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Abstract: In this paper, the amplitude and variance-constrained LQG control is considered for a plant given by discrete-
time ARMAX model. The minimization of constrained quadratic cost is approached by Kalman filter, ap-
proximation of the probability density function (pdf) of the state by the Gaussian one and by by tuning of the
Lagrange multiplier. The obtained optimization algorithm is simulated for second-order stable plant model
and different constraints.

1 INTRODUCTION

Control input constraints are ubiquitous in many con-
trol applications, therefore including them in a con-
trol system design is of practical importance. Hard-
limit input constraint and variance or mean-square in-
put constraint are of the most frequent occurrence in
industrial control processes. Neglecting these con-
straints in the controller design may lead to perfor-
mance deterioration or even instability of the control
system. Specifically, the unstable open-loop systems
in the presence of constrained control signal can not
be globally stabilizable.
The problem addressed in this paper is the LQG con-
trol of ARMAX plant in the presence of simultane-
ous amplitude and variance constrained input. The
constrained control problem is approached using the
Kalman filter and approximation of the pdf of the
Kalman filter output by the Gaussian pdf. Analy-
sis and computer simulations of second-order systems
are given.
It should be noted that in the literature the considered
LQG control problem is treated mostly for separate
control constraints, see for example in (Królikowski,
1997, M̈akilä, 1982, M̈akilä et at, 1984, Toivonen,
1983).

2 PROBLEM FORMULATION

The plant is given by a discrete-time ARMAX model

A(q−1)yt = B(q−1)ut + C(q−1)et, (1)

whereA,B, C are polynomials in the backward shift
operatorq−1, i.e.,A= 1 + a1q

−1 + · · · + anaq
−na,

B = b1q
−1 + · · · + bnbq

−nb, C = 1 + c1q
−1 +

· · ·+ cncq
−nc, yt is the output,ut is the control input,

and{et} is assumed to be a sequence of independent
random variables with zero mean and varianceσ2

e .
Consider the stationary cost function

J1 = E[y2
t + quu

2
t ] = σ2

y + quσ
2
u, (2)

where the output and input variancesE[y2
t ],E[u2

t ] are
denoted asσ2

y andσ2
u, respectively, andqu ≥ 0.

The amplitude and variance constraints imposed on
the control input are given as follows

|ut| ≤ α, (3)

σ2
u ≤ c2. (4)

It is known that ARMAX model (1) has an equivalent
innovation state space representation

xt+1 = Fxt + gut + keet, (5)

yt = hTxt + et, (6)

for na = nb = nc = n, where the corresponding vec-
tors areg = (b1, . . . , bn)T , ke = (c1 − a1, . . . , cn −
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an)T , h = (1, 0, . . . , 0)T , and

F =




−a1 1 . . . 0
. . . . . 0

−an−1 . . . . 1
−an . . . . 0


 .

The associated Kalman filter is

x̂t+1 = Fx̂t + gu(t) + kỹt, (7)

wherek is the stationary gain vector, and̃yt = yt −
hT x̂t with varianceσ2

ỹ = hTPkh + σ2
e . The matrix

Pk is the solution to the following Riccati equation

Pk = FPkF
T −

−(FPkh+ σ2
ξkξ)(FPkh+ σ2

eke)
T × (8)

×(hTPkh+ σ2
e)−1 + kek

T
e σ

2
e .

The goal of the control is to minimize the loss func-
tion J1 under the given structure of the controller
specified by the feedback gain vectorf in the case of
the Kalman filter-based controller subject to the am-
plitude and variance constrints (3), (4). Thus, the con-
strained control law has a form

ut = sat(fT x̂t;α), (9)

wheresat denotes a saturation function andx̂t is the
output of the Kalman filter (7).

3 CONTROL UNDER
AMPLITUDE CONSTRAINT

Consider now the cost function

J = E[xT
t Qxxt + quu

2
t ] = trQxRx + quσ

2
u, (10)

whereRx = Extx
T
t , Rx = Rx̂ + Pk andRx̂ =

Ex̂tx̂
T
t . If the weight matrixQx is such thatQx =

hhT then it is easy to see that the cost functionJ (10)
can be considered as an alternative formulation forJ1

(2) w.r.t. minimization.
Using any stabilizing feedback control law, the fol-
lowing stationary equation forRx̂ resulting from (7)
can be derived

Rx̂ = FRx̂F
T + FRx̂ug

T + gRT
x̂uF

T +

+σ2
ugg

T + σ2
ỹkk

T , (11)

whereRx̂u = Ex̂tut. The approximate expressions
for σ2

u andRx̂u under the constrained control law (9)
are (Toivonen, 1983):

σ2
u = σ2g1(σ), Rx̂u = Rx̂fg2(σ), (12)

where
σ2 = fTRx̂f (13)

and g1(σ) = erf(ασ−12−
1
2 ) − ασ−12

1
2 ierfc(α×

×σ−12−
1
2 ), g2(σ) = erf(ασ−12−

1
2 ). Introducing

(12), (13) into (11) one obtains an equation that en-
ables iterative calculation ofRx̂. The corresponding
cost function (10) takes then the form

J(f) = tr(Qx + qug1(σ)ffT )Rx̂ +
+trQxPk = (14)

= Jf (f) + trQxPk.

Using the gradient ofJf (f) the following iterative
algorithm for calculating the feedback gainf in the
control law (9) can be proposed (Tovoinen, 1983)

f (k+1) = f (k) + αks
(k), (15)

whereαk is the step length and

s(k)T = d(k)

(
∂Jf

∂f

)(k)T (
R

(k)
x̂

)−1

(16)

for the gradient given as
(
∂Jf

∂f

)(k)T

= e(k)TR
(k)
x̂ . (17)

Calculations for k-th iteration are performed for
f (k). Expressions ford(k), e(k) are given as follows
(Tovoinen, 1983):

d(k) = −1
2

[(
g1(σ(k)) + h1(σ(k))σ2(k)

)
×

×
(
gTS(k)g + qu

)]−1

,

e(k)T = 2
[(
g1(σ(k)) + h1(σ(k))σ2(k)

)
×

×
(
gTS(k)g + qu

)
f (k)T +

+ g2(σ(k))gTS(k)F+

+ 2h2(σ(k))gTS(k)FR
(k)
x̂ f (k)f (k)T

]
,

whereS(k) is a positive definite solution of the equa-
tion

S(k) = FTS(k)F+Qx+

+f (k)
[(
g1(σ(k)) + h1(σ(k))σ2(k)

)
×

×
(
gTS(k)g + qu

)
+

+ 2h2(σ(k))gTS(k)FR
(k)
x̂ f (k)

]
f (k)T +

+g2(σ(k))(FTS(k)gf (k)T + f (k)gTS(k)F ).

As an initial iteration for calculation ofR(k)
x̂ one can

take for exampleR(0)
x̂ = Σe = kkTσ2

e , and f (0)

wheref (0) results from the standard unconstrained
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solution of LQG problem. It is convenient to take
the same value off (0) as an initial iteration in (15).
It can be shown (Tovoinen, 1983) that there is a con-
stanta > 0 such that for everyαk ∈ (0, a) it holds

Jf (f (k+1)) < Jf (f (k)),

if (∂Jf

∂f )(k)) 6= 0. Thus, the proper choice of stepαk

assures the convergence of the algorithm.

4 CONTROL UNDER VARIANCE
CONSTRAINT

In the case of variance constraint given by the inequal-
ity (4) the associated Lagrangian is

L = J + λ(σ2
u − c2) (18)

or alternatively, the LagrangianL can be rewritten
L = trQxRx + (qu + λ)σ2

u, (19)
whereλ ≥ 0 is the Lagrange multiplier. The Kuhn-
Tucker necessary conditions for the constrained min-
imum ofL are

∂L

∂λ
≤ 0,

∂L

∂f
= 0. (20)

The optimal variance constrained control strategy can
be computed by solving the conditions (20). In prac-
tice, this is done iteratively, as it will be shown in Sec-
tion 5.
The controller to be designed is of the form

ut = fT x̂t, (21)
wheref follows from appropriate Riccati equation
and x̂t is the Kalman filter output. The minimiza-
tion of the Lagrangian (19) w.r.t. all admissibleut is
closely related to the minimization of the loss func-
tion J subject to the constraint (4). Ifu∗t = f∗T x̂t
minimizes the Lagrangian (19), and the inequality
constraint (4) and complementary condition

λ(σ2
u − c2) = 0 (22)

are fulfilled atu∗t , thenu∗t is also an optimal control
signal for variance-constrained control problem.
A major problem is the determination of appropriate
estimates for the Lagrange multiplierλ such that the
conditions (4) and (22) are satisfied foru∗t . In prac-
tice this is done iteratively where each iteration step
k consists of solving a standard LQG problem, i.e.
of minimizing the Lagrangian (19) withλ = λ(k)

and of updating the Lagrange multiplier according to
a suitable algorithm. A realization of this algorithm
needs the appropriate equations forRx̂ andσ2

u, (see
eqns.(25), (26)).
An iterative algorithm for updating the Lagrange mul-
tiplier λ(k) proposed in (M̈akilä, 1982, M̈akilä et at,
1984) can be combined with an algorithm described
in Section 3 to yield the algorithm given below.

5 SIMULTANEOUS AMPLITUDE
AND VARIANCE
CONSTRAINTS

First, it can be observed that the amplitude constraint
α (3) restricts itself the input variance becauseσ2

u ≤
α2. Taking into account (4) and assumingc2 = γσ2

e
one obtains

γ ≤ α2

σ2
e

. (23)

This means that if for a given amplitude constraintα,
a given variance constraint has a formγ ≥ α2

σ2
e

then it
is automatically fulfilled and optimization of the feed-
back gain can only be performed wrt amplitude con-
straint as shown in Section 3. On the other hand, if
for a givenα, a given variance constraint is such that
γ < α2

σ2
e

then a problem may have an optimization
sense according to the problem formulated in Section
2. The proposed algorithm consists of the following
steps:

step 1: Takeλ(0) > 0, h0 = 1, 0 < α0 < 1.

step 2: Calculatef (k) according to the method given
in Section 3 for

q(k)
u = qu + λ(k). (24)

step 3: CalculateR(k)
x̂ according to eqn. (11) taking

into account (12), (13), i.e.

R
(k)
x̂ = FR

(k)
x̂ FT +

+(FR(k)
x̂ f (k)gT + gfT (k)R

T (k)
x̂ FT )×

×g2(σ(k)) + ggT fT (k)R
(k)
x̂ f (k)g1(σ(k)) +

+kkTσ2
ỹ (25)

and

σ2(k)
u = fT (k)R

(k)
x̂ f (k)g1(σ(k)), (26)

σ2(k) = fT (k)R
(k)
x̂ f (k). (27)

step 4: Check out the value (22), i.e.

ψ(k) = λ(k)(σ2(k)
u − c2). (28)

If ψ(k) is sufficiently close to zero, according to
some prescribed criterion then STOP, otherwise go
to step 5.

step 5: If k = 0, then go to step 6, otherwise update
hk (if positive) according to

hk = hk−1 +
∆λ(k) + hk−1∆ψ(k)

∆ψ(k)
, (29)

where∆λ(k) = λ(k) − λ(k−1), ∆ψ(k) = ψ(k) −
ψ(k−1) andψ(k) is given by (27).
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step 6: Update the multiplierλ(k) according to

λ(k+1) = λ(k) + sat(βkhkψ
(k); aλ(k)), (30)

where0 < a < 1.

step 7: Calculateβk+1 according to

βk+1 = βk(γ0 − βk)(γ0 − 1)−1, (31)

whereγ0 > 1. Takek → k + 1 and go to step 2.

It should be noted that in the case of tight constraints
the problem may not have a solution, i.e. the set of
feedback gains for which the cost function has finite
values can be empty.

6 SIMULATION RESULTS

Consider the ARMAX plant described by the fol-
lowing stable modelA = 1 + 1.8q−1 − 0.9q−2,
B(q−1) = q−1, C(q−1) = 1 where the noise vari-
ance is set atσ2

e = 1.0.
The performance of the iterative algorithm given in
Section 5 is illustrated in Figs.1,2 for constraints
α = 3.0 andc2 = 2.0, initial value qu = 0.01 and
Qx = (1, 0)T (1, 0), λ(0) = 1.0, α0 = 0.5, γ0 = 5.0,
a = 0.06. The corresponding plots forα = 3.0 and
c2 = 3.0 are shown in Figs.3,4. It can be seen that
the input variances attain their constraint values. It is
worthy to notice that the condition (23) is fulfilled for
both values of constraintc2. The plots of signals for
α = 3.0 andc2 = 3.0 are shown in Fig.5, where one
can see that the control signal attains sometimes its
constraint.

7 CONCLUSIONS

The algorithm solving the amplitude and variance-
constrained LQG control problem is given for plant
described by ARMAX model. For unstable open-
loop systems there is a lower bound of variance con-
straint which can be imposed on the control signal to
preserve closed-loop stability, however imposing hard
amplitude constraint is not allowable.
For the self-tuning control implementation the esti-
matesF̂t, ĝt

, k̂e,t can be easily obtained from on-
line estimation of the ARMAX model parameters
a1, . . . , ana, b1, . . . , bnb, c1, . . . , cnc.
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Figure 1: Plots of feedback gainsf1, f2; c2 = 2.0
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Figure 2: Plots of the weightq(k)
u and varianceσ2

u; c2 = 2.0
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Figure 3: Plots of feedback gainsf1, f2; c2 = 3.0
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Figure 4: Plots of the weightq(k)
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Figure 5: Plots of signals forc2 = 3.0 andα = 3.0
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