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Abstract: A comparison between the fixed and free end-point discrete time linear quadratic optimal problem is 
performed. Symmetrical algorithms for both problems are proposed. These algorithms can be easier 
implemented by comparison with classical procedures. Simulation results are presented. 

1 INTRODUCTION 

The paper considers the discrete time optimal 
problems with finite final time, which refer to a 
quadratic criterion and to a discrete completely 
controllable linear time invariant system 

x(k 1) Ax(k) Bu(k)+ = +  (1) 

where nx(k)∈  is the state vector, mu(k)∈ is the 
control vector, k∈ , A and B are matrices of 
appropriate dimensions. 
Depending on the final state x(kf), one can formulate 
the following problems: 
P1 (with fixed end-point): Find the feedback control 
u(x(k)) which transfers the system (1) from the 
initial state x(k0) in the imposed final state x(kf)=0 
and minimizes the criterion 
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(T denotes the transposition). 
P2 (with free end–point): Find the optimal feedback 
control u(x(k)) which transfers the system (1) from 
the initial state x(k0) in the free final state x(kf) and 
minimizes the criterion 
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We also mention in addition the problem P3 with 
infinite final time, which refers to the criterion 
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 For a more relevant comparison we shall consider 

1 2 3Q Q Q Q= = = , 1 2 3P P P P= = =  (5) 

 The matrices of the above criteria are 
symmetrical and  

S 0, Q 0, P 0≥ ≥ >  (6) 

 The solution for the above formulated problems 
are well known (Anderson, Moore, 1990), (Kuo, 
1992), but there are some difficulties in 
implementation of the algorithms. The solution to 
the P1 problem is usually presented as an open loop 
control u(k) because the feedback control u(x(k)) has 
a complicated form. The P2 problem is the most 
frequently meet linear quadratic problem with finite 
final time. The matrix of the feedback controller is 
time variant and is designed based on a solution to 
the Riccati difference matriceal equation. This 
solution has to be computed in real time and this fact 
can generate some difficulties in implementation, 
augmented by the fact that the equation must be 
solved in inverse time, starting from a final 
condition. 
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 The paper uses some previous results of the 
authors (Botan, Onea, 1999), (Botan, Ostafi, Onea, 
2003), and presents a simpler for implementation 
solution for the formulated problems. Moreover, a 
symmetrical approach for both problems is 
established. 

2 USUAL APPROACHES 

From the Hamilton necessary conditions, the optimal 
control is obtained as 

1 Tu(k) P B (k 1)−= − λ +  (7) 

and 

TQx(k) A (k 1) (k)+ λ + = λ , (8) 

where n(k)λ ∈  is the co-state vector. 
 Substituting (k 1)λ +  from (8) in (7) and then in 
(1), the equations (1) and (8) can be expressed as 

(k 1) G (k)γ + = γ ,    2nx(k)
(k)

(k)
⎡ ⎤

γ = ∈⎢ ⎥λ⎣ ⎦
, (9) 

where 

T T

T T

A NA Q NA
G

A Q A

− −

− −

⎡ ⎤+ −
= ⎢ ⎥− −⎣ ⎦

 (10) 

with 1 TN BP B−=  and T T 1A (A )− −= . 
 The solution to the system (9) is  

0 0

11 0 12 0 0

21 0 22 0 0

x(k)
(k) (k, k ) (k )

(k)

(k,k ) (k, k ) x(k )
(k, k ) (k, k ) (k )

⎡ ⎤
γ = = Γ γ⎢ ⎥λ⎣ ⎦

Γ Γ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥Γ Γ λ⎣ ⎦ ⎣ ⎦

 (11) 

where (.)Γ  is the transition matrix for G. 
 The next steps are different for the P1 and P2 
problems, depending on terminal conditions: 
- in the P1 problem x(k0) and 

fx(k ) 0=  (12) 

are imposed (λ(k0) and λ(kf) are free); 
- in the P2 problem x(k0) and 

f f(k ) Sx(k )λ =  (13) 

(from the transversallity condition) are imposed 
(x(kf) and λ(k0) are free). 
 Thus, for the P1 problem, from (11) and (12), it 
results  

0 0(k ) Lx(k )λ = ,  1
12 f 0 11 f 0L (k ,k ) (k , k )−= Γ Γ (14) 

 It was proved (Botan, Ostafi, Onea, 2003) that 
1

12 f 0(k ,k )−Γ is a non-singular matrix if the system (1) 
is completely controllable. Note also that all inverse 
matrices which appear in the following equations are 
non singular. 
 Therefore, 0(k )γ  is known and the solution (11) 
can be obtained. Then it is possible to express u(k) 
in terms of 0x(k ) , starting from (7). This expression 
offers the open loop control u(k) and it is the usual 
solution presented in the literature. It is possible to 
obtain the feedback control u(x(k)) if x(k0) is 
expressed in terms of x(k). The formula is 
complicated and contains the inverse of a time 
variant matrix and this fact introduces great 
difficulties in the real time implementation. 
 A similar procedure can be used for the P2 
problem, but in this case it is preferred another way, 
namely imposing (k) R(k)x(k)λ = , where R(k)  is 
obtained as a solution to a Riccati difference 
matriceal equation. The difficulties which arise in 
this case were mentioned above. 

3 MAIN RESULTS 

A significant simplification is obtained if we 
perform a change of variables: 

(k) U (k)γ = ρ  (15) 

with 

I 0
U

R I
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,     1 I 0
U

R I
− ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 (16) 

where I is the nxn identity matrix and R is a 
symmetrical nxn matrix. According to (15) and (16), 
the new system is 

(k 1) H (k)ρ + = ρ , (17) 

where 
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11 121

21 22

H H
H U GU

H H
− ⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

 (18) 

and 

x(k)
(k)

v(k)
⎡ ⎤

ρ = ⎢ ⎥
⎣ ⎦

,     v(k) (k) Rx(k)= λ −  (19) 

Using (10), (16) and (18), it is obtained by 
straightforward computing 

21 11 12 21 22
T T 1

H RG RG R G G R

(I RN)A [R Q A (I RN) RA]− −

= − − + +

= + − − +
 (20) 

If we impose the condition  

T 1R Q A (I RN) RA−= + + , (21) 

then 

21H 0=  (22) 

(Note that (21) is the Riccati matriceal equation for 
the P3 problem). The others matriceal blocks of H 
can be similarly computed. Using in addition (21), 
yields 

1
11 11 12H G G R [I N(I NR) R]A−= + = − + , 

or  

1
11H (I NR) A−= + ,    T

12 12H G NA−= = −   

T T
22 12 22 11H RG G (I RN)A H− −= − + = + =  (23) 

 The solution to the equation (17) is 

0 0

x(k)
(k) (k, k ) (k )

v(k)
⎡ ⎤

ρ = = Ω ρ⎢ ⎥
⎣ ⎦

, (24) 

where (for k0=0) 

11 0 12 0k
0

22 0

(k,k ) (k,k )
(k,k ) H

0 (k, k )
Ω Ω⎡ ⎤

Ω = = ⎢ ⎥Ω⎣ ⎦
 (25) 

is the transition matrix for H. 

 Using (16) and (18), yields 

k k
11 11 22 22

k 1
i k i 1

12 12k 11 12 22
i 0

(k) H , (k) H

(k) H H H H
−

− −

=

Ω = Ω =

Ω = = ∑
 (26) 

From (17), (22), (24) and (26) it results (for k0=0) 

22

22 0 22 0
k

v(k 1) H v(k) and

v(k) (k)v(k ) H v(k )

+ =

= Ω =
 (27) 

 The optimal control results from (7) and (19) 

1 Tu(k) P B [Rx(k 1) v(k 1)]−= − + + +  

Using (17) and (27), we can write 

f su(k) u (k) u (k)= + , (28) 

where uf(k) is a feedback component 

1 T
f 11u (k) P B RH x(k)−= −  (29) 

and us(k) is a supplementary component, given by 

1 T
12 22su (k) P B (RH H )v(k)−= − + , (30) 

with v(k) given by (27). 
 
Remark 1: For the problem with infinite final time, 
the vector u(k) contains only the feedback 
component uf(k) given by (29). 
 In order to establish the supplementary 
component with (30), we have to express v(k0) in 
terms of x(k0), which is the unique known terminal 
condition. 
These operations are different for the two problems. 
 For P1 problem: 
From (15) and (20) one obtain 

0 0v(k ) (L R)x(k )= − . (31) 

Using  1U U−Γ = Ω , we obtain 

11 0 11 0 12 0(k, k ) (k,k ) (k, k )RΓ = Ω −Ω , 

12 0 12 0(k,k ) (k,k )Γ = Ω  

and then, it results from (14) 
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1
12 f 0 11 f 0L (k , k ) (k , k ) R−= Ω Ω +  (32) 

and one obtain from (31) 

f
f

1
0 12 f 0 11 f 0 0

k1
11k 11 0

v(k ) (k , k ) (k ,k )x(k )

H H x(k )

−

−

= −Ω Ω

=
 (33) 

 For P2 problem: 
Using (13) and (19), yields 

f fv(k ) (S R)x(k )= − . (34) 

From (24) and (25) 

f 22 f 0 0v(k ) (k ,k )v(k )= Ω ,  

so that 

1
0 22 f 0 fv(k ) (k ,k )(S R)x(k )−= Ω − . (35) 

We can write from (24) 

f 11 f 0 0 12 f 0 0x(k ) (k ,k )x(k ) (k ,k )v(k )= Ω +Ω  

and using (35), we obtain 

f 0x(k ) Mx(k )= , (36) 

where M is a constant nxn matrix 

1 1
12 f 0 22 f 0 11 f 0M [I (k ,k ) (k ,k )] (k ,k )− −= −Ω Ω Ω  (37) 

Finally, from (35) we can write 

1
0 22 f 0 0v(k ) (k ,k )(S R)Mx(k )−= Ω −  (38) 

Remark 2: Unlike the usual methods which solve the 
P1 and P2 problem by different ways, a symmetrical 
approach was proposed for the two problems. A 
similar equation (28) for the optimal control u(k) 
was obtained for the problems P1 and P2. In both 
cases, u(k) contains a feedback component uf(k) (29) 
and a supplementary one us(k) (30). Note that the 
feedback component is the same in P1, P2 and P3 
problems. The component us(k) depends on the 
vector v(k) given by (27). The difference between 
the two problems consists in the expression of the 
initial value v(k0): (33) for the P1 problem  and (38) 
for the P2 problem. 

Remark 3: Some of the above established equations 
are rather complicated, but the most part of the 
computation is performed off-line, in the stage of 
controller design. It is important that the real time 
computing implies only to establish the components 
uf(k) and us(k) given by (29) and (30), respectively. 
Therefore, the real time computing volume does not 
exceed very much the usual state feedback control. 
Moreover, the supplementary component can be 
recurrently computed. Indeed, the vector v(k) which 
appears in (30) can be recurrently computed, as it is 
indicated in (27), with the initialisation v(k0) given 
by (33) or (38) for the P1 and P2 problems, 
respectively. 

4 SIMULATION RESULTS 

Some simulation tests were performed for both P1 
and P2 problems. The following discrete completely 
controllable linear time invariant system was 
considered (the example is applicable to a servo 
drive system): 

1 0.0002 0 0
x(k 1) 0 1 0.04 x(k) 0.0002 u(k)

0 -0.007 0.962 0.0123

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ = +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

The matrices in the criteria (2) and (3) are: 

1 0 0
Q 0 0.5 0

0 0 3.1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
1000 0 0

S 0 1 0
0 0 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, P=p=1 

The Figure 1 and Figure 2 show the behaviour of the 
optimal system in the case of the LQ problem with 
fixed end-point and with free end-point, 
respectively. In the both simulations t0 = 0 s (k0=0), 
tf = 1s (kf=500), the sampling period τ=0.002 s, 
x0=[-2 0 0]T. 
Generally, the optimal control refers to a specified 
time interval. If we are interested to maintain the 
desired state after the final time tf = kfτ, the control 
law u(k) must be changed for k>kf. For the 
mentioned example, the control law was changed as  

1 2 fu(k) x (k) x (k), k k= −α −β > , α>0, β>0 

where x1(k) and x2(k) are the two first state variables 
(corresponding to the position and to the speed, if 
we refer to a servo system) If it is necessary, a 
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discrete low pass filter can be introduced in order to 
avoid an abrupt change of u(k) at the moment kf. 
The behaviours in the case of the change of the 
optimal control law at the moment tf are presented in 

the figures 3 and 4, for P1 and P2 problems, 
respectively (the change of the control law for the 
P2 problem was performed for k>0.8kf). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The behaviour of the optimal system in the case of the LQ problem with free end-point 
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Figure 1: The behaviour of the optimal system in the case of the LQ problem with fixed end-point 
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Figure 3: The behaviour of the optimal system for t<tf and for t>tf (tf=1s) in the case of P1 problem 
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In both simulated cases (for k<kf and k>kf), it was 

calculated 2u (k)∑  and one can remark that this 

value is bigger in the case of the P1 problem (with 
35%, approximately). This result is expected 
because in this case the system is forced to reach the 
imposed final state x(kf)=0. 
 
As it was mentioned, the proposed algorithms can be 
easier implemented as the classical procedure. Using 
the MATLAB functions TIC and TOC, the 
computing time was established. In the case of 
mentioned example, for all operations performed in 
a sampling period, it was obtained about 0.06 ms for 
both P1 and P2 problems in the case of the proposed 
algorithm. In the same conditions, the computing 
time was 2.6 and 4.6 times grater for the P1 and P2 
problem, respectively, if a classical approach was 
used. 

5 CONCLUSIONS 

A comparison between LQ optimal problems with 
fixed end-point and free end-point is performed. 

By comparison with classical procedures, 
thealgorithms proposed in the paper for the both 
problems have advantages and lead to a significant 
decrease of the computing time. 

For the both problems, the proposed approach 
leads to a similar solution: the optimal control 
contains similar feedback and supplementary 
components; the difference is between the last 
components, which involve different initialisation 
for a vector. 
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Figure 4: The behaviour of the optimal system for t<tf and for t>tf (tf=1s) in the case of P2 problem 
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