
MAJORITY VOTING IN STABLE MARRIAGE PROBLEM WITH 
COUPLES 

Using a monotone systems based tournament approach 

Tarmo Veskioja, Leo Võhandu 
Institute of Informatics, Tallinn Technical University, Raja 15, Tallinn, 12618, Estonia 

Keywords: GDSS, stable matching, voting, tournament, monotone systems, intransitivity 

Abstract: Providing centralised matching services can be viewed as a group decision support system (GDSS) for the 
participants to reach a stable matching solution. In the original stable marriage problem all the participants 
have to rank all members of the opposite party. Two variations for this problem allow for incomplete 
preference lists and ties in preferences. If members from one side are allowed to form couples and submit 
combined preferences, then the set of stable matchings may be empty (Roth et al., 1990). In that case it is 
necessary to use majority voting between matchings in a tournament. We propose a majority voting 
tournament method based on monotone systems and a value function for it. The proposed algorithm should 
minimize transitivity faults in tournament ranking.

1 INTRODUCTION 

Stable marriage problem has attracted a considerable 
amount of interest after the problem was first 
formulated by Gale and Shapley (Gale et al., 1962). 
Many centralized two-sided markets can be 
described as variants of the stable marriage problem.  

An instance of the original stable marriage 
problem (SM) consists of N men and N women, 
with each person having a preference list that totally 
orders all members of the opposite sex. A man and a 
woman form a blocking pair in a matching if both 
prefer each other to their current partners. A 
matching is stable if it contains no blocking pair. In 
every instance of SM there is at least one stable 
matching (Gale et al., 1962). 

A variant of SM allows for incomplete 
preferences. This problem is denoted SMI (Stable 
Marriage with Incomplete preferences). The 
definition of a blocking pair is extended, so that each 
member of the pair prefers the other instead of the 
current partner or is currently single and acceptable. 
Every instance of SMI has at least one stable 
matching, although it may not always be a maximum 
cardinality matching. If a player is single in one 
stable matching, then that player is single in any 
other stable matching. 

Another variant of SM allows for ties in the 
preferences. This problem is denoted SMT (Stable 
Marriage with Ties).  In this case the definition of 
stability needs to be extended. A man and a woman 
form a blocking pair if each strictly prefers the other 
to his/her current partner. A matching without such a 
blocking pair is called weakly stable. Every instance 
of SMT has at least one stable matching. 

A variant of SM that allows for both incomplete 
preferences and ties in the preferences is denoted 
SMTI. In this problem there always exists a weakly 
stable matching (Iwama et al., 1999), but the sizes of 
stable matchings may vary. Finding maximum 
cardinality matching in SMTI is NP-complete 
(Iwama et al., 1999) and even the approximation is 
APX-hard (Halldórsson et al., 2002). 

A hospital-residents assignment (HR), 
sometimes also called stable admissions problem or 
many-to-one matching, is a variant of SM, where 
many residents can be assigned to one hospital and 
one resident can fill in only one vacancy. HR 
problem can also have relaxations of preferences, 
allowing for incomplete preferences and/or ties. 
These subproblems are denoted HRI and HRTI 
accordingly. Most of the properties of SM, SMI and 
SMTI carry over to the HR, HRI and HRTI 
problems and algorithms. 

Matching is a majority assignment (best-voted 
matching) if there is no other matching that is 
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preferred by a majority of participants to the original 
matching. Gärdenfors (Gärdenfors, 1975) observed 
that, when the preferences are strict, the set of 
majority assignments comprises the set of stable 
matchings, thus showing that the notion of majority 
assignment is a relaxation of stability (Klijn et al., 
1999). Weakly stable matching is a matching, 
possibly having a blocking pair undermining the 
stability of a matching, but this blocking pair is not 
credible in the sense that one of the partners may 
find a more attractive partner with whom he forms 
another blocking pair for the original matching 
(Klijn et al., 1999). In other words, Klijn and Masso 
define an individually rational matching to be 
weakly stable if every blocking pair is - in the sense 
discussed above - not credible. Clearly, weak 
stability is also a relaxation of stability. 

Many markets also require taking into account 
some additional constraints - for example in HR a 
pair of residents may have formed a couple and 
prefer to find a placement at the same hospital, or at 
least work in the same city. In this case, the couple 
submits rank ordered preferences over acceptable 
pairs of hospitals. After acceptable pairs of hospitals 
the couple can give rank ordered preferences over 
single pairs of hospital – couple member, where one 
of the members of the couple is left without a pair. 
In this article these mentioned constraints will be 
called couple constraints.  

Matching markets with couple constraints may 
not have any stable matchings (Roth et al., 1990). In 
that case it is natural to use majority voting to find 
the best matching. We propose a heuristical majority 
voting tournament method based on monotone 
systems and a value function for it. The proposed 
algorithm should minimize transitivity faults in 
tournament ranking. Preliminary results (described 
in more detail in a paper submitted to a conference 
CAISE’04) show that our proposed method 
successfully minimizes transitivity faults on all 
possible tournament tables of size 5x5. It is feasible 
to check the performance of the proposed method on 
all tables up to size 7x7 or 8x8, but beyond that it is 
only feasible to compare it against other heuristical 
methods and on selected tournament tables.  

In the next chapter we give the definitions of 
domination and the core of a game (Roth et al., 
1990; pages 54-55, 166-167). The definitions are 
needed to understand the importance of stability and 
the core. Then we use an example of a matching 
model with couple constraints from Roth (Roth et 
al., 1990) to show that it has intransitivities and 
every dominance path of matchings leads to the 
cycle of unstable matchings. 

In the third chapter we give a simple definition 
of a ranking algorithm based on a monotone system, 

we describe a specific tournament algorithm and 
show that it works on the example. 

The fourth chapter is for the conclusions. 

2 THE CORE OF A MARRIAGE 
GAME 

The following are the definitions of domination and 
the core of a game (Roth et al., 1990; pages 54-55, 
166-167). 

 
Definition 1. For any two feasible game 

outcomes x and y, x dominates y if and only if there 
exists a coalition of players S such that 

(a) every member of the coalition S prefers x to 
y; and 

(b) the rules of the game give the coalition S the 
power to enforce x (over y). 

 
For this reason, if x dominates y, we might 

expect that y will not be the outcome of the game. 
This leads us to consider the set of undominated 
outcomes. 

 
Definition 2. The core of a game is the set of 

undominated outcomes. 
 
We can relax the domination conditions of 

definition 1, assuming that the coalition can make 
side-payments to those players that are indifferent 
between outcomes x and y. 

 
Definition 3. For any two feasible game 

outcomes x and y, x weakly dominates y if and only 
if there exists a coalition of players S such that 

(a) every member of the coalition S prefers x at 
least as much as y; and 

(b) at least one member of the coalition S prefers 
x to y; and 

(c) the rules of the game give the coalition S the 
power to enforce x (over y). 

 
Definition 4. The core of a game defined by 

weak domination is the set of weakly undominated 
outcomes. 

 
According to the first two definitions the core of 

the one-to-one matching market equals the set of 
stable matchings (Roth et al., 1990, chapter 3.1, 
theorem 3.3). When preferences are strict, the two 
cores coincide in the one-to-one matching model, 
but not in the many-to-one model. However, when 
hospital preferences are responsive (as defined in 
Roth et al., 1990, definition 5.2, page 128), and 
when preferences over individuals are strict, the set 
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of stable matchings coincides with the core defined 
by weak domination (Roth et al., 1990; proposition 
5.36, page 167). In the many-to-one (or one-to-one) 
matching model with couples, the set of stable 
matchings and consequently the core may be empty 
(Roth et al., 1990, theorem 5.11, page 141). Lets 
look at the example that Roth & Sotomayor gave to 
illustrate this problem. 

2.1 An empty core example of many-
to-one model with couples 

The following example is taken from Roth & 
Sotomayor (Roth et. al., 1990; theorem 5.11, page 
141). 

Consider the market with hospitals H = {H1, H2, 
H3, H4} each of which offers exactly one position 
and each of which has strict preferences over 
students S = {s1, s2, s3, s4} as given in Table 1. The 
students consist of two married couples, {s1, s2} and 
{s3, s4}. Each couple has strict preferences over 
ordered pairs of hospitals, as given in Table 1. 

 
Table 1: Preferences of hospitals and couples 

Hospitals' rank 
orders 

Couples' rank 
orders 

H1 H2 H3 H4 {s1,s2} {s3,s4} 
s4 s4 s2 s2 H1H2 H4H2 
s2 s3 s3 s4 H4H1 H4H3 
s1 s2 s1 s1 H4H3 H4H1 
s3 s1 s4 s3 H4H2 H3H1 

    H1H4 H3H2 
    H1H3 H3H4 
    H3H4 H2H4 
    H3H1 H2H1 
    H3H2 H2H3 
    H2H3 H1H2 
    H2H4 H1H4 
    H2H1 H1H3 

 
Thus couple {s1, s2} has as its first choice that s1 

be matched with H1 and s2 with H2, and has its last 
choice that s1 be matched with H2 and s2 with H1. 
The 24 individually rational matchings of students to 
hospitals are listed in Table 2, along with the reason 
that each such matching is unstable. 

Table 2: Every matching is unstable 
Matching H1 H2 H3 H4 Unstable with 

respect to 
1 s1 s2 s3 s4 s4,H2 
2 s1 s2 s4 s3 s4,H2 
3 s1 s3 s2 s4 s2,H4 
4 s1 s3 s4 s2 s4,H1 
5 s1 s4 s2 s3 s2,H4 
6 s1 s4 s3 s2 s4,H1 
7 s2 s1 s3 s4 s4,H1 
8 s2 s1 s4 s3 s4,H2 
9 s2 s3 s1 s4 s2,H4 

10 s2 s3 s4 s1 s4,H1 
11 s2 s4 s1 s3 s2,H4 
12 s2 s4 s3 s1 s4,H1 
13 s3 s1 s2 s4 s4,H2 
14 s3 s1 s4 s2 s2,H3 
15 s3 s2 s1 s4 s2,H4 
16 s3 s2 s4 s1 s2,H3 
17 s3 s4 s1 s2 s1,H1 
18 s3 s4 s2 s1 s2,H1 
19 s4 s1 s2 s3 s4,H2 
20 s4 s1 s3 s2 s2,H3 
21 s4 s2 s1 s3 s2,H4 
22 s4 s2 s3 s1 s2,H3 
23 s4 s3 s1 s2 s3,H3 
24 s4 s3 s2 s1 s4,H4 

 
Thus matching 1, which assigns student si to 

hospital Hi, i=1,…,4, is unstable because both 
hospital H2 and couple {s3, s4} would prefer that 
student s4 be matched with H2. (This follows since 
H2 prefers s4 to s2, and {s3, s4} prefers H3H2 to 
H3H4.) 

The domination graph between matchings is 
shown on Figure 1. 

 
 
If we study the dominance between these 

matchings, it becomes clear that every dominance 
path leads to the following cycle of unstable 

Figure 1: Domination graph 
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matchings {6, 20, 19, 5} (in the order of 
dominance), entering the cycle from one of the 
matchings 6, 20 or 5. 

Roth & Sotomayor (Roth et al., 1990, page 142) 
formulated an open question whether there exist 
plausible restrictions on the preferences of the 
couples that would insure that stable matchings 
always exist. We suggest that studying these 
restrictions in the context of minimizing transitivity 
faults is a more fruitful approach. If there are few 
enough transitivity faults left in the tournament 
ranking, then at some point stable matchings should 
emerge. 

As soon as the players of the marriage game 
realize that there is no stable outcome, they start 
looking for a way out of this vicious cycle, at least in 
a cooperative game. In doing that the players will 
start seeking coalitions to reach an outcome through 
majority voting. The existence of cyclic domination 
also means the existence of intransitivity. So to 
reach an outcome, the players have to vote between 
pairwise matchings as in a tournament.  

Note that the only way to avoid a tournament is 
to not let the existence of the cycle to become 
common knowledge. The blocking pair (or one of 
them) to the last matching in the cycle can choose to 
not form a pair by themselves, but to seek coalition 
partners to seek out the best matching in the cycle 
for the coalition and to dominate over other 
matchings. 

Lets look at the tournament between the 
matchings. An algorithm based on monotone 
systems is used for the tournament. 

3 FINDING BEST SOLUTIONS 
WITH A TOURNAMENT 

The aim of the tournament method is to minimize 
transitivity inconsistencies in a ranking. Transitivity 
requires that if solution a is better than solution b 
and solution b is better than solution c, then solution 
a must be better than solution c. With special 
constraints (for example permitting couples to 
submit combined preferences) this transitivity may 
not always hold in a marriage model.  

The first criterion for ranking is to minimize the 
number of transitivity faults. If there are several 
different rankings with the same minimal number of 
transitivity faults, then a second-order criterion must 
be used. The minimal transitivity inconsistency 
ranking in a tournament problem is NP-hard, that is 
why an efficient heuristic tournament method is 
needed. One class of good heuristic methods for this 

problem is based on monotone systems (Mullat, 
1976; Võhandu, 1989, 1990). 

3.1 An algorithm based on a 
monotone system 

Definition 5. (A weakly) monotone system is a 
system built on a set of objects, such that 

(a) objects are weighted by a value function 
(b) after removal of one object from the set all 

the weights of other objects still in the set 
change monotonically in one direction 
(increase or decrease) or stay on the same 
level. 

 
Algorithms based on such a simple monotone 

system work as follows: 
 
Step 1. Evaluate all objects in the set. 
Step 2. Find the weakest object (with the 

smallest (largest) weight), and remove it from the 
set. If there are several weakest objects, then 
recursively apply the tournament algorithm to the set 
of weakest objects. If at any stage of the recursion 
any object was removed from the set of weakest 
objects, then backtrack. If the set of weakest objects 
still contains more than one object, then compare the 
weights from the previous iteration and choose an 
object that is more similar to the previously removed 
object. If the weights in all the previous iterations 
are the same, then according to the value function 
these objects are equivalent and we can remove any 
one of those (usually the first object will be 
removed). 

Step 3. If there are still objects in the set, then 
continue from Step 1. 

 
Any given algorithm always removes the object 

with the smallest weight, or the largest weight. 
Algorithm cannot change the choice function (min, 
max) during the course of action. Value function can 
be chosen relatively freely, as long as it satisfies 
monotonicity condition. The sequence of removal of 
objects constitutes object ranking. 

3.2 Tournament method based on a 
monotone system 

To construct a tournament method for the stable 
marriage problem we need to define a value function 
and an ordered set of object removal criteria. 

In a majority voting, all the players have to vote 
(pairwise) between the matchings. Voting results 
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constitute the voting table v. Voting table for the 
cycle of unstable matchings {6, 20, 19, 5} is given 
in Table 3. 

Table 3: Voting table 
v 5 6 19 20 
5  3 5 6 
6 3  4 3 
19 1 4  5 
20 2 3 1  

 
The tournament table t is computed based on the 

voting table v. We compare votes of all pairs of 
matchings vrc and vcr and make the following 
transformations:  

If vrc < vcr then trc =0, tcr =1; 
If vrc > vcr then trc =1, tcr =0; 
If vrc = vcr then trc =0, tcr =0. 
The tournament table for the cycle of unstable 

matchings {6, 20, 19, 5} is given in Table 4.  
Our proposed method makes use of both the 

number of wins (rowsums) and losses (column 
sums). The method iteratively finds the weakest 
object, removes it from the tournament table and 
adds it to the ranking. If we were to remove one 
matching, then the winning points (and also the 
losing points) of all the other matchings will 
decrease or stay on the same level, so the system is a 
(weakly) monotone one.  

The process of finding the weakest object to 
remove is also iterative. In one iteration the number 
of wins and losses in the remaining subset of the 
weakest objects are calculated at first. The weakest 
objects are selected by the minimum number of wins 
and then by the maximum number of losses. This 
iterative minimax selection is used until either only 
one weakest object remains or the last minimax 
selection was not able to reduce the number of 
weakest objects. In the latter case the last remaining 
weakest object in the original ranking is removed. 
The last remaining object in the tournament table is 
the winner.  

Table 4: Tournament table 
t 5 6 19 20 Iter1 Iter2 Iter3 Iter4 
5  0 1 1 2 1 0 0 
6 0  0 0 0 0 0  
19 0 0  1 1 0   
20 0 0 0  0   Wins 
Iter1 0 0 1 2     
Iter2 0 0 1      
Iter3 0 0      
Iter4 0 Losses     

In the first iteration matchings 6 and 20 have no 
wins, but the number of losses are 0 and 2 
accordingly. Matching 20 is removed first based on 

the number of losses. Values from column 20 are 
subtracted from the winning points (row sums) of 
remaining matchings. Values from row 20 are 
subtracted from the losses (column sums) of 
remaining matchings. 

In the second iteration matchings 6 and 19 have 
no wins. Based on the number of losses (0 and 1) 
matching 19 will be removed. Wins and losses of the 
remaining matchings are recalculated. 

In the third iteration matchings 5 and 6 have no 
wins. Voting between them gave a draw. Both have 
no losses, since voting between them gave a draw. 
One way to differentiate between the two matchings 
is to look at the wins (and then losses) before the 
first iterations. Matching 5 had one win in the 
previous iteration, so matching 6 has to be removed 
first and matching 5 will be removed last. 

The obtained tournament ranking is (5, 6, 19, 20) 
and matching 5 is the best matching. Note that 
simple majority voting does not always produce 
transitivity faults in the cycle of unstable matchings, 
since even if one matching is dominated by the other 
in the sense of stability, the voting between the two 
matchings may still be a draw. One can, however, 
define a rule that if voting between two matchings 
gives a draw then the second criterion to decide the 
better one is the domination. Clearly, such a rule 
introduces intransitivities inside the cycle of 
unstable matchings. 

The proposed method has been tested to give a 
ranking with minimum number of transitivity faults 
on all tournament tables (including ties) up to size 
5x5 (results described in more detail in a paper 
submitted to a conference CAISE’04). The proposed 
method has a maximum time complexity of O(N3) 
and average time complexity between O(N2) and 
O(N3), thus enabling to use it on tournament tables 
of up to (tens of) thousands of objects. 

3.3 How to select matchings for the 
tournament 

When using majority voting in a full tournament one 
has to have a relatively small set of matchings (up to 
thousands or tens of thousands). Since the number of 
individually rational matchings is combinatorial, the 
selection of matchings for majority voting 
tournament becomes critical. 

One solution is to hold a tournament between the 
set of matchings in the cycle of unstable matchings. 
A stable matching searching algorithm can be used 
to find the cycle.  

It would be interesting to know whether the 
outcome of the majority voting tournament depends 
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on the subset of individually rational matching, 
which always includes the cycle of unstable 
matchings. If we look at the following dominance 
path {18; 12; 22; 24; 3; 4; 23; 20; 19; 5; 6}, then the 
minimum number of transitivity faults is 2 and there 
are several rankings with that number of faults. Our 
tournament method gives a following ranking (12; 
24; 22; 6; 5; 3; 18; 23; 19; 20; 4). There are only two 
transitivity faults. As we can see, if the matching 12 
is included (and all subsequent matchings along the 
dominance path to the cycle) in the tournament, it 
always wins. 

In the complete information game the matchings 
need not even be restricted to the cycle and the path 
leading to the cycle, but all the matchings in the 
majority voting are “fair game”. If we were to 
include all matchings in the tournament, then the 
ranking order in our example would be (12; 24; 5; 2; 
18; 22; 6; 11; 20; 1; 3; 23; 10; 17; 9; 21; 19; 7; 4; 15; 
13; 16; 14; 8). The number of transitivity faults is 
13.  

If the stable marriage model includes couples, 
then the complexity of finding if there exists a stable 
matching is NP-complete and “logspace P-hard” 
(Ronn 1986, 1987). So for large markets with 
couples it may not always be practical to find a 
stable matching even when one exists. In this case a 
probabilistic matching algorithm can be used to find 
a stable matching or a cycle of unstable matchings. 
One promising approach would also be using a 
genetic algorithm together with majority voting 
tournaments to search for the best matching. 

4 CONCLUSION 

We have described a matching model, where 
intransitivities may arise and for this situation we 
have proposed using majority voting in a 
tournament.  

We have also proposed a tournament method 
based on monotone systems and a value function for 
it. The proposed algorithm should minimize 
transitivity faults in tournament ranking and 
experimental results show that it does that on tables 
up to size 5x5. The proposed method has a 
maximum time complexity of O(N3) and average 
time complexity between O(N2) and O(N3), thus 
enabling to use it on tournament tables of up to (tens 
of) thousands of objects. 

One open question regarding our proposed 
solution is how to select matchings for the 
tournament. We have formulated several alternative 
answers for that question. 

ACKNOWLEDGEMENT 

This work was partially supported by ESF Grant 
4844. 

REFERENCES 

Gale, D., Shapley, L., 1962. College Admissions and the 
Stability of Marriage. In American Mathematical 
Monthly, 69(1), pp.9-15. 

Gusfield, D., Irwing, R. W., 1989. Stable Marriage 
Problem: Structure and Algorithms, MIT Press Series 
in the Foundations of Computing, MIT Press, 
Cambridge, Massachusetts. 

Gärdenfors, P., 1975. Match Making: Assignments Based 
on Bilateral Preferences, In Behavioral Science, 20, 
pp.166-173. 

Halldórsson, M., Iwama, K., Miyazaki, S., Morita, Y., 
2002. Inapproximability results on stable marriage 
problems, In Proceedings of LATIN 2002: the Latin-
American Theoretical INformatics symposium, volume 
2286 of Lecture Notes in Computer Science, pp. 554-
568. Springer-Verlag. 

Iwama, K., Manlove, D., Miyazaki, S., Morita, Y., 1999. 
Stable marriage with incomplete lists and ties, In Proc. 
ICALP'99, pp.443-452. 

Klijn,F., Masso,J., 2003. Weak stability and a bargaining 
set for the marriage model, in Games and   Economic 
Behavior, 42, pp. 91-100.  

Mullat, I., 1976. Extremal Subsystem of Monotone 
Systems. In Automation and Remote Control, 5, pp. 
130-139; 8, pp. 169-178 (in Russian) 

Ronn, E., 1986. On the complexity of stable matchings 
with and without ties, Ph.D. diss., Yale University. 

Ronn, E., 1987. NP-complete stable matching problems, 
Computer Science Department, Technion – Israel 
Institute of Technology. Mimeo 

Roth, A., Sotomayor, M., 1990. Two-sided matching : a 
study in game-theoretic modeling and analysis, 
Cambridge University Press, Econometric Society 
Monographs, no.18, Cambridge, Massachusetts, USA. 

Võhandu, L., 1989. Fast Methods in Exploratory Data 
Analysis, In Proceedings of Tallinn Technical 
University, Tallinn, No. 705, pp. 3-13. 

Võhandu, L., 1990. Best Orderings in Tournaments, In 
Proceedings of Tallinn Technical University, Tallinn, 
No. 723, pp. 8-14. 

MAJORITY VOTING IN STABLE MARRIAGE PROBLEM WITH COUPLES

447


