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Abstract: The Texas Coastal Ocean Observation Network (TCOON) consists of more than 50 data gathering stations 
located along the Texas Gulf coast from the Louisiana to Mexico borders. Data sampled at these stations 
include: precise water levels, wind speed and direction, atmospheric and water temperatures, barometric 
pressure, and water currents. The measurements collected at these stations are often used in legal 
proceedings such as littoral boundary determinations; therefore data are collected according to National 
Ocean Service standards. Some stations of TCOON collect parameters such as turbidity, salinity, and other 
water quality parameters. All data are transmitted back to Texas A&M University Corpus Christi (A&M-
CC) at multiples of six minutes via line-of-sight packet radio, cellular phone, or GOES satellite, where they 
are then processed and stored in a real-time, web-enabled database. TCOON has been in operation since 
1988. This paper describes a software project based upon signal processing techniques to be utilized with 
the TCOON meteorological database to detect spikes in water level.  Water level readings are frequently 
victim to abnormal water levels caused by ship wakes, affected equipment scrambled by thunder, or 
corrupted by transmission errors.  Since these water levels are the bases for a number of research 
calculations, such as, oil-spill response, navigation safety, environmental research, and recreation, it is 
essential to be able to make these water level data as correct and spike free as possible. 

1 INTRODUCTION 

The TCOON filter system consists of two 
implementations of spike detection algorithms 
which accept parameters from the TCOON 
meteorological database or series of data and 
return the location of spikes within the processed 
series, since spikes represent inaccurate data it is 
imperative to remove this data from our research 
database (Krukowski 2000, Michaud, 2001).  We 
discuss these methods below and then provide a 
comparison of results.  

2 FINITE IMPULSE RESPONSE 
METHOD 

2.1 Theory 

Digital filters can have an 'arbitrary response': 
meaning, the attenuation is specified at certain 
chosen frequencies, or for certain frequency bands.  
These filters are also characterized by their 
response to an impulse: a signal consisting of a 
single value followed by zeroes.  The impulse 
response is an indication of how long the filter 
takes to settle into a steady state: it is also an 
indication of the filter's stability - an impulse 
response that continues oscillating in the long term 
indicates the filter may be prone to instability.  The 
impulse response defines the filter just as well as 
does the frequency response.  Output from a digital 
filter is made up from previous inputs and previous 
outputs, using the operation of convolution. As 
indicated in the following equation, two 
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convolutions are involved: one with the previous 
inputs, and one with the previous outputs. In each 
case the convolving function is called the filter 
coefficients.  

Since filtering is a frequency selective 
process, the important thing about a digital filter is 
its 
 
 
 

 
 
 
frequency response. The filter's frequency response 
can be calculated from its filter equation as 
follows: 
 
 
 
 
 

The frequency response H(f) is a continuous 
function, even though the filter equation is a 
discrete summation.  While it is nice to be able to 
calculate the frequency response given the filter 
coefficients, when designing a digital filter we 
want to do the inverse operation: that is, to 
calculate the filter coefficients having first defined 
the desired frequency response. So we are faced 
with an inverse problem.  Sadly, there is no general 
inverse solution to the frequency response 
equation.  To make matters worse, we want to 
impose an additional constraint on acceptable 
solutions. Usually, we are designing digital filters 
with the idea that they will be implemented on 
some piece of hardware. This means we usually 
want to design a filter that meets the requirement 
but which requires the least possible amount of 
computation: that is, using the smallest number of 
coefficients. So we are faced with an insoluble 
inverse problem, on which we wish to impose 
additional constraints.  This is why digital filter 
design is more an art than a science: the art of 
finding an acceptable compromise between 
conflicting constraints.  If we have a powerful 
computer and time to take a coffee break while the 
filter calculates, the small number of coefficients 
may not be important - but this is a pretty sloppy 
way to work and would be more of an academic 
exercise than a piece of engineering (Kuo, 2001). 

It is much easier to approach the problem of 
calculating filter coefficients if we simplify the 
filter equation so that we only have to deal with 

previous inputs (that is, we exclude the possibility 
of feedback). The filter equation is then simplified 
as follows: 

 
 
If such a filter is subjected to an impulse (a 

signal consisting of one value followed by zeroes) 
then its output must necessarily become zero after 
the impulse has run through the summation. So the 
impulse response of such a filter must necessarily 
be finite in duration. Such a filter is called a Finite 
Impulse Response filter or FIR filter. The filter's 
frequency response is also simplified, because all 
the bottom half goes away, as indicated in the 
following equation: 

 

 
It so happens that this frequency response is 

just the Fourier transform of the filter coefficients.  
The inverse solution to a Fourier transform is well 
known: it is simply the inverse Fourier transform. 
So the coefficients for an FIR filter can be 
calculated simply by taking the inverse Fourier 
transform of the desired frequency response.   

To avoid having many small coefficients, we 
can truncate or discard the small valued 
coefficients.  Truncating the filter coefficients 
means we have a truncated signal, and a truncated 
signal has a broad frequency spectrum.  So 
truncating the filter coefficients means the filter's 
frequency response can only be defined coarsely.  
Luckily, there is a way to sharpen up the frequency 
spectrum of a truncated signal, by applying a 
window function. So after truncation, we can apply 
a window function to sharpen up the filter's 
frequency response.  This provides us with an even 
better algorithm for calculating FIR filter 
coefficients, the so-called window method of filter 
design. 

FIR filter coefficients can be calculated using 
the window method: 

• pretend we don't mind lots of filter 
coefficients  

• specify the desired frequency response 
using lots of samples  

• calculate the inverse Fourier transform  
• this gives us a lot of filter coefficients  
• so truncate the filter coefficients to give 

us less  

Output 
             Previous input       previous output 

Y[n] = ∑ c[k] * x[n-k] + ∑ d[j] * y[n-j]  (1) 

           ∑ c[k] * exp(-2Πjk(f∆)) 
H(f) = -------------------------           (2) 
         1 - ∑ d[j] * exp(-2Πjk(f∆)) 

Y[n] = ∑ c[k] * x[n-k] (3) 

           ∑ c[k] * exp(-2Πjk(f∆)) 
H(f) = -------------------------           (4) 
         1 - ∑ d[j] * exp(-2Πjk(f∆)) 
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• apply a window function to sharpen up 
the filter's frequency response  

• then calculate the Fourier transform of the 
truncated set of coefficients to see if it 
still matches our requirement  

 
However, no matter how many filter 

coefficients you throw at it, you cannot improve on 
a fixed window's attenuation. This means that the 
art of FIR filter design by the window method lies 
in an appropriate choice of window function.  For 
example, if you need an attenuation of 20 dB or 
less, then a rectangle window is acceptable. If you 
need 43 dB you are forced to choose the Hamming 
window, and so on.  Sadly, the better window 
functions need more filter coefficients before their 
shape can be adequately defined. So if you need 
only 25 dB of attenuation you should choose a 
triangle window function which will give you this 
attenuation: the Hamming window, a form of 
generalized cosine window,  for example, would 
give you more attenuation but require more filter 
coefficients to be adequately defined - and so 
would be wasteful of computer power.   
 
 
 
 
 
 
The art of FIR filter design by the window method 
lies in choosing the window function which meets 
your requirement with the minimum number of 
filter coefficients.  You may notice that if you want 
an attenuation of 30 dB you are in trouble: the 
triangle window is not good enough but the 
Hamming window is too good (and so uses more 
coefficients than you need). The Kaiser window 
function is unique in that its shape is variable. A 
variable parameter defines the shape, so the Kaiser 
window ,described mathematically below, is 
unique in being able to match precisely the 
attenuation you require without overperforming.   

 
FIR filter coefficients can be calculated using 

the window method.  But the window method does 
not correspond to any known form of optimization. 
In fact it can be shown that the window method is 

not optimal - by which we mean, it does not 
produce the lowest possible number of filter 
coefficients that just meets the requirement.  The 
art of FIR filter design by the window method lies 
in choosing the window function which meets your 
requirement with the minimum number of filter 
coefficients.  If the window method design is not 
good enough we have two choices: 
 

• use another window function and try 
again  

• do something clever  
 
The Remez Exchange algorithm is something 

clever. It uses a mathematical optimization 
method.  Thus, using the Remez Exchange 
algorithm to design a filter we might proceed 
manually as follows: 
 

• choose a window function that we think 
will do  

• calculate the filter coefficients  
• check the actual filter's frequency 

response against the design goal  
• if it overperforms, reduce the number of 

filter coefficients or relax the window 
function design  

• try again until we find the filter with the 
lowest number of filter coefficients 
possible  

In a way, this is what the Remez Exchange 
algorithm does automatically. It iterates between 
the filter coefficients and the actual frequency 
response until it finds the filter that just meets the 
specification with the lowest possible number of 
filter coefficients. Actually, the Remez Exchange 
algorithm never really calculates the frequency 
response: but it does keep comparing the actual 
with the design goal.   

The Remez method produces a filter which 
just meets the specification without 
overperforming. Many of the window method 
designs actually perform better as you move 
further away from the passband: this is wasted 
performance, and means they are using more filter 
coefficients than they need. Similarly, many of the 
window method designs actually perform better 
than the specification within the passband: this is 
also wasted performance, and means they are using 
more filter coefficients than they need. The Remez 
method performs just as well as the specification 
but no better: one might say it produces the worst 
possible design that just meets the specification at 
the lowest possible cost (Proakis, 2003).  

wh[i] = 0.54 – 0.46 cos(2∏i / M)     (5) 
 
        The Hamming window.  These windows run from i = 

0 to M, for a total of M+1 points. 

                     _________ 
              I0(Πα√1 – (2k/n-1)2)        if 0≤k≤n  (6) 
                              I0(Πα) 
wk =                     
                           0                    otherwise 
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2.2 Applying The Theory To 
TCOON Database Data 

TCOON data is recorded with a frequency of one 
value every six minutes (or 0.00278 values a 
second), so 10 consecutive values equal one hour’s 
worth of data.  Utilizing a filter design software 
system which is an implementation of the Remez 
Exchange Algorithm we determined a set of 
coefficients to operate over 10 consecutive data 
points that occur every six minutes (a frequency of 
0.00278 Hz), that is, one hour of TCOON water 
level data (Sadovski, 2004, Bowles, 2004, Sadovski, 
2003, Steidley, 2004) .    

These coefficients are multiplied against a 
sliding window applied to the data series.  The 
result of the filter for a given value is the sum of 
the current value times the first coefficient, plus 
the value before the current value times the second 
coefficient, plus the value before the current value 
times the second coefficient, plus the value two 
values before the current value times the third 
coefficient, etc. until all ten coefficients have been 
used (See Figure 1). 

 
Since the filter requires nine preceding values 

to calculate the filtered equivalent for a value, the 
first nine values in a series cannot be processed 
and are “lost” in terms of the resulting series.  That 
is, this process applies a phase shift to the data 
series.  So, the entire filtered data series is reversed 
and run through the FIR filter a second time, with 
the coefficients, in response to this phase shift.  
Because each pass through the filter discards the 
first nine values in a series, the original data series 
loses nine values at both ends.  This means that to 
have at least a single value in the result of the two 
passes through the filter, a minimum of 19 values, 
or one hour and fifty four minutes’ worth of data 
must be provided.  After processing raw data 
(Figure 2) through the FIR filter twice, data that 

behaves normally with respect to preceeding data, 
is minimized, whereas abnormally behaving data 
(Figure 3) remains significant. 

 
Figure 2: Primary Water Level Data 

 
Figure 3: Filtered Data 

 
To remove the data that cannot be spikes from 

the output of filter we compute the root mean 
square value of the filtered data and discard all 
values that are less than or equal to the RMS value 
(Figure 4). The data point with the greatest 
absolute value in each group is labeled a spike 
(Figure 5). 

 
Figure 4: Significant Filtered Values 

 

result = FIR(series) 
result = FIR(reverse result) 
rms = RMS(result) 
for each in result 
 if result{current] is <= rms 
  result[current] = 0 
 if result[current] == 0 and result[spike] != 0 
  push spikes, spike 
  spike = 0 
 if result[current] is > result[spike] 
  spike = current 
return spikes 

Figure 1: Finite Impulse Response Filter Psuedocode 
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Figure 5: Greatest Filtered Values 
 

Since we are detecting only the greatest value 
in each group of potential spikes, two consecutive 
spikes, one spike that is long enough to appear in 
two data acquisition values, or a separate and 
smaller spike that occurs within the shadow of a 
larger spike can escape detection (Figure 6). 

 
 

Figure 6: Primary Water Level Data Including Spikes 
and Potentially “Missed” Spikes 

3 DIFFERENCE EXAMINATION 
METHOD 

The difference examination method is dependant 
upon the second difference of the data series.  As 
the difference between two points represents the 
change between those two points over one 
increment of time (six minutes in the case of this 
data), the second difference represents the change 
between changes.  The algorithm for this method 
first builds a series out of the differences between 
the original series’ values and then builds a third 
series from the differences between the values in 
the second constructed series (Figures 7, 8, 9). 

 
 

Figure 7: Primary Water Level 
 

 
Figure 8: First Differences 

 

 
 

Figure 9 Second Differences 
 

After computing the second differences of the 
original data series, the root mean square of the 
second difference is computed.  Any value greater 
than twice the root mean square of the second 
difference is labeled a spike (Figure 10). 

                                        
RMSdiff

2 = RMS1
2 + RMS1

2    (7)   
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Figure 10: Second Differences Greater than Twice the 
Root Mean Square 

4 COMPARISON OF THE TWO 
SPIKE DETECTION 
METHODS 

To determine the presence of spikes within a data 
set generally requires the use of some subjective 
evaluation procedure, we choose to present the 
data visually in the form of graphs.  Further, since 
the determination of spikes in actual recorded data 
is difficult at best, we chose to evaluate and 
compare the two spike detection methods on 
simulated data.  We created software which 
generates spike data psuedorandomly.  We can, 
therefore, execute both methods on a data series 
simulating the same time and place repreatedly, the 
combined results of which can be used to generate 
some basic statistics. 

In our tests, both detection methods were 
applied to forty different series of data generated 
by our spike simulator.  Each data series had one 
percent of its data converted to spikes.  Table 1 
illustrates the results of the execution. 

5 DISCUSSION 

The spikes between 25 and 34 cm are the largest 
spikes applied to the data and are, therefore, the 
most important spikes to detect.  Spikes between 
15 and 24 cm are desirable to detect, while spikes 
between 5 and 14 cm are negligible and are the 
least important to locate.  A low number of data 
points incorrectly identified as spikes is important, 
since data points identified as spikes will be 
removed from the TCOON database.  Too many 
values incorrectly identified will corrupt the use 
and value of the TCOON database. 

Table 1: Mean Average Spike Detection Results 
 

  FIR DIFF FIR % DIFF % 

Number of 
Data Points 

7440 7440 - - 

Number of 
Spikes 
Found 

70.35 172.03 - - 

25 cm to 34 
cm Spikes 
found 

23.00 24.52 93.08 99.46 

25 cm to 34 
cm Spikes 
missed 

 1.65   0.12   6.92   0.54 

15 cm to 24 
cm Spikes 
found 

22.57 24.38 90.40 97.45 

15 cm to 24 
cm Spikes 
missed 

  2.42   0.62   9.60   2.55 

  5 cm to 14 
cm Spikes 
found 

20.35   3.73 81.95 14.55 

  5 cm to 14 
cm Spikes 
missed 

  4.58 21.20 18.05 85.45 

Incorrectly 
identified 
spikes 

  4.42 119.40   6.30 69.42 

5.1 Finite Impulse Response 
Method 

The results depicted in Table 1 indicate that the 
Finite Impulse Response Method behaves fairly 
well.  Although an average of 93.08% of the major 
spikes were found, it is likely that many of the 
major spikes that were missed were hidden by 
proximity to other, larger spikes.  Repeated 
applications of this method to the same data series, 
with detected data spikes removed, will 
cumulatively improve its performance.  Similarly, 
this method performed well, but not excellently, 
when detecting smaller spikes (those between 5 
and 24 cm), performance that is likely to 
cumulatively improve over repeated applications.  
The number of data spikes incorrectly identified as 
spikes was low: 6.3% of the spikes it found were 
not spikes; and average of 4.42 incorrect spikes 
were found in an entire month’s worth of data 
(Bowles, 2004).  

5.2 Difference Examination 
Method 

As indicated in Table 1, the Difference 
Examination Method does not perform as well as 
the FIR method.  This method found nearly all of 

ICINCO 2005 - SIGNAL PROCESSING, SYSTEMS MODELING AND CONTROL

308



the major (99.46%) spikes and significant 
(97.45%) spikes.  It missed a large majority 
(85.45%) of the small spikes.  This method 
detected nearly 7% more spikes 15 cm or greater 
that the FIR method.  However, this method falters 
severely in its error rate.  70% of the spikes 
detected by this method were incorrect.  Although 
this would result in only 1.6% of the data set being 
falsely identified as a spike, we feel this is a 
dangerously high error rate.  

 
Figure 11: Simulated Water Level Data for 24 Hour 
Period 

6 CONCLUSIONS 

Two different software methods for detecting 
spikes in water level data have been implemented.  
The first of these makes use of a finite impulse 
response filter.  A data series is passed through the 
filter forwards, then backwards; this process 
minimizes values within the series that appear 
normal with respect to the previous hour’s values 
while exacerbating values that are not similar to 
the previous hour’s values.  The remaining 
significant values are then examined and the 
largest value within each set of contiguous 
significant values is labeled as a spike.  The second 
method deals with second differences of the data 
series being examined.  In this method, values that 
are significantly larger than the second derivative 
of the recorded data is labeled a spike.  For our 
purposes the FIR method outperforms the second 
differences method. 
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