
AGENT-ORIENTED DESIGN PATTERNS

T. Tung Do, Manuel Kolp, Stéphane Faulkner, Alain Pirotte
Information System Unit, University of Louvain

1, Place des Doyens, 1348 Louvain-La-Neuve, Belgium

Keywords: agent oriented software engineering, design patterns, multi-agent systems

Abstract: Multi-Agent Systems (MAS) architectures are gaining popularity over traditional ones for building open, dis-
tributed, and evolving software required by today’s corporate IT applications such as eBusiness systems, web
services or enterprise knowledge bases. Since the fundamental concepts of multi-agent systems are social and
intentional rather than object, functional, or implementation-oriented, the design of MAS architectures can be
eased by using social patterns. They are detailed agent-oriented design idioms to describe MAS architectures
as composed of autonomous agents that interact and coordinate to achieve their intentions, like actors in hu-
man organizations. This paper presents social patterns and focuses on a framework aimed to gain insight into
these patterns. The framework can be integrated into agent-oriented software engineering methodologies used
to build MAS. We consider the Broker social pattern as a combination of patterns and use it to illustrate the
framework. The automatation of patterns design is also overviewed.

1 INTRODUCTION

The explosive growth of application areas such
as electronic commerce, knowledge management,
peer-to-peer and mobile computing has profoundly
changed our views on information systems engineer-
ing. Systems must now be based on open archi-
tectures that continuously evolve to accommodate
new components and meet new requirements. These
new requirements call, in turn, for new concepts and
techniques for engineering and managing information
systems. Therefore, Multi-Agent System (MAS) ar-
chitectures are gaining popularity over traditional sys-
tems, including object-oriented ones.

Developing enterprise information systems with a
MAS architecture permits a better match between sys-
tem architectures and their operational environment.
A MAS can be seen as a social organization of au-
tonomous software entities (agents) that can flexibly
achieve agreed-upon intentions through their interac-
tions. MAS support dynamic and evolving structures
which can change at run-time to benefit from the ca-
pabilities of new system entities or replace obsolete
ones.

MAS architectures become rapidly complicated
due to the ever-increasing complexity of these new
business domains and their human or organizational
actors. An important technique that helps to manage
this complexity when constructing and documenting

such architectures is the reuse of development experi-
ence and knowhow. Over the past few years, design
patterns have significantly contributed to the reuse of
design expertise, improvement application documen-
tation and more flexible and adaptable designs. The
idea behind a pattern is to record the essence of a so-
lution to a design problem so as to facilitate its reuse
when similar problems are encountered.

Considerable work has been done in software
engineering on defining design patterns (see e.g.,
(Gamma, 1995)). Unfortunately, they focus on
object-oriented rather than agent-oriented systems. In
the area of MAS, little emphasis has been put on so-
cial and intentional aspects. Moreover, the proposals
of agent patterns that address those aspects (see e.g.,
(Aridor, 1998; Deugo, 1999; Hayden, 1999)) are not
aimed at the design level, but rather at the implemen-
tation of lower-level issues like agent communication,
information gathering, or connection setup. For in-
stance, the FIPA (FIPA) identified and defined a set of
agent’s interaction protocols that are only restricted to
the communication.

Since there is a fundamental mismatch between the
concepts used by the object-oriented paradigm (and
other traditional mainstream software engineering ap-
proaches) and the agent-oriented view, there is a need
to develop patterns that are specifically tailored to
the development of multi-agent systems using agent-
oriented primitives.

48
Tung Do T., Kolp M., Faulkner S. and Pirotte A. (2004).
AGENT-ORIENTED DESIGN PATTERNS.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 48-53
DOI: 10.5220/0002646300480053
Copyright c© SciTePress

The catalogue of social patterns proposed in (Kolp,
2001) constitutes a contribution to the definition of
agent-oriented design patterns for MAS architectures.
This paper proposes and conceptualizes the SKwyRL
patterns framework to explore social patterns and fa-
cilitate the building of MAS during detailed design as
well as the generation of code for agent implemen-
tation. It models and introspects the patterns along
different complementary dimensions.

The paper is organized as follows. In Section 2, we
overview the patterns. Section 3 proposes the frame-
work and illustrates its different modeling dimensions
through the Broker pattern. The automation of social
patterns is overviewed in Section 4. Section 5 points
to some conclusions.

2 SOCIAL PATTERNS

In the following, we present patterns based on social
and intentional dimensions that are recurrent in multi-
agent and cooperative systems. Pair patterns describe
direct interactions between negotiating agents, while
Mediation patterns feature intermediate agents that
help other agents reach agreement about an exchange
of services.

2.1 Pair Patterns

The Booking pattern involves a client and a number
of service providers. The client issues a request to
book some resource from a service provider. The
provider can accept the request, deny it, or propose
to enter the client in a waiting list, until the requested
resource becomes available.

The Subscription pattern involves a yellow-page
agent and a number of service providers. The
providers advertise their services by subscribing to
the yellow pages. A provider that no longer wishes to
be advertised can request to be unsubscribed.

The Call-For-Proposals pattern involves a client and
a number of service providers. The client issues a
call for proposals for a service to all service providers
and then accepts proposals that offer the service for a
specified cost. The client selects one service provider
to supply the service.

The Bidding pattern involves a client and a number
of service providers. The client organizes and leads
the bidding process, and receives proposals. At every
iteration, the client publishes the current bid; it can
accept an offer, raise the bid, or cancel the process.

2.2 Mediation Patterns

In the Monitor pattern, subscribers register for
receiving, from a monitor agent, notifications of
changes of state in some subjects of their inter-
est. The monitor accepts subscriptions, requests
information from the subjects of interest, and alerts
subscribers accordingly.

In the Broker pattern, the broker agent is an ar-
biter and intermediary that requests services from
providers to satisfy the request of clients. The rest
of the paper details latter the pattern to illustrate the
SKWYRL social patterns framework.

In the Matchmaker pattern, a matchmaker agent
locates a provider for a given service requested by
a client, and then lets the client interact directly
with the provider, unlike brokers, who handle all
interactions between clients and providers.

In the Mediator pattern, a mediator agent coordinates
the cooperation of performer agents to satisfy the
request of an initiator agent. While a matchmaker
simply matches providers with clients, a mediator
encapsulates interactions and maintains models of the
capabilities of initiators and performers over time.

In the Embassy pattern, an embassy agent routes
a service requested by an external agent to a local
agent. If the request is granted, the external agent
can submit messages to the embassy for translation
in accordance with a standard ontology. Translated
messages are forwarded to the requested local agent
and the result of the query is passed back out through
the embassy to the external agent.

The Wrapper pattern incorporates a legacy system or
database into a multi-agent system. A wrapper agent
is an embassy that interfaces system agents with the
legacy system/database by acting as a translator. This
ensures that communication protocols are respected
and that the legacy system/database remains decou-
pled from the rest of the agent system.

3 THE SKWYRL SOCIAL
PATTERNS FRAMEWORK

This section describes SKWYRL1, a conceptual
framework based on five complementary modeling di-

1Socio-Intentional ArChitecture for Knowl-
edge Systems and Requirements ELicitation
(http://www.isys.ucl.ac.be/skwyrl/)

AGENT-ORIENTED DESIGN PATTERNS

49

mensions to investigate social patterns. Each dimen-
sion reflects a particular aspect of a MAS architecture.

Other modeling frameworks like AUML (Bauer,
2001) represent the detailed design of a MAS by
adapting and extending object-oriented concepts. We
believe that a conceptual framework primarily based
on MAS concepts (such as beliefs, intentions, goals,
. . .) is more appropriate than extended object-
oriented frameworks that treat agents as objects of a
particular type.

• The social dimension identifies the relevant agents
in the system and their intentional interdependen-
cies.

• The intentional dimension identifies and formalizes
services provided by agents to realize the intentions
identified by the social dimension, independently
of the plans that implement those services. This
dimension answers the question: ”What does each
service do?”

• The structural dimension operationalizes the ser-
vices identified by the intentional dimension in
terms of agent-oriented concepts like beliefs,
events, plans, and their relationships. This dimen-
sion answers the question: ”How is each service
operationalized?”

• The communicational dimension models the tem-
poral exchange of events between agents.

• The dynamic dimension models the synchroniza-
tion mechanisms between events and plans.

The social and the intentional dimensions are spe-
cific to MAS. The structural, communicational, and
dynamic dimensions of the architecture are also rele-
vant for traditional (non-agent) systems, but we have
adapted and extended them with agent-oriented con-
cepts. This section details the dimensions and illus-
trates them with the Broker pattern.

3.1 Social Dimension

The social dimension specifies a number of agents
and their intentional interdependencies using the i*
model (Yu, 1995). Figure 1 shows a social-dimension
diagram for the Broker pattern. Agents are drawn
as circles and their intentional dependencies as ovals.
An agent (the depender) depends upon another agent
(the dependee) for an intention to be fulfilled (the de-
pendum). Dependencies have the form depender →
dependum → dependee.

The Broker pattern can be considered as a com-
bination of (1) a Subscription pattern (shown en-
closed within dashed boundary (a)), that allows ser-
vice providers to subscribe their services to the Bro-
ker agent and where the Broker agent plays the role of
yellow-page agent, (2) one of the other pair patterns

Figure 1: Social diagram for the Broker pattern

(Booking, Call-for-Proposals, or Bidding) whereby
the Broker agent requests and receives services from
service providers (in Figure 1, it is a Bidding pat-
tern, shown enclosed within dotted boundary (b)), and
(3) interaction between Broker and client: the Broker
agent depends on the client for sending a service re-
quest and the client depends on the Broker agent to
forward the service.

To formalize intentional interdependencies, we
use Formal Tropos (Fuxman, 2001), a first-order
temporal-logic language that provides a textual no-
tation for i* models and allows to describe dynamic
constraints. A forward service dependency can be
defined in Formal Tropos as follows.

Dependum Forward Service
Mode: Achieve
Depender: Client cl
Dependee: Broker br
Fulfillment:
(∀sr : ServiceRequest, st : ServiceType)

request(cl, br, sr) ∧ provide(br, st)
∧ ofType(sr, st) → ♦ received(cl, br, st)

[Broker br successfully provides its service to client cl if all
requests sr from cl to br, that are of a type st that br can
handle, are eventually satisfied]

3.2 Intentional Dimension

While the social dimension focuses on interdepen-
dencies between agents, the intentional view aims
at modeling agent rationale. It is concerned with
the identification of services provided by agents and
made available to achieve the intentions identified in
the social dimension. Each service belongs to one
agent. Service definitions can be formalized as in-
tentions that describe the fulfillment condition of the
service. The collection of services of an agent defines
its behavior.

Table 1 gives an informal definition for
several services of the Broker pattern. The
FindBroker service allows a client to find
a broker that can handle a given service re-
quest. The client then sends the request to the
broker through the SendServiceRequest

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

50

Table 1: Some services of the Broker pattern

Service Name Informal Definition Agent
FindBroker Find a broker that can Client

provide a service
SendService Send a service request Client
Request to a broker
QuerySP Query the knowledge for Broker
Availability information about the

availability of the
requested service

SendService Send an answer to the Broker
RequestDecision client
RecordBR Record a negative answer Client
Refusal from a broker
RecordBR Record a positive answer Client
Acceptance from a broker
RecordClient Record a service request Broker
ServiceRequest received from a client
CallFor Send a call for proposals Broker
Proposals to service providers
RecordAndSend Record a service received Broker
SPInformDone from a service provider

service. The broker can query its belief knowl-
edge with the QuerySPAvailability
service and answer the client through the
SendServiceRequestDecision service.
If the answer is negative, the client records it
with its RecordBRRefusal service. If the an-
swer is positive, the broker records the request
(RecordClientServiceRequest service) and
then broadcasts a call (CallForProposals
service) to potential service providers. The
client records acceptance by the broker with the
RecordBRAcceptance service.

The Bidding pattern could be used here, but this
presentation omits it for brevity.

The broker then selects one of the service
providers among those that offer the requested ser-
vice. If the selected provider successfully returns
the requested service, it informs the broker, that
records the information and forwards it to the client
(RecordAndSendSPInformDone service).

Services can also be formalized in Formal Tropos
(Fuxman, 2001).

3.3 Structural Dimension

While the intentional dimension answers the question
”What does each service do?”, the structural dimen-
sion answers the question ”How is each service oper-
ationalized?”.

Services are operationalized as plans, that are se-
quences of actions. The knowledge that an agent has
(about itself or its environment) is stored in its beliefs.

An agent can act in response to the events that it han-
dles through its plans. A plan, in turn, is used by the
agent to read or modify its beliefs, and send events to
other agents or post them to itself.

The structural dimension models these agent-
oriented concepts (plan, belief, event, agent) with an
UML style class diagram extended for MAS. Due to
lack of space, in this paper, we do not study them.
A more detail definition of these concepts could be
found in (Do, 2003).

3.4 Communication Dimension

Agents interact with each other by exchanging
events. The communicational dimension models,
in a temporal manner, events exchanged in the
system. We adopt the sequence diagram model
proposed in AUML (Bauer, 2001) and extend
it: agent name/role:pattern name expresses the role
(role) of the agent (agent name) in the pattern (pat-
tern name); the arrows are labeled with the name of
the exchanged events.

Customer1/
Client:BR

bk1/
Broker:BR ServiceProvider:BR

sp1/

Subscribe/ Unsubscribe

AcceptedSubscriptionSent

RefusedSubscriptionSent

BRRefusalSent

CallForProposalSent

RefusalSent

ProposalSent

SB
pattern

ServiceRequestSent

BRAcceptanceSent

RejectedProposalSent

RejectedProposalSent

AcceptedProposalSent

CallForProposalSent

FailureServiceSent

InformDoneServiceSent

rServiceForwarded

ServiceRequestSent
InformFailure

pattern
Bidding

Figure 2: Communication Diagram - Broker

Figure 2 shows the sequence diagram of our Bro-
ker pattern. It also depicts the subscription (SB)
and bidding patterns the broker pattern embeds.
The client (customer1) sends a service request
(ServiceRequestSent) containing the charac-
teristics of the service that it wishes to obtain from
the broker. The broker may alternatively answer
with a denial (BRRefusalSent) or a acceptance
(BRAcceptanceSent).

In case of acceptance, the broker sends a call
for proposals to the registered service providers
(CallForProposalSent). The bidding pattern
is then applied to model the interaction between

AGENT-ORIENTED DESIGN PATTERNS

51

the broker and the service providers. The service
provider either fails or achieves the requested ser-
vice. The broker then informs the client by sending
a InformFailureServiceRequestSent or a
ServiceForwarded, respectively.

3.5 Dynamic Dimension

In MAS, a plan can be invoked by an event that it han-
dles and it can create new events. Relationships be-
tween plans and events can rapidly become complex.
To cope with this problem, we propose to model the
synchronization and the relationships between plans
and events with activity diagrams extended for agent-
oriented systems (See Figure 3). These diagrams
specify the events that are created in parallel, the con-
ditions under which events are created, which plans
handle which events, and so on.

Plan 1
(alternative 1)

Plan 2
(alternative 2)

Caption

Internal Event

Plan

External Event

Synchronization bar

Branch

RecordAndSendSPInformDone

......

......

......

FindBRWithMM

FindBR

RecordBRRefusal

RecordAndSendSPFailure

Proposal
Sent

For
Call

Inform
Done
Service
Sent

Client

AvailabilityQueried

Broker
QuerySPAvailability

SP not found or
constraints provided by

client can not be satisfied

CallForProposal

FailureServiceSent

Reservation

Started

BRRefusedExternal

Service Provider

InformeFailureRecordBRFailure

ServiceForwardedRecordBRForwardedService

BRFound

SendServiceRequest SendServiceRequestDecision

ServiceRequestSent

ServiceRequestSent

RecordClientServiceRequest
RecordBRAcceptance

BRAcceptanceSent

BRAcceptancePosted

Bidding
pattern

Figure 3: Dynamic Diagram - Broker

An event is represented by a arrow, a plan is repre-
sented by an oval. If an event is handled by alternative
plans, they are enclosed in a round-corner box. Syn-
chronization and branching are represented as usual.

We omit the dynamic dimension of the Subscrip-
tion and the Bidding patterns, and only present in Fig-
ure 3 the activity diagram specific to the Broker pat-
tern. It models the flow of control from the emission
of a service request sent by the client to the reception
by the same client of the realized service result sent
by the broker. Three swimlanes, one for each agent
of the Broker pattern, compose the diagram. In this
pattern, the FindBroker service described in Sec-
tion 3.2, is either operationalized by the FindBR or
the FindBRWithMM plans (the client finds a broker
based on its own knowledge or via a matchmaker).

At a lower level, each plan could also be modeled
by an activity diagram for further detail if necessary.

Figure 4: JACK Code Generation

4 CODE GENERATION

The main motivation behind design patterns is the
possibility of reusing them during detailed design and
implementation. Numerous CASE tools such as Ra-
tional Rose (Rose) and Together (Together) include
code generators for object-oriented design patterns.
Programmers identify and parameterize, during de-
tailed design, the patterns that they use in their ap-
plications. A code skeleton for patterns is then au-
tomatically generated and programming is thus made
easier.

Such tools are not yet available for agent design
patterns. A recent development in the SKWYRL pat-
terns framework is the proposal a code generator for
the social patterns introduced in Section 2. Figure 4
shows the main window of the tool. It is developed
with Java and produces code for JACK (JACK), an
agent-oriented development environment built on top
of Java. JACK extends Java with specific capabilities
to implement agent behaviors. On a conceptual point
of view, the relationship of JACK to Java is analogous
to that between C++ and C. On a technical point of
view, JACK source code is first compiled into regular
Java code before being executed.

In the SKWYRL code generator, the programmer
first chooses which social pattern to use, then the
roles for each agent in the selected pattern (e.g., the
E Broker agent plays the broker role for the Bro-
ker pattern but can also play the client role for the
Bidding pattern and the yellow-page role for the Sub-
scription pattern in the same application). The pro-
cess is repeated until all the patterns in the application
are identified. The code generator then produces the
generic code for the patterns (the .agent, .event, .plan,
.bel JACK files).

Figure 5 shows an e-business broker developed
with JACK. The code skeleton was generated with

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

52

Figure 5: An E-Business Broker

our code generator using the Broker pattern. The
customer sends a request to the broker to buy or sell
DVDs, specifying titles, quantity, and deadline for an-
swering the request. When receiving the customer re-
quest, the broker interacts with the E MediaShops to
obtain the DVDs (bottom-right corner of the figure).
At every iteration, the broker can accept an offer, raise
the bid, or cancel the process.

5 CONCLUSION

Patterns ease the task of developers describing sys-
tem architectures. This paper has introduced the
SKWYRL social patterns framework designed for
agent methodologies like TROPOS to formalize a code
of ethics for social patterns (MAS design patterns in-
spired by social and intentional characteristics), an-
swering questions like: “what can one expect from
a broker, mediator, or embassy?”. The framework is
used to:

• define social patterns and answer the above ques-
tion according to the five modeling dimensions of
TROPOS: social, intentional, structural, communi-
cational, and dynamic.

• drive the design of the details of a MAS architec-
ture in terms of those social patterns during the
detailed-design phase.

The paper has overviewed some social design pat-
terns on which we are working. The five dimensions
of the framework have been illustrated through the
Broker pattern.

Future research directions include the precise for-
malization of a catalog of social patterns, including
the characterization of the sense in which a particu-
lar MAS architecture is an instance of a configuration
of patterns. We will also compare and contrast social

patterns with classical design patterns proposed in the
literature.

REFERENCES

Y. Aridor and D. B. Lange. “Agent Design Patterns: Ele-
ments of Agent Application Design”, in Proc. of the
2nd Int. Conf. on Autonomous Agents (Agents’98), St
Paul, Minneapolis, USA, 1998.

B. Bauer, J. P. Muller and J. Odell “Agent UML: A Formal-
ism for Specifying Multiagent Interaction”, in Proc.
of the 1st Int. Workshop on Agent-Oriented Software
Engineering (AOSE’00), Limerick, Ireland, 2001. he
Netherlands, 2002.

D. Deugo, F. Oppacher, J. Kuester and I. V. Otte. “Patterns
as a Means for Intelligent Software Engineering”, in
Proc. of the Int. Conf. on Artificial Intelligence (IC-
AI’99), Vol. II, CSRA, 1999.

T. Tung Do, M. Kolp, T. T. Hang Hoang and A. Pirotte. ”A
Framework for Design Patterns for Tropos”, in Proc.
of the 17th Brazilian Symposium on Software Engi-
neering (SBES 2003), Maunas, Brazil, 2003.

Foundation for Intelligent Physical Agents (FIPA).
http://www.fipa.org

A. Fuxman, M. Pistore, J. Mylopoulos and P. Traverso.
“Model Checking Early Requirements Specifications
in Tropos”, in Proc. of the 5th IEEE Int. Symposium on
Requirements Engineering (RE’01), Toronto, Canada,
2001.

E. Gamma, R. Helm, J. Johnson and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Soft-
ware, Addison-Wesley, 1995.

S. Hayden, C. Carrick and Q. Yang. “Architectural Design
Patterns for Multiagent Coordination”, in Proc. of the
3rd Int. Conf. on Agent Systems (Agents’99), Seattle,
USA, 1999.

JACK Intelligent Agents. http://www.agent-software.com/.

M. Kolp, P. Giorgini and J. Mylopoulos. “A Goal-Based
Organizational Perspective on Multi-Agents Architec-
tures”, in Proc. of the 8th Int. Workshop on Intelli-
gent Agents: Agent Theories, Architectures, and Lan-
guages (ATAL’01), Seattle, USA, 2001.

Rational Rose. http://www.rational.com/rose/.

Together. http://www.togethersoft.com/.

E. Yu. Modeling Strategic Relationships for Process
Reengineering, PhD thesis, University of Toronto, De-
partment of Computer Science, Canada, 1995.

AGENT-ORIENTED DESIGN PATTERNS

53

