
XML DATA CONSTRAINT AND XINCAML

Jing Min Xu, Ying Nan Zuo, Shun Xiang Yang, Zhong Tian
IBM China Research Laboratory, 4/F, No.7, 5th Street, Shangdi, Beijing 100085, PRC

Keywords: XML Data Constraint, Constraint Specification Language, XincaML

Abstract: XML is becoming the de facto standard for data exchange. Because it brings structures and semantics to the
contents, it is very important for applications to verify the validity of XML data before further processing.
W3C XML Schema language can specify many of the constraints in XML data, but it lacks of the capability
of expressing application specific inter-node constraints. Therefore XincaML (eXtensible inter-node
constraint Markup Language) is invented as a complement to XML Schema language to specify this kind of
application constraints. XincaML is a descriptive inter-node constraint specification language. XincaML
Processor is a reference Java implementation of the XincaML language parser and constraints checker.
Developers can easily integrate the processor into their applications to handle inter-node constraints besides
validating XML data against XML Schema. XincaML and the processor provide a common mechanism for
applications to describe and process inter-node constraints, thus significantly eliminate the need and labor to
hard-code the constraint handling in applications and speeds up the application development.

1 INTRODUCTION

More and more applications adopt XML [T. Bray,
2000] documents as method of data exchange. The
exchanged XML documents convey not only the
structure of the data but also application specific
semantics of them. It is very important for
applications, especially ones performing critical
commerce transactions, to ensure the validity of the
documents. Invalid data might lead to unexpected
application behavior or even denial of service. Since
XML data structures can be validated already, it is
only natural to be able to validate more XML data
constraints, e.g. relationships between elements or
attributes belonging to different contexts, invariants
over data models, limits over attribute values and so
on.

W3C XML Schema [D. C. Fallside, 2001] [H. S.
Thompson, 2001], as a typical grammar-based
schema language [Dongwon Lee, 2000], has taken a
big step in that direction. It allows users to specify
various XML data constraint such as structures of
XML documents and data types of elements or
attributes. However, it is short of the ability to
specify data constraints among elements or attributes
located on different sub-branches of an XML
document tree. We call this kind of constraint as
inter-node constraint. Although such data
relationships in an XML document are almost

everywhere as part of application semantics, they
can’t be specified by current XML Schema language
easily, if at all.

W3C Schema Working Group also noticed the
inter-node constraint problem and considered adding
co-constraints into W3C XML Schema as one of
desiderata in the latest XML Schema requirements
working draft [C. Campbell, 2003]. But we still
think it is too rigid in that sense and diminishes the
flexibility of XML. In addition, it may make the
schema language too difficult to analyze.

In order to specify inter-node constraint, several
constraint specification languages have been
proposed. Schematron [Rick Jelliffe, 2002] is a
typical one. It is a pattern-based language and more
constraint-oriented than XML Schema [Dongwon
Lee, 2000]. It is able to specify constraint patterns in
XML documents based on the presence, names and
value of elements and attributes along paths.
Schematron completely relies upon XPath [J. Clark,
1999] and XSLT [James Clark, 1999] for defining
context dependent rules. On one hand, it makes
Schematron quite concise. On the other hand, it
makes it more difficult for applications to analyze
the structure and definition of constraints, let alone
optimized code for efficient constraints handling.
This is the main motivation for inventing XincaML
(eXtensible inter-node constraint Markup
Language).

479
Min Xu J., Nan Zuo Y., Xiang Yang S. and Tian Z. (2004).
XML DATA CONSTRAINT AND XINCAML.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 479-485
DOI: 10.5220/0002652604790485
Copyright c© SciTePress

Unlike XML Schema and Schematron, XincaML
is designed as a constraint specification language
rather than a schema language. Its constraint
expressions are more descriptive and declarative
than those of Schematron, so business rules that
applications need to check can be mapped to XML
data constraints more easily. XincaML concentrates
on descriptively expressing inter-node constraints
that XML Schema can not express. Hence, it is
considered as a helpful supplement of XML
Schema.

As a constraint specification language, XincaML
focuses more on descriptiveness. It not only makes
XincaML more like a natural language but also
enables XML developers to write more optimized
code for efficient constraint handling and to play
with the constraint definition structure itself when
needed. In addition, XincaML also gives users the
flexibility of applying XPath to XincaML to the
extent they like so that they can balance between a
concise expression and a descriptive one.

A XincaML Processor reference implementation
is already available for downloading from IBM
Alphaworks [Ying Nan Zuo, 2002]. It is a Java
package and provides APIs for constraints parsing
and checking. Applications are able to concentrate
on data processing by delegating the data validation
work to the processor. The violation handling
mechanism of the processor, which enables
callbacks of the application specific code for
violation handling, helps application developers
create cleaner program logic.

 In the rest of this paper, we’ll first introduce
the basic concepts of XML data constraint, and then
discuss how XincaML expresses the inter-node
constraints and its advantages. The reference
implementation of XincaML Processor and several
usage scenarios are also introduced so as to give a
basic idea of how XML developers integrate
XincaML into their applications. Some future works
are presented in the end of the paper.

2 XML DATA CONSTRAINTS

Handling data constraints has been around for quite
sometime. In a database, data constraints are mostly
part of the database schema. The schema serves for
two purposes. First, it describes the structure or type
of the data; second, it describes certain constraints
including assertion of the keys and inclusion
dependencies. In general, all constraints on data can
be divided into two groups-integrity constraints and
data validity constraints. Integrity constraints (type
constraints, path constraints etc.) describe semantic
integrity of data. Data validity constraints describe

conditions of validity of data. [Ekaterina Pavlova,
2000]

Semi-structured data is a generation of structured
data in a sense, so it has integrity constraints and
data validity constraints similar to those in structured
data. XML data is usually treated as semi-structured
data, thus the constraints in semi-structured data can
mostly be applied to XML data. In practice, most of
real-world logical constraints to data are very
complex and not just pure integrity constraints or
data validity constraints. It is impossible to make a
complete taxonomy of all these constraints. But
some kinds of constraints are most commonly used
by lots of XML applications. It is more valuable to
investigate these kinds of constraints.

In general, the commonly used XML data
constraint can be classified as the following four
categories:

i. Containment structural constraint
(structures): This kind of constraint describes the
basic structure of XML documents such as element
hierarchies, attributes of a element, inheritance for
elements and attributes, cardinality of elements and
so on.

ii. Lexical structural constraint (data types):
This kind of constraint describes data types and data
formats in order to check the domain range of values
of elements or attributes as well as ensure they
follow certain formats.

iii. Integrity constraint (identity constraint):
This kind of constraint describes the reference
relationship between elements or attributes like the
key/foreign key mechanism in the relational
database.

iv. Inter-node constraint (co-constraint): This
kind of constraint describes the presence/value
dependencies between elements or attributes
belonging to the same or different sub-branches of
an XML document tree. It is usually the most
fundamental part of data semantics.

XML Schema as of today has already covered
the first three kinds of constraint, but it lacks of the
capability of expressing the inter-node constraints in
an XML document. XincaML is proposed to
complement it. Before we go into detail about
XincaML, let’s take a closer look at the inter-node
constraints.

First, a small piece of XML data is presented
below serving as an example of XML data that have
inter-node constraints.
<Contacts>

<Person title=”Mr”>
 <Name> John Smith </Name>
 <Gender>Male </Gender>
</Person>
<Person title=”Ms”>
 <Name> Joan Smith </Name>

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

480

 <Gender>Female </Gender>
</Person>

</Contacts>

At least one can find one inter-node constraint
here that if the title of a person is “Mr”, then the
gender of him must be “Male”. It’s hard to express
this data constraint using XML Schema language.

In order to depict the details of inter-node
constraint more clearly, let us simplify the XML
data model first. In most cases, what applications
care are the values and relationships of elements or
attributes in an XML document. So, in XincaML, we
only examine element nodes (and their values) and
attribute nodes (and their values).

Figure 1: A Visual Representation of Four Types of

Inter-node Constraints

The figure 1 provides a visual representation of
four types of inter-node constraints in an XML
document tree. The element node, attribute node,
element value and attribute value are represented as
EN, AN, EV and AV respectively.

The inter-node constraints are divided into the
following four types:

i. Presence-Presence Constraint (PPC): The
presence of a set of nodes depends on the presence
of another set of nodes.

ii. Presence-Value Constraint (PVC): The
presence of a set of nodes depends on the values of
another set of nodes.

iii. Value-Presence Constraint (VPC): The
values of a set of nodes depend on the presence of
another set of nodes.

iv. Value-Value Constraint (VVC): The values
of a set of nodes depend on the values of another set
of nodes.

Since the nodes involved in an inter-node
constraint do not necessarily have any direct
structural relationships among them, it is difficult for
a grammar-based schema language such as W3C
XML Schema to express these constraints.

It is a general practice for application developers
to validate data against structure definitions. They’d
like to have as much application semantics checked
as possible before the data is further processed. A
common expression of the inter-node constraints
enables application developers to relegate the
constraint checking work to any third party tools so
that they can focus on the application logic.
XincaML is such a common mechanism for
expressing the inter-node constraints.

3 XINCAML LANGUAGE AND
PROCESSOR

First of all, XincaML is in XML syntax, which
brings several benefits:

1) Users do not have to learn another proprietary
syntax.

2) The expressed constraints can be readily
applied to existing XML applications.

3) The expressed constraints can be stored in an
XML storage system along with XML documents
they are applied to.

4) The expressed constraints are extensible.
A XincaML document may contain one or more

constraint declarations. The <constraint> element is
used to declare a constraint. Multiple constraints can
be grouped together with the element <constraints>
as a constraint group. Two attributes are defined for
the <constraint> element. One is the “name”
attribute, which is used to uniquely identify a
constraint within a constraint group. The other is the
“context” attribute, which specifies the scope of a
constraint. The context attribute is required to be
expressed as an XPath path expression. For example,
the following constraints are defined:
<xinca:constraints>
 <xinca:constraint name=”titleConstraint”
context=”/Contacts/Person”>
 … …
 </xinca:constraint>
 <xinca:constraint name=”otherConstraint”
context=”/Contacts/Other”>
 … …

XML DATA CONSTRAINT AND XINCAML

481

 <xinca:constraint>
</xinca:constraints>

The constraint “titleConstraint” and
“otherConstraint” are used to constrain the nodes
located in the different sub-trees of an XML
document: the “/Contacts/Person” sub-tree for the
former and the “/Contacts/Other” sub-tree for the
latter.

Each constraint is expressed as a rule, which
usually contains three segments: <if>, <then> and
<action>. The <if> and <then> segments are both
required to state an assertion. If the assertion in the
<if> segment holds true, the assertion in the <then>
statement is also required to be true. If the assertion
in the <then> statement is not true, the constraint is
violated. However, if the assertion in the <if>
segment holds false, the constraint will be ignored
by the constraint checker. The <action> segment
acts as a placeholder for applications to insert their
particular constraint handling mechanism when the
constraint is violated. XincaML defines the
<message> element as a default violation handling
method: reporting a message.

Each assertion states which nodes are present
(presence assertion) or their values satisfy an
expression (value assertion). The expression should
be any expression which evaluation is a Boolean
value such as a logical expression, a comparison
expression or a logical expression. [Ying Nan Zuo,
2002] For example, the constraint “titleConstraint”
can be expressed as follows:
<constraint name="titleGenderConstraint"
context="/Contacts/Person">
 <if>
 <assert>
 <node id="titleNode" location="@title"/>
 <satisfy>
 <eq>
 <stringValue ref="titleNode"/>
 <stringValue value="Mr"/>
 </eq>
 </satisfy>
 </assert>
 </if>
 <then>
 <assert>
 <node id="genderNode" location="Gender"/>
 <satisfy>
 <eq>
 <stringValue ref="genderNode"/>
 <stringValue value="Male"/>
 </eq>
 </satisfy>
 </assert>
 </then>

<action>
 <message>

 If the title is "Mr." then the gender of the person
must be "Male".

<

If

.

/message>
 </action>
</constraint>

This constraint specifies that if the title of a

person is “Mr”, then the gender of the person must
be “Male”. Thus, XincaML is quite straightforward
due to its descriptiveness. However, the side effect
is that it makes XincaML sort of verbose. In order to
resolve this problem and fully leverage the
functionality of XPath, XincaML allows expressing
assertions or rules as XPath expressions. For
examples, the “titleConstraint” can be expressed as
follows:
<constraint name="titleGenderConstraint"
context="/Contacts/Person">
 <xpath exp="(@Title = 'Mr' and Gender = 'Male') or
@Title != 'Mr' ” />
 <action>

 <message>
 the title is "Mr." then the gender of the person

must be "Male".
</message>

 </action>
</constraint>

This feature gives users the flexibility of
applying XPath expressions to XincaML to the
extent they feel comfortable. But expressing
assertions or rules as XPath expressions brings the
following two disadvantages:

1) More devious for users to map business rules
to XincaML constraints if they are not comfortable
with XPath.

2) More difficult for applications to analyze the
structure of XincaML constraints themselves.

So users have to balance the advantages of
expressing assertions or rules as XPath expressions
against the disadvantages based on application
scenarios as well as XincaML processor they intend
to use.

XincaML enhanced XML data validation is a
multiple-stage process that begins with W3C XML
Schema validation, followed by XincaML checking
to handle the inter-node constraints. Like XML
parsers, which relieve applications of validating
XML documents based on predefined schemas,
XincaML processors relieve applications of parsing
and checking inter-node constraints expressed by
XincaML.

A reference XincaML processor implementation
is available from IBM Alphaworks. It contains two
Java packages:

1) Constraint Parser, which parses XincaML
constraints into a XincaML object tree so that

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

482

applications are able to navigate the tree to know the
structures of each constraint.

2) Constraint Checker, which checks XincaML
constraints against an XML document based on the
constructed XincaML object tree.

The architecture of the XincaML Processor is
depicted in the figure 2:

Figure 2: XincaML Processor Architecture

The XincaML Processor has a violation handling

mechanism that allows application developers
registering a violation handler for each constraint by
specifying a <action> element to add custom
application specific processing. For example:
<constraint name="titleGenderConstraint"
context="/Contacts/Person">
 … …
 <action>
 <handler>

<java:class>xincaparser.SampleHandler
</java:class>

 <java:method>showMessage</java:method>
 </handler>
 </action>
</constraint>

For the reference implementation, when a

constraint violation occurs, the Constraint Checker
will call the corresponding violation handler by use
of Java reflection mechanism. The reference
implementation also contains a default violation
handler. An error message will be generated as
return result if the checker does not find a registered
violation handler.

In order to boost performance, the XincaML
processor constructs an in-memory dependency
graph that records which nodes are relevant to which
constraints when parsing XincaML constraints.
Therefore, it allows applications only checking
constraints that are relevant to a specific node when
its value changes. However, the dependency graph
does not include the constraints that express

assertions or rules as XPath expressions because
XincaML does not reveal their structures.

4 USAGE SCENARIOS OF
XINCAML

A typical use of XincaML processor is to use it as a
guardian for XML applications. Any XML data must
be validated first before they are fed into an
application. If the processor tells the application that
everything is ok, then the application goes on.
Otherwise, the application should stop and deal with
the data constraint violations through predefined
violation handlers. The XincaML processor allows
XincaML constraints to be embedded in
xs:annotation / xs:appinfo W3C XML Schema
elements, seamlessly combining W3C XML schema
and XincaML. Thus it makes the XincaML
enhanced XML Schema language compatible with
conventional XML Schema validation, and allowing
applications to put in additional validation and
processing when appropriate.

In some cases, applications may not be willing to
be stopped by the processors. They just want the
processors to go through the input data, collect all
the information about violated elements and
attributes and then report to them. The applications
may handle the constraint violations themselves later.
XincaML Processor provides several violations
reporting APIs [Ying Nan Zuo, 2002] to offer
applications such kind of choices. With these APIs,
an application can exactly locate the elements and
attributes that violate the constraints.

In many visual modeling tools, a lot of
application specific constraints (including syntax
constraints and semantic constraints) exist among
drawing elements. Usually, people use this kind of
tools as thinking tools. They don’t like to be
interfered by such constraint details. It’s better to
deal with these constraints when the main body of
the model is finished. XincaML can help a lot in this
tools. For example, a state machine modeling tool
which represents a state machine as an XML
document, may use XincaML language to specify
various constrains between states in a state machine
and use XincaML processor to assist the well-form
checking of the machine. Application specific
constraints such as “There should be one and only
one starting state in a state machine”, “The transition
target of a state must be an existing state in the state
machine” and so on, are all mapped into XincaML
constraint specification. After drawing a state
machine using the modeling tool, a user can invoke
the well-form checking function. The tool will

XML DATA CONSTRAINT AND XINCAML

483

delegate the checking work to XincaML processor.
Then, all constraints violations are reported through
violations reporting APIs. The modeling tool can
make use of these APIs to locate the violated states
and highlight them to the user. Figure 3 illustrates
the use of XincaML processor in this modeling tool.

Figure 3: The Usage of XincaML Processor in State

Machine Modeling Tool

In other cases, applications may want to know
the detail syntax of each inter-node constraint so that
they can generate their own codes to do the
constraint checking. In these cases, only the
XincaML language parser is needed. XincaML
Processor Java package provides users a lot of
classes, such as XincaParser class, XincaConstraint
class, XincaAssert class, XincaLogicalExpression
class and so on, to manipulate each component of a

constraint definition. [Ying Nan Zuo, 2002]
To demonstrate this kind of usage scenario, we

take D3From [Shun Xiang Yang, 2003] as an
example. D3From is a dynamic Web form generator,
which is used in an adaptive profiling framework for
service provisioning [Shun Xiang Yang, 2003]. The
framework provides flexible profiling mechanism to
dynamically collect relevant information about
service consumers according to diverse profiling
requirements of different services in an e-Commerce
platform. D3Form is used to generate different Web
forms for different services according to their
profiling requirements. The service profiling
requirements are defined by use of XML Schema
plus XincaML language. D3From takes the schema
part as data and HTML form definitions, and takes
XincaML part as constraints among the data
elements that will be collected by the form. Figure 4
shows some details.

The HTML Form Generator is used to map XML
schema into HTML form controls and apply XSL
document on the generated form to control its
appearance. The JavaScript Generator makes use of
XincaML APIs to parse the XincaML constraint
specifications and convert them to JavaScript codes.
The generated scripts serve as inter-node constraint
checker in client side when someone fills in the
forms with data. Further more, if you specify the
dependencies between form controls with PPC
(Presence-Presence Constraint) or VPC (Value-
Presence Constraint) style of constraints, the
generated scripts are able to change the layout of the
form based on users’ input.

Figure 4: The using of XincaML in D3Form Processor

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

484

5 CONCLUSION AND FUTURE
WORK

XincaML can describe some inter-node constraints
that can’t be expressed by the current XML schema
language and therefore supplement it to capture
application specific data constraints. The purpose of
XincaML is to specify constraints that most often
used by XML applications. For applications that
require other arbitrary or complicated data
constraints, they must perform their own additional
validations.

XincaML Processor can validate XML
documents against constraints specified in XincaML
instances. The advantage of using XincaML in
applications is that many of the constraints that
previously had to be checked in applications can
now be moved out of them and delegated to
XincaML Processor. It can make users concentrate
on the application processing logic itself and thereby
create clearer application logic models.

Currently, we are thinking of adding some new
features to XincaML. For example, supporting more
logic expressions and constraints, checking of
implication and conflicts among several constraints
specified in one XincaML instance and applying
constraints to multiple XML documents.

ACKNOWLEDGEMENT

We would like to thank Bob Schloss
[rschloss@us.ibm.com], of IBM Watson Research
Center, for his great contribution to the concept of
XincaML.

REFERENCES

T. Bray, J. Paoli, C. M. Sperberg-McQueen and E. Maler,
2000. Extensible Markup Language (XML) 1.0
(Second Edition). W3C Recommendation,
http://www.w3.org/TR/REC-xml, World Wide Web
Consortium, Oct. 2000.

D. C. Fallside, 2001. XML Schema Part 0: Primer. W3C
Recommendation, http://www.w3.org/TR/xmlschema-
0, World Wide Web Consortium, May. 2001.

H. S. Thompson, D. Beech, M. Maloney and N.
Mendelsohn, 2001. XML Schema Part 1: Structures.
W3C Recommendation,
http://www.w3.org/TR/xmlschema-1, World Wide
Web Consortium, May. 2001.

Dongwon Lee, Wesley W. Chu, 2000. Comparative
Analysis of Six XML Schema Languages. ACM
SIGMOD Record, Vol. 29, No. 3, Sep. 2000.

C. Campbell, Ashok Malhotra and Priscilla Walmsley,
2003. Requirements for XML Schema 1.1. W3C
Working Draft,
http://www.w3.org/XML/Group/2002/07/xmlschema-
1.1-current-reqs.html#N4000FC, Jan. 2003.

Rick Jelliffe, 2002. The Schematron Assertion Language
1.5.
http://www.ascc.net/xml/resource/schematron/Schema
tron2000.html, Oct. 2002

J. Clark and S. DeRose, 1999. XML Path Language
(XPath) Version 1.0. W3C Recommendation,
http://www.w3.org/TR/xpath, World Wide Web
Consortium, Nov. 1999.

James Clark, 1999. XSL Transformations (XSLT) Version
1.0. W3C Recommendation
http://www.w3.org/TR/xslt, World Wide Web
Consortium, Nov. 1999.

Zuo Ying Nan, Jing Min Xu and Shun Xiang Yang, 2002.
XincaML Technology. IBM Alphaworks,
http://www.alphaworks.ibm.com/tech/xincaml. Dec,
2002.

Ekaterina Pavlova , Igor Nekrestyanov and Boris
Novikov, 2000. Constraints for Semistructured Data.
Proc. of the Russian DL'2000, 214-219, Protvino,
Russia, September 2000.

Shun Xiang Yang, Ying Nan Zuo , Jing Min Xu, Zhong
Tian, 2003. Adaptive Profiling Framework and System
for Service Provisioning. IEEE Conference on
Electronic Commerce, USA 2003

C. Nentwich, W. Emmerich and A. Finkelstein, 2001.
Static Consistency Checking for Distributed
Specifications. Proceedings of the 16th International
Conference on Automated Software Engineering
(ASE), Coronado Island, CA, IEEE Computer Science
Press, pages 115-124. November 2001.

Eric van der Vlist, 2001. Comparing XML Schema
Languages.
http://www.xml.com/pub/a/2001/12/12/schemacompar
e.html, Dec. 2001

Will Provost, 2002. Beyond W3C XML Schema.
http://www.xml.com/pub/a/2002/04/10/beyondwxs.ht
ml, Apr. 2002.

M. H. Jacinto, G. R. Librelotto, J. C. Leite Ramalho and P.
R. Henriques, 2002. Constraint Specification
Languages: comparing XCSL, Schematron and XML-
Schemas. XML EUROPE 2002, May 2002.

Ramalho, José C. and Henriques, Pedro R, 2001.
Constraining Content: Specification and Processing.
XML Europe 2001, International Congress Centrum
(ICC), Berlin, Germany. 2001

XML DATA CONSTRAINT AND XINCAML

485

