
ACHIEVING SUPPLEMENTARY REQUIREMENTS USING
ASPECT-ORIENTED DEVELOPMENT

Julie Vachon and Farida Mostefaoui
DIRO, University of Montreal

Montreal (Quebec), Canada

Keywords: Aspect-oriented development, supplementary specifications, design pattern, requirement modeling.

Abstract: The problem of attempting to work supplementary requirements (software quality attributes and constraints)
only around the end of the development phase is frequent and quite risky for there is little chance the final
architecture will be able to meet these quality requirements without important modifications. Supplementary
specifications capture the requirements which are not defined using the use case model. They are some kind
of crosscutting concerns which one would like to plug in at some later stage of the design process (e.g. after
prototyping use cases). The connection with the aspect notion suggests that aspect-oriented techniques may
here be called upon advantageously. This article presents an aspect-oriented methodology to support the devel-
opment of supplementary specifications in UML. The use-case analysis is adapted to take care of crosscutting
requirements and a pattern is proposed for the elaboration of aspect-oriented designs.

1 INTRODUCTION

Business software specification documents often con-
tain numerous satellite requirements which complete,
surround or constrain the realization of the software
uses cases. These requirements may concern software
qualities such as performance or reliability. They
may also describe the various business rules which
the application must obey. Current incremental and
iterative development approaches generally focus on
analysis, design and implementation of use cases i.e.
main system services. It is often only by the end
of the development process, indeed sometimes just a
few hours before the delivery day, that developers re-
ally start worrying about those other requirements, yet
recorded in a special document called Supplementary
Specifications. This document intends to describe
(1) quality goals, (2) design constrains and (3) var-
ious crosscutting functionalities. At this stage, it is
really a matter of chance if these specifications can
still be satisfied. But if the whims of fate are bad,
it might become a feat to modify the system archi-
tecture and detailed design to satisfy these additional
requirements unfortunately relegated to a position of
secondary importance.

To overcome this problem, this paper introduces
a new development approach based on the aspect-

oriented paradigm and using the UML for modeling.
Affording the same advantages as object-oriented dis-
ciplines, the aspect-oriented paradigm allows bring-
ing to the highest rank all these “non use-case” con-
cerns which crosscut the various system modules im-
plementing main functional requirements.

By their global nature, supplementary requirements
can relevantly be considered as crosscutting concerns.
On one hand, they should be documented early in the
analysis phase and never be neglected during develop-
ment. On the other hand, since they affect many use
cases, it is not a good idea to start their design first!
Moreover, technical and algorithmic solutions needed
to realize these requirements are often not clearly
identified at the beginning of the project. However,
once use cases design have mainly been taken care
of, one should ideally be able to readily plug in a
component implementing some given supplementary
requirement without needing to modify the architec-
ture. With the same ease, one should be able to retract
or replace these components.

A software system may consist of several kinds
of additional concerns: business logic, performance,
data persistence, logging and debugging, authenti-
cation, security, etc. Aspect-oriented programming
(AOP), as introduced in (Kiczales et al., 1997), pro-
vides explicit support for dealing with these crosscut-

584
Vachon J. and Mostefaoui DIRO F. (2004).
ACHIEVING SUPPLEMENTARY REQUIREMENTS USING ASPECT-ORIENTED DEVELOPMENT.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 584-587
DOI: 10.5220/0002657005840587
Copyright c© SciTePress



ting concerns scattered throughout the software sys-
tem and which often result in code tangling problems.
Hence, our development approach is taking advantage
of aspect-oriented principles and constructs to facili-
tate the “in-time” flexible realization of supplemen-
tary requirements, not only at the programming level,
but as soon as the analysis begins.

This work-in-progress paper shows the relevance of
aspect-oriented development for these “non use-case
requirements”. Motivations, strategies and aspect-
oriented design solutions are presented. We propose
a design pattern for aspect weaving and explain our
methodology on a small case study.

Former Work
Various approaches have been proposed to intro-

duce aspect-oriented concepts into UML. Some of
them suggest adding aspect-oriented concepts di-
rectly in the meta-model (Suzuki and Yamamoto,
1999). Other achieve aspect-oriented modeling by
introducing a new profile in UML (Aldawud et al.,
2001). In (Clarke and Walker, 2001), elements are
decomposed into special packages to be later weaved
with others using composition relationships. Authors
in (Stein et al., 2002) propose a UML based design
language dedicated to the representation of AspectJ’s
specific constructs.

Closer to our view of modeling, Jacobson explains
in (Jacobson, 2003) how aspects can be modeled as
extension use cases and how the base concepts of
AOP have their equivalents in use case related ele-
ments. Our goal is to go further in this direction and to
show how UML can be put to work to guide and docu-
ment the development of aspect-oriented systems, es-
pecially those ones having to deal with supplemen-
tary requirements. We propose a modeling approach
based, on the current UML notation. Contrarily to
former solutions, few extensions are here required to
adapt UML to aspect-oriented analysis and design,
and those introduced are very natural.

2 ASPECT-ORIENTED
DEVELOPMENT OF
SUPPLEMENTARY
REQUIREMENTS

Use Case View
To illustrate our approach, we refer the reader to the
well-known ATM (Automated Teller Machine) exam-
ple. The ATM requires functionalities (logging, se-
curity, etc.) which can’t be formulated as standard
use cases for they are not main services but rather
common sub-fonctionalities required by them. Fig-
ure 1 gives an overview of these supplementary re-

quirements.

Table 1: Supplementary spec. for the ATM
Functionality :

- Logging : Log all deposit and withdraw trans-
actions to persistent storage on the central server.

- Security : Each access to an account requires
client authentication.
Reliability:

- Recoverability : If there is a failure, store and
forward operations in order to complete the trans-
action anyway and recover later on.
Performance : ...

As commonly agreed, use cases are not appropri-
ate to capture these quality goals, design constraints
or global requirements applicable to the whole sys-
tem application. The Supplementary Specifications
documents those requirements apart, for they would
otherwise be sparsely described in uses cases.

A better idea, however, consists in turning these
supplementary requirements into special use cases.
As mentioned in (Malan and Bredemeyer, 2001), non-
functional requirements are often “not specified in
time”, “compromised without attention to the trade-
offs involved”, and/or “specified in loose, fuzzy terms
that are open to wide ranging and subjective interpre-
tation”. Transforming supplementary requirements
into use cases, (thus describing the functionalities re-
alizing them), allows bringing them back to the high-
est ranking (i.e. use case level) and entails developers
to handle them in a more disciplined way.

extension point
logPointCut

extension point
logPointCut

<<aspect>>
LoggingDeposit

Transfer funds

Withdraw

<<extend>>(logPointCut)

<<extend>>(logPointCut)

Client

Figure 1: ATM logging expressed as a use case.

In the ATM example, the Logging supplementary
requirement can be turned into a use case, as shown
by Figure 1. To model the crosscutting behavior of
the Logging functionality and to show its insertion
into both use cases Deposit and Withdraw, the UML
« extend » relationship is used. Hence these base
use cases are implicitly modified, in a modular way, at
indicated extension points, and this, without them be-

ACHIEVING SUPPLEMENTARY REQUIREMENTS USING ASPECT-ORIENTED DEVELOPMENT

585



ing aware of the extension. The following correspon-
dence therefore becomes obvious for those familiar
with AOP: extended use cases can be implemented as
aspects while extension points can be assimilated to
pointcuts.

This way, the Logging requirement can be mod-
eled as an independent aspect weaving into the rest
of the design. A design pattern, called “Aspect-
Weaving” (AW), is proposed for this modeling. It per-
tains to how aspects are structured and how they be-
have (weaving). The ATM example and its Logging
requirement are modeled to illustrate aspect-oriented
analysis and design based on the AW pattern.

Static View
Consider the Logging use case of the ATM ex-

ample. Figure 2 shows how the Logging requirement
can be integrated into the UML class structure of the
ATM, following aspect-oriented principles.

ApplicationInterface

+withdraw(m:Integer)
+deposit(m:Integer)
+getBalance():Integer()

+balance : Integer
+no: String

Account

AspectLogging
<<aspect>>

<<crosscut>>

<<before>>

+ writeOp(op:String, a:Account, m:Integer, d:Date)
+ deleteOp(op:String, a:Account, m:Integer, d:Date)
+ displayOp(d:Date)

LogFile

+ logPointCut(op:String, a:Account, m:Integer)

+ <<call>> Account.withdraw()
+ <<call>> Account.deposit()

<<pointcut>>
LogPointCut

Figure 2: Class diagram for the ATM.

In this model, (1) the behavior of the Logging use
case is captured by a class named AspectLogging
with stereotype «aspect » while (2) the exten-
sion point logPointCut is modeled by a class
interface named LogPointCut with stereotype
«pointcut ». According to the use case view
(Figure 1), the extension point logPointCut ref-
erences a set of locations within the behavioral se-
quence of use cases Withdraw and Deposit. A
location is usually related to an event (e.g. method
call) in a scenario. These locations are called joint
points and are here listed in the middle compart-
ment of the LogPointCut interface. A depen-
dency relationship, labeled « crosscuts », relates1

1The orientation of the « crosscuts » dependency is
significant, for it illustrates the fact that an aspect can be
plugged “in or out” without modifying the specification of
the crosscut classes.

the « pointcut » interface to each of the classes
which may activate one of its joint points. In the
ATM use case model, the logPointCut exten-
sion point references locations where withdraw and
deposit operations are executed on accounts. To
mark this dependency, the LogPointCut interface
has a « crosscuts » relationship to the Account
class implementing these operations.

The LogPointCut interface also contains an op-
eration named logPointCut whose implementa-
tion must describe the behavior to be inserted at joint
points i.e. at special locations, within the Withdraw
and Deposit use cases, where operations must be
logged. In our example, the AspectLogging class
implements the LogPointCut interface and will
thus provide the code, called an advice, to be executed
at the given joint points. A realization relationship re-
lates the « aspect » class to the « pointcut »
interface. It has one of the following stereotypes,
« before », « after », or « around », accord-
ing to whether the advice must be executed before,
after or instead of a joint point when it is reached. As
specified on Figure 2, withdraw and deposit op-
erations on Account objects are recorded into the
LogFile just before being executed.

We generalize this modeling approach and sum-
marize it in a design pattern called “Aspect-
Weaving”(AW). Figure 3 shows the general structure
of the AW pattern which has been applied to the ATM
example. The next section explains how the pattern
behaves.

+ <<call>> CrosscutClass1.m1()
+ <<execute>> CrosscutClass2.m2()

PointCut_X
<<pointcut>>

+ pointCut_X()

Aspect_X
<<aspect>>

realization stereotypes: 
<<after>>, <<before>>, <<around>>

+ m2()

CrosscutClass2CrosscutClass1

+ m1()

<<after>>

<<crosscuts>><<crosscuts>>

Figure 3: Structure of the Aspect-Weaving pattern.

Dynamic View
The sequence diagram of Figure 4 illustrates

the weaving of the Logging use case into the
Withdraw use case of the ATM example. It pro-
poses a compiler-independent representation of this
weaving into a withdraw scenario. As shown, the sce-
nario starts when the ApplicationInterface
object sends a withdraw request (message 1) to the
Account object. This withdraw call flags a

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

586



:ApplicationInterface :AspectLogging :LogFilea:Account

<<resume>>

1.1.1 writeOperation("withdraw", a, m, date)

1.1 logPointCut("withdraw", a, m)

1. withdraw(m) !

Figure 4: Sequence diagram describing a withdraw scenario of the ATM.

joint point declared in the LogPointCut inter-
face (c.f. Figure 2). The joint point is repre-
sented by an exclamation mark on the sequence di-
agram. We therefore know that some advice call
has been woven before, after and/or around the join
point. As specified in the static view, the ad-
vice logPointCut("withdraw", a, m) im-
plemented by AspectLogging is first executed
(message 1.1): the withdraw operation is recorded
in the LogFile object (message 1.1.1). The
Account object can then resume its activities and
execute its withdraw method. Since there is no
more advice attached to the reached joint point,
the procedure call gives back control to its initiator
ApplicationInterface.

3 CONCLUSIONS

This project proposes a UML development methodol-
ogy based on the aspect-oriented paradigm. It takes
into account the importance of supplementary re-
quirements by considering them as special extension
use cases and by guiding their realization through
aspect-oriented design.

First attempts to integrate aspects into software
were made in programming languages (AspectJ, Hy-
perJ and so on). Then, researchers took interest in
ways to elaborate software designs which could eas-
ily map to aspect-oriented programs. Our belief is
that aspect should be available from the very begin-
ning, that is right from the analysis phase. Hence-
forth, supplementary requirements, which can often
be formulated as extension use cases comparable to
aspects, can be integrated into the rest of the system
and their implementation can naturally be realized
through aspect-oriented mechanisms. The Aspect-
Weaving pattern presented in this paper is part of
wider development process covering all phases from

analysis to implementation.
Further work will be concerned with the model-

ing of a complete case study. We plan to evaluate
and compare the utility and efficiency of our aspect-
oriented approach regarding the development of dif-
ferent kinds of supplementary requirements (e.g. re-
lated to concurrency, security, etc.). The relevance of
the aspect-oriented approach for software verification
is also under study.

REFERENCES

Aldawud, O., Elrad, T., and Bader, A. (2001). A uml profile
for aspect-oriented software development. In OOP-
SLA’01 (Workshop on AOP).

Clarke, S. and Walker, R. (2001). Composition patterns: an
approach to designing reusable aspects. In Proc. of the
23rd Int. Conf. on Software Engineering, pages 5–14.

Jacobson, I. (2003). Use cases and aspects – working seam-
lessly together. J. of Object Technology, 2(4):7–28.

Kiczales, G. et al. (1997). Aspect-oriented programming.
In Proc. of ECOOP’97), volume 1241 of LNCS, pages
220–242.

Malan, R. and Bredemeyer, M. (2001). Defining non-
functional requirements. www.bredemeyer.com/-
pdf_files/NonFunctReq.pdf.

Stein, D., Hanenberg, S., and Unland, R. (2002). A uml-
based aspect-oriented design notation for aspectj. In
Proc. of the 1st Int. Conf. on AOSD, pages 106–112.

Suzuki, J. and Yamamoto, Y. (1999). Extending uml with
aspects: Aspect support in the design phase. In
ECOOP’99 (Workshop on AOP).

ACHIEVING SUPPLEMENTARY REQUIREMENTS USING ASPECT-ORIENTED DEVELOPMENT

587


