various ways as a combination of kkk qqq ,, or kτ . 
Along the optimization process, these parameters are 
varied inside their admissible range until an 

optimum minimizing the cost function and satisfying 
all constraints has been reached. Examples of 
methods for interpolating these knots (nodes) are 
high-order polynomial and piecewise polynomials 
(cubic- splines or B-splines).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that also the location of these nodes along the 
time scale can be considered as additional unknowns 
of our problem. The interest of this fact arises 
particularly when we would like to capture critical 
evolution areas like switching time for bang-bang 
controls and, in consequence,  to avoid excessive 
refinement of the time grid.    
If X denotes the set of chosen parameters, the 
corresponding POP is to find the value of X that 
minimizes the cost function (7) written here: 

( )XFJ
X

=min        (10.a) 

Subject to the equality constraints: 
( ) 0=XCeq    (10.b) 

And the inequality constraints: 
( ) 0≤XCineq    (10.c) 

F, Ceq and Cineq are just a transcription of relations 
(4), (6) and (7) in terms of the new variable X. 

5.1 Conversion with independent 
states and controls as unknowns 

In this first mode of conversion, both the control 
vector τ and state vector ( ) ( ) ( )[ ] ttqtqtX =  are 
discretized. This involves an implicit integration of 
(4). This is performed by calculating the residuals on 
each subinterval and driving them to zero as a part 
of the optimization process. Hence we get additional 
equality constraints. This discretization can be 

f(t) 
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Figure 1: Discretization of continuous system’s 
variables. 
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performed according different schemes: midpoint 
rule, trapezoidal rule or in general using a Runge-
Kutta scheme (Hull,1997) (Betts,1999).  

5.2 Conversion with Controls as 
unknowns 

In this conversion method, in addition to T, the 
unknowns are the values of τ at the nodes. The 
control history τ(t) is formed by interpolation. In this 
case, the dynamic equation (1), written under the 
state form (4), must be integrated on [ ]T,0  to get the 

time evolution of the system state ( ) ( ) ( )[ ] ttqtqtX =  
(i.e. to compute the FDM). Such a method can be 
seen as a shooting method because once a guess of 
τ(t) is made the sate equations are generally 
integrated in one pass. So, the time history τ(t) is 
varied until the final state (8b) is matched while all 
imposed constraints are respected and cost function 
is optimized.  

5.3 Conversion with independent 
generalized coordinates as 
unknowns 

In this conversion method, T and the values of 
independent generalized coordinates (defined from 
q(t) at selected knots) are considered as the 
unknowns of the problem. The time history of q(t) is 
then formed by interpolation. Time derivatives of 
q(t), i.e. q and q , are systematically deduced. Then, 
torques τ are computed using IDM (relation (1)). So, 
all elements of the optimization problem, objective 
function and constraints, can be easily evaluated and 
then checked.   
In this conversion, dynamic equations (1), exploited 
through the IDM, are employed just to verify any 
constraints imposed on torques τ. So, the motion 
generator can be seen here as a conventional 
kinematic planner.   

6 SOLUTION TECHNIQUES 

Once the original OCP has been transformed into a 
POP using the above mentioned methods, the 
problem can be treated by parametric optimization 
techniques. These techniques can be regrouped into 
two main families: deterministic and stochastic 
techniques. Deterministic methods use first and 
second order information (gradient and Hessian) to 
build a descent direction and to define a good 
progress step. In contrast, stochastic techniques need 

neither gradient nor Hessian values to process the 
optimization problem. They are based on 
randomized process able to select good candidates. 
We are not here going to establish a comparison 
between these two families but, just we mention that 
theses techniques can be used to solve the resulting 
POP. 

7 NUMERICAL EXAMPLES 

7.1 A 2 d.o.f. robot 

We are concerned here by the IBM 7535 B04 robot 
modelled as a 2 d.o.f planar robot (Geering et al., 
1986). It was the bench mark for many simulation 
works dealing with the minimum time trajectory 
planning problem (Geering et al., 1986, Chen and 
Desrochers, 1988, 1990, Chen et al, 1993, 
Bessonnet, 1992, Lazrak, 1996). We try here to 
solve this problem using parametric optimization 
instead of Pontryagin Maximum Principle (PMP). 
The three discretization schemes proposed in § 5 are 
used to transform the original problem. Then, we 
propose the SQP technique to solve the resulting NL 
problem.  In all cases, the task to be achieved is 
characterized by null limit joint velocities while the 
motion starts at (0, 0) and ends at (0,  π/4). Only 
constraints on torques are imposed 
( NmNm 9,25 21 ≤≤ ττ  ). Table 1 summarizes the 
main simulation results we get using the three 
conversion modes. 
In the first conversion mode, the robot’s dynamic 
model has been discretized using a mid-point rule 
and using a uniform grid of 20 nodes. It has the 
biggest number of variables and constraints. 
However, the resolution of the corresponding NL 
program does not involve the highest CPU time. In 
fact, in the second mode of conversion, that involves 
only 29 variables, we need more time (26 times vs 
the first mode and 130 times vs the third mode) to 
solve the NL program. This is basically due to the 
fact that, at iteration of the optimization process, the 
robot dynamic model (4) is integrated using standard 
ODE solvers in order to get the corresponding 
kinematics that is time consuming. In reality, in this 
second mode, the optimization process behaves like 
a shooting method. Once τ(t) is estimated inside the 
admissible range, relation (1) is integrated from the 
initial state to a final state that must meet the state 
specified by the assigned task. This is traduced in 
the program by four equality constraints. In contrast 
to the two precedent modes, the last one seems to be 
more efficient, we have less variables and a good 
estimation of the optimal solution in a very short 
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time (versus optimal solution for the same task 
found using a PMP based method and given in 
(Chen and Desrochers, 1990) that is 0.99s). 
From this analysis, we think that the third mode is 
much more efficient and robust to handle the 
problem of trajectory optimization in more complex 
situations. The two following examples attest and 
confirm this point of view. 
 
Table 1: Numerical results using direct and indirect 
methods 
Discretization 

mode 
Number of 
parameters  

Objective 
function (s) 

CPU 
time (s) 

1) τ, x 127 1.02 20 
2) τ 29 1.14 525 
3) q 5 1.05 4 
PMP (Chen & Desrochers,1990) 0.99 - 

7.2 Optimal motion planning for a 
closed chain robot  

We consider here a 2-DOF planar parallel robot (fig. 
2). It consists of three identical two-link legs 
intersecting in a central point C. The robot 
configuration is defined by [ ]654321 ,,,,, qqqqqq . Let 

[ ]321 ,, qqqqa =  corresponds to active joints and 
[ ]654 ,, qqqq p =  to passive joints. The coordinates of 

C are ( )[ ]tytx ),(  and can be expressed all the time 
as a function of qa and qp as follows:  

( ) ( ) ( )
( ) ( ) ( ) 3,...,1

sinsin
coscos

321

321 =
⎩
⎨
⎧

++=
++=

+

+ i
qqlqlty
qqlqltx

iii

iii  

Where 1lBA ii = ,  2lCBi = . 

So, the robot configuration can be parameterized 
using only the two independents coordinates x(t) and 
y(t). Knowing ( )[ ]tytx ),(  and their time derivatives, 
active joints’ torques can be computed using 
adequate techniques proper to closed chain robots 
(Cheng et al., 2001). So, we decide to take 

( )[ ]tytx ),(  as unknowns for the motion planning 
problem. 
 
 
 
 
 
 
 
 
 
 

Table 2: Characteristics of one leg of the redundant planar 
parallel manipulator 

 
Table 3: Numerical results for the Planar  2-DOF 
redundant parallel robot. 
 

µ Cost 
function(s) 

Transfer 
time(s) 

0.25 0.52 1.58 
0.50 0.80 1.21 
0.75 0.96 1.07 
1.00 1.04 1.04 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The assigned task here consists to achieve a transfer 
between an initial posture (x=-0.3, y=0.2) and a final 
one (x=0.3, y=-0.3) while minimizing the objective 
function (9) and respecting bounds (5c) and (5g) on 
the values of active joints’ positions and torques 
(Table 2). 
The time evolution of [x(t), y(t)] is parameterized 
using seven free nodes uniformly distributed along 
the time scale. The simulation is done for various 

j L 
(m) 

M 
(kg) 

 d 
(m) 

Ι   
(kg.m2) 

τmin
 

(N.m) 
τmax

 
(N.m) 

qmin
 

(m) 

qmax
 

(m) 
1 0.6 10 0.3 0.1 -25 25 −0.5 0.5 
2 0.6 10 0.3 0.1 − − −0.5 0.5 

Figure 2: Planar 2-DOF redundant parallel mechanism
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Figure 3: Simulation results for the Planar 2-DOF 
redundant parallel robot: (a) active joint torques, (b) 
optimised motion, for µ = 0,25 
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values of µ and corresponding results are reported in 
Table 3 and depicted on figure 5.  
We observe that the proposed method succeeds to 
find a solution in both situations. Increasing the 
coefficient  µ  means that we attempt to minimize 
more T, this is guaranteed by higher torques 
amplitudes (increasing cost function). In fact, on fig. 
5.a (µ=1), we note clearly the presence of several 
saturation areas of active joints’ torques in order to 
ensure high speed transfer (fig.5.c). While, profiles 
of fig.5.b (µ=0.25) are quite smooth but the transfer 
is executed slower (fig.5.d). 
 
Example 3: A mobile robot (Nonholonomic system) 
 
This section gives numerical results concerning 
minimum–time trajectories (µ=1) for a Wheeled 
Mobile Robot WMR constituted of a platform and 
two independently driven wheels (Yamamoto et al., 
1999).  Constraints on driving torques are: 

)(0.1,0.1 21 N.m     ≤≤− ττ . The workspace consists 
of a mm 2424 × flat floor with three obstacles (Fig. 
5a).  The WMR is required to move freely, without 
following a specified path, from initial to final states 

0X  and fX  given by:  

[ ] [ ] 3 X 030000 === Tyx θ ,              
[ ] [ ]6/2323 πθ == T

ffff yxX  . 
In addition to the vector τa(t) of actuator efforts and 
the final time T , we must find the motion defined by 

[ ] Tttytxt )()()()( θ=X  such as the initial and 
final states are matched, constraints are respected 
and the traveling time is minimized. 
 
The robot independent position parameters are x(t) 
and y(t). The orientation θ (t) can be deduced from 
the nonholonomic constraint: 

( ) ( ) 0)()()()( =⋅+⋅− tCostytSintx θθ . 
At each iteration of the optimization process the 
WRM motion X(t) is defined in two main steps.  
 
Step 1 : specify the robot path X(λ). 
Step 2 : specify the motion profile λ(ξ) on this path.  

X(λ), λ ∈ [0, 1], describes the geometry of the robot 
path in the (O, x, y) plane while λ(ξ), ξ ∈ [0, 1], 
determines the time evolution along this path (ξ 
represents a normalized time scale: ξ = t / T).  
Hence, the problem is transformed to a parametric 
optimization problem.  One of the parameters is the 
unknown traveling time T.  The other parameters are 
two sets, SP and SC, of free discretisation nodes.  The 
set SP is composed of NP control points in the robot 

workspace (Fig. 4a) while SC consists of NC 
collocation points in the (ξ, λ) plane (Fig. 4b). With 
SP, we can define a path X(λ) using parametric 
functions, such as B-spline, that takes into account 
limit states. With SC, we can define a motion profile 
λ(ξ) using, for example, a clamped cubic spline 
interpolation that takes into account the other 
constraints (Chettibi et al 2004b, Haddad et al, 
2005). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The optimization method adopted here uses a 
simulated annealing process that scans 
simultaneously the available solution space of both 
sets SP and SC to propose candidate trajectory 
profiles X(ξ) ≡ X(λ(ξ)) for a global minimization of 
the traveling time. 
 
For this problem we have adopted for X(λ) a fourth-
order B–spline model with Np = 6 control points and 
for λ(ξ) a clamped cubic spline model with NC = 4 
interpolation points.  The required runtime was 
about 4 minutes on a 2.4 GHz P4. 
 
Simulation results are shown in Figure 5.   These 
results are quite similar to those given in 
(Yamamoto et al. 1999).  The calculated traveling 
times are of the same order (17.82 vs. 18.94 sec).  

O
x 

y 

xmax 

ymax

X0 

Xf Obst.1 

Obst.2 

X(λ) P1 P2 
P3 

Figure 4a: A path X(λ) through NP free control points 

 (ξ1, λ1)
ξ 

 λ

1 0

1

 (ξ2, λ2) 

 (ξ3, λ3) 

Figure 4b: A motion profile λ(ξ) with NC free 
collocation points 
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Figure 5b: Time evolution of joint torques

τ [Nm] τ [1] 
τ [2]

Time [sec] 

Figure 5a: Simulation result 
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8 CONCLUSION  

We have demonstrated that a trajectory optimization 
problem, that is an optimal control problem, can be 
converted into a parametric optimization problem 
using three different conversion modes. We shown 
that using independent position parameters as 
principle variables of the optimization problem 
offers many facilities and leads to comparable 
results to those obtained heavy and classical indirect 
methods.  
Furthermore, the simplicity and the efficiency of this 
conversion mode allow us to use it to solve the 
problem of optimal trajectory planning in complex 
situations, in particular for holonomic and non-
holonomic systems. 
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