
F2/XML: MANAGING XML DOCUMENT
SCHEMA EVOLUTION

Lina Al-Jadir, Fatmé El-Moukaddem
Department of Computer Science, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon

Keywords: XML, schema evolution, object-oriented database system

Abstract: XML has become an emerging standard for data representation and data exchange on the Web. Although
XML data is self-describing, most application domains tend to use document schemas. Over a period of
time, these schemas need to be modified to reflect a change in the real-world, a change in the user’s
requirements, mistakes or missing information in the initial design. Most of the current XML management
systems do not support schema changes. In this paper, we propose the F2/XML method to manage XML
document schema evolution. We consider XML documents associated with DTDs. Our method consists in
three steps. First, the DTD and XML documents are stored as a database schema and a database instance
respectively. Second, DTD changes are applied as schema changes on the database. Third, the updated DTD
and XML documents are retrieved from the database. Our method supports a complete set of DTD changes.
The semantics of each DTD change is defined by preconditions and postactions, such that the new DTD is
valid, existing XML documents conform to the new DTD, and data is not lost if possible. We implemented
our method in the F2 object-oriented database system.

1 INTRODUCTION

As eXtensible Markup Language (XML) has
become an emerging standard for data representation
and data exchange on the Web, it has gained
attention in the database (DB) community. Recently,
researchers have addressed the problem of storing
XML data in databases and processing XML queries
using the mature technology of database systems
(Florescu and Kossmann 1999, Shanmugasundaram
et al. 1999, Shimura, Yoshikawa, and Uemara 1999,
Kappel et al. 2000, Klettke and Meyer 2000,
Schmidt et al. 2000, Chung et al. 2001). In this
paper, we go further, and use schema evolution
capabilities of a database system (DBMS) in order to
manage XML document schema evolution.

In many applications a schema is associated with
an XML document to specify and enforce the struc-
ture of the document. The schema of an XML docu-
ment is allowed to be irregular, partial, incomplete,
not always known ahead of time, and may conse-
quently change frequently and without notice (Kap-
pel, Kapsammer, and Retschitzegger 2001).
Moreover, the schema may change over time to re-
flect a change in the real-world, a change in the
user’s requirements, and mistakes in the initial
design (Su et al. 2001). Most of the current XML

management systems do not support schema
changes. Modifying the schema of XML documents
is not a simple task, since the documents which
conform to the old schema must be transformed in
order to conform to the new schema. This problem is
similar to schema evolution in databases (Banerjee
et al. 1987, Penney and Stein 1987, Tresch 1991,
Ferrandina et al. 1995, Al-Jadir et al. 1995, Al-Jadir
and Léonard 1998). Our approach is to use what has
been done in database schema evolution and apply it
to XML documents.

In this paper, we consider the Document Type
Definition (DTD) as XML schema mechanism. To
modify the DTD of XML documents we propose the
F2/XML method which consists in three steps (see
Figure 1). Step 1: the DTD is stored as an object
database schema and the XML documents are stored
as an object database instance. Step 2: DTD changes
are applied as schema changes on the database. Step
3: the updated DTD and XML documents are
retrieved from the database. Our method supports a
complete set of DTD changes. The semantics of
each DTD change is defined by preconditions and
postactions, such that the new DTD is valid, existing
XML documents conform to the new DTD, and data
is not lost if possible. We implemented our method
in the F2 general-purpose DBMS, but it can be

251
Al-Jadir L. and El-Moukaddem F. (2004).
F2/XML: MANAGING XML DOCUMENT SCHEMA EVOLUTION.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 251-258
DOI: 10.5220/0002640602510258
Copyright c© SciTePress

applied using any object or object-relational DBMS
which supports schema evolution.

The paper is organized as follows. Section 2 re-
views related work. Section 3 describes the storage
and retrieval of XML documents in/from object
databases in the F2/XML method. Section 4 presents
the DTD changes supported in F2/XML with their
semantics and implementation. Section 5 concludes
the paper.

2 RELATED WORK

Several approaches have been proposed to store
XML documents in databases. Some of them are
independent of DTDs (Florescu and Kossmann
1999, Shimura, Yoshikawa, and Uemara 1999,
Schmidt et al. 2000). Others map the DTD into a
relational database schema (Shanmugasundaram et
al. 1999, Kappel et al. 2000), an object-relational
database schema (Klettke and Meyer 2000), or an
object database schema (Chung et al. 2001). In
(Shanmugasundaram et al. 1999) the authors
propose three inlining techniques to generate a
relational schema from a DTD after simplifying the
DTD and building a DTD graph. In (Kappel et al.
2000) the authors propose mappings between a DTD
and a relational schema according to the charac-
teristics of XML elements and XML attributes. The
mappings are not hard-coded within an application,
but stored within the meta-schema. In (Klettke and
Meyer 2000) the authors present some straightfor-
ward mappings to transform a DTD into an object-
relational schema, and propose to use hybrid
databases, i.e. databases with a data type XML,
using statistics. In (Chung et al. 2001) the authors
store XML data in an object-oriented database using
an inlining technique, and propose to use inheritance
in case of alternative and optional elements.

Our F2/XML method (Steps 1 and 3) has the fol-
lowing advantages. It uses the object model which
allows us to represent parent-child relationships by
direct references (no need to create manually join
database attributes and foreign keys as in relational

DB), and repetition of children by multi-valued data-
base attributes (no need to create separate relations
as in relational DB). Note that we use the term
database attributes for attributes of a class/relation,
and XML attributes for attributes of an element. Our
method stores alternatives among children. The
other approaches (except Kappel et al. 2000) either
do not store the DTD, or remove alternatives by
simplifying the DTD, or use inheritance (which may
lead to an explosion of the number of subclasses due
to all combinations). Our method stores the order
among children, which is missing in some
approaches. It keeps track of groups, while the other
approaches (except Kappel et al. 2000) do not.
Moreover, it allows us to go backward, i.e. to
retrieve back the DTD from the database without
loss of information, which is not possible in the
other approaches (except Kappel et al. 2000).

XEM (Su et al. 2001) is an approach which han-
dles DTD evolution. It supports 14 DTD changes,
the semantics of which is given by preconditions and
results to ensure the validity of the new DTD and the
conformity of XML documents. Our F2/XML meth-
od differs from XEM. It supports more DTD
changes (see §4.1), such as changing the parent or
child in a parent-child relationship, changing a
parent-child relationship to an XML attribute and
vice-versa, changing the order of a parent-child
relationship, renaming an attribute, changing the
element of an attribute, and changing the type of an
attribute. Moreover, our semantics of the same DTD
changes is different. For example, when changing
the cardinality of a child C in the definition of
element E from repeatable to non-repeatable, XEM
removes all occurences of the child C except the
first, while F2/XML rejects this DTD change if an
instance of element E has more than one occurence
of child C in the document. Avoiding data loss in the
XML document when changing its DTD is a major
concern in our method. It motivates the existence of
some of our DTD changes (not available in XEM)
and our semantics of DTD changes (different from
XEM’s semantics). Finally, F2/XML (unlike XEM)
implements DTD changes as database schema
changes performed by primitive and triggered meth-
ods.

Our approach, like XEM, is tightly-coupled with
a database system. SAXE (Su et al. 2002) is a
loosely-coupled approach for XML-Schema
evolution. An XML-Schema change is expressed as
an Update-XQuery statement. This statement is
rewritten into a safe Update-XQuery statement, by
embedding constraint checking operations into the
query, to ensure the consistency of XML documents.
The safe query can be then executed by any XML
system supporting the Update-XQuery language.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

252

In (Bertino et al. 2002) the authors tackle a
different problem. They propose an approach to
evolve a set of DTDs, representative of the
documents already stored in a database, so to adapt
it to the structure of new documents entering the
database.

3 STORAGE AND RETRIEVAL OF
XML DOCUMENTS

In this section we present Steps 1 and 3 of the F2/
XML method. The former stores an XML document
in an object database, while the latter retrieves it
from the database (Al-Jadir and El-Moukaddem
2002).

3.1 Running Example

Figure 2 gives a DTD example about a musical
band, and Figure 3 gives a document which
conforms to this DTD.

3.2 Extending the Meta-Schema

Since the F2 DBMS supports uniformity of objects
(i.e. database objects, schema objects, and meta-
schema objects are stored, accessed, and
manipulated in the same way) (Al-Jadir et al. 1995),
its meta-schema is accessible and can be easily
extended. To store DTDs and XML documents in F2
databases, we add the following classes to the F2
meta-schema (see Figure 4).

We add the class XMLComponent as a subclass
of TupleClass. It inherits the attribute className of
CLASS, and has the compKind attribute (component

kind is “element” or “group”). It has 2 subclasses:
XMLElement (to store elements) and XMLGroup (to
store groups). XMLElement has the elemKind
attribute (element kind is “empty”, “atomic”, or
“composite” as in (Kappel, Kapsammer, and
Retschitzegger 2001)) and is specialized into
XMLEmpty (to store empty elements, e.g. Joined),
XMLAtomic (to store atomic elements, e.g. Name),
and XMLComposite (to store composite elements,
e.g. Band). XMLGroup has a boolean attribute
isMixed (e.g. (#PCDATA | Description) is a mixed
group).

We also add the classes XMLRelationship (to
store parent-child relationships, e.g. Band-Name,
Name-PCDATA) and XMLAttribute (to store element
attributes, e.g. BDate) as subclasses of ATTRIBUTE.
Thus they inherit the attributes: attributeName,
originClass, domainClass, minCard, maxCard and
attKind (attribute kind is “DBAttribute”,
“XMLRelationship”, or “XMLAttribute”).
XMLRelationship has an additional integer attribute
order. XMLAttribute has three additional attributes:
attType (CDATA, enum, ID, or IDREF),
defaultValue, and isFixed (boolean).

3.3 Storing XML Documents in
Object Databases

The F2/XML method, in Step 1, stores a DTD as a
database schema and XML documents as a database
instance.

F2/XML: MANAGING XML DOCUMENT SCHEMA EVOLUTION

253

3.3.1 Storing an XML DTD as a Database
Schema

First, our method builds a directed DTD graph as
follows. Each element E in the DTD is represented
as a node labeled E. If element E has a child C, this
is represented by an edge from node E to node C.
This edge is labeled with an integer indicating the
order of the child in element E, and a cardinality (?,
−, ∗, +). The simplest case is when the child is an
element. If the child is a group (i.e. between
parentheses), an edge links node E to an
intermediate unlabeled node. To this node are added
edges for the components of the group. If element E
is atomic, an edge links node E to node PCDATA.
Two alternate children of element E take the same
order on the corresponding edges. An attribute of
element E is represented by an edge from node E to
node CDATA or to node XMLID (in case of ID or
IDREF(S). In the last case, the edge is dashed) or to
a new node (in case of enumerated attribute). This
edge is labeled with the attribute name and the
cardinality ‘?’ if #IMPLIED or ‘−’ if #REQUIRED
(if the attribute is of type IDREFS, the cardinality
becomes ‘∗’ or ‘+’ respectively). The DTD graph

corresponding to the Band DTD is shown in Figure
5.

Second, our method maps the DTD graph into a
database schema in a straightforward way. Each
node labeled N is mapped into a class (object in
XMLEmpty or XMLAtomic or XMLComposite) named
N. Unlabeled nodes are mapped into classes (objects
in XMLGroup) named group1, group2, etc. Dashed
nodes are mapped into predefined classes. Each edge
labeled with order o, from node A to node B, is
mapped into an attribute (object in XMLRelationship)
of class A, having domain class B, named B and
taking order o. Similarly, each edge labeled with
name l, from node A to node B, is mapped into an
attribute (object in XMLAttribute) of class A, having
domain class B, and named l. The edge cardinality
labels are mapped into minimal and maximal
cardinalities of the DB attribute, i.e. ‘?’ into (0,1),
‘−’ into (1,1), ‘∗’ into (0,m) and ‘+’ into (1,m). The
value of m is set by default to 10, and can be
changed later by a schema change (Al-Jadir et al.
1995). Note that a multi-valued DB attribute is
implemented as list-of to maintain the order among
values.

3.3.2 Storing an XML Document as a
Database Instance

At this stage, the document’s DTD is stored in a
database. Our method parses the XML document to
get its tree representation. Starting from the root
node R, it retrieves the children of node R and stores
their names in a string S1. It queries the meta-
schema to get the attributes of the class
corresponding to node R, and forms a regular
expression S2 (S2 corresponds to the definition of
the root element in the DTD). It applies then regular
expression match between S1 and S2, and creates
objects in the corresponding classes in the database.
This process is applied recursively. The database

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

254

instance corresponding to the Band XML document
is shown in Figure 6. Note that classes PCDATA and
CDATA are atomic classes and contain string atomic
objects.

3.4 Retrieving XML Documents from
Object Databases

The F2/XML method, in Step 3, retrieves the DTD
and the documents stored in the database. By query-
ing the meta-schema, it retrieves the documents’
DTD easily. To retrieve an entire document, it finds
first the object representing its root instance (this in-
formation is recorded when the document is stored).
Then it navigates through the database by querying
the meta-schema and following this object’s
attribute values. Although the document is
fragmented, the object model allows easy navigation
(instead of joins as in relational DB) to reconstruct
the document.

We tested the storage and retrieval of XML
documents in/from F2 databases with Shakespeare’s
plays and DBLP bibliography (Al-Jadir and El-
Moukaddem 2002).

4 DTD EVOLUTION

In this section we present Step 2 of the F2/XML
method. We build a complete set of DTD changes.
We list the invariants that must be preserved across
DTD changes. We define then the semantics of DTD
changes. This framework is similar to the one used
in DB schema evolution (Banerjee et al. 1987,

Penney and Stein 1987, Tresch 1991, Ferrandina et
al. 1995, Al-Jadir et al. 1995). Then we implement
DTD changes as database schema changes.

4.1 Set of DTD Changes

Which DTD changes to support? To answer this
question, we look at the XML part of the F2 meta-
schema (Figure 4) since it reflects the XML model.
For each of its classes, we apply the primitive
methods create, delete, and update on its objects. We
define the set of DTD changes thus built as
complete, since it includes all the possible “atomic”
DTD changes. The set of DTD changes supported in
the F2/XML method is shown in Figure 7. Note that
we omit two changes because they emerge from the
F2 implementation level and not from the XML
context: change the isMixed value of a group, and
update the name of a parent-child relationship. Our
definition of completeness of a set of DTD changes
is different from XEM’s definition. The latter (set of
operations that allows to transform any DTD d into
any DTD d’) in (Su et al. 2001) does not take into
account the data. Indeed, reducing a DTD d to an
empty DTD and then building the new DTD d’ will
have as consequence the loss of data in the XML
documents (deleting all elements in the DTD deletes
all element instances in the documents).

F2/XML: MANAGING XML DOCUMENT SCHEMA EVOLUTION

255

4.2 XML Invariants

XML invariants are properties that must always be
satisfied, even across DTD changes. We identify the
following invariants from (Bray et al. 2000):
• An empty element has no children. An atomic el-
ement has one PCDATA child. A composite element
has children which are elements or groups. Note that
an element with mixed content (e.g. Instrument) is a
composite element with one repeatable child which
is a group. This group is a choice between PCDATA
and other elements.
• No element may be declared more than once.
• The type of an attribute is either CDATA, or ID,
or IDREF(S), or an enumeration list.
• No attribute may be declared more than once for
the same element.
• The default declaration of an attribute is either a
default value, or #IMPLIED, or #REQUIRED, or
#FIXED with a default value.
• No element may have more than one ID attribute.
• An ID attribute is defined either with a default
value or as required.

• ID values uniquely identify the elements which
bear them.
• An IDREF value matches the value of some ID
attribute.
• The default value of an attribute is compatible
with the attribute type.

4.3 Semantics of DTD Changes

We define the semantics of each DTD change by
preconditions and postactions such that the new
DTD is valid (i.e. XML invariants are preserved),
existing XML documents conform to the new DTD,
and data is not lost if possible. Preconditions are
conditions that must be satisfied to allow the DTD
change to occur. Otherwise, the DTD change is
rejected by the system. Postactions are actions that
take place as consequences of the DTD change.
They are applied by the system on the DTD and on
the documents.

As an example, we give the semantics of
changing the parent in a parent-child relationship
(DTD change 6.1 in Figure 7). The parameters of
this DTD change are the P-C relationship and the
new parent P’.
Preconditions:
• there exists a parent-child P’-P relationship. In
other words, we can move a nested element only one
level up.
Postactions on the DTD:
• the new P’-C relationship takes the order max+1
(max is the highest order of a relationship for P’),
and the order of subsequent relationships for P is
decremented by 1.
• if the P’-P relationship is multi-valued (‘+’ or ‘∗’)
and P-C was single-valued (‘−’ or ‘?’), then P’-C be-
comes multi-valued.
• if the P’-P relationship is optional (‘?’ or ‘∗’) and
P-C was mandatory (‘−’ or ‘+’), then P’-C becomes
optional.
Postactions on the document:
• all C instances are removed from the content of P
instances and added to the content of P’ instances at
the end.

We illustrate this DTD change with our Band ex-
ample. We find out that all members joined the
musical band in the same year. Thus there is no need
to store the year for each member. Consequently, we
make Joined a child of Band instead of Member, i.e.
we change the parent in the Member-Joined relation-
ship to Band. The precondition of this DTD change
is satisfied since there is a Band-Member
relationship. As postactions on the DTD, the Band-
Joined relationship takes the order 5, and gets the

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

256

cardinality ‘+’ (see Figure 8). As postactions on the
document, the Joined instances are removed from
the Member instances and added to the Band
instance (see Figure 9). It is up to the user to keep
the duplication (two Joined instances), or remove it
and then change the cardinality of the Band-Joined
relationship to ‘−’ (DTD change 6.4 in Figure 7).
Note that changing the parent in the Member-Joined
relationship is different from deleting this
relationship and adding a Band-Joined relationship,
because in this case the content and attribute values
of Joined would be lost.

Other examples of DTD changes can be found in
(Al-Jadir and El-Moukaddem 2003).

4.4 Implementation of DTD Changes

Let us recall that modifying the DTD of XML docu-
ments is done in F2/XML by storing the DTD and
documents in a database, modifying the database
schema, and retrieving the updated DTD and docu-
ments from the database. To each DTD change
corresponds a DB schema change (by construction
of the set of DTD changes, in §4.1). A DB schema
change is implemented in the F2 DBMS by a
primitive method (create, delete, update) and

triggered methods (Al-Jadir et al. 1995). The
triggered methods implement the semantics of DTD
changes (defined in §4.3). We wrote the triggered
methods for all our DTD changes.

As an example, we give the implementation of
changing the parent in a parent-child relationship. A
parent-child relationship is stored as a database at-
tribute (object in the meta-class XMLRelationship
which is a subclass of ATTRIBUTE, in §3.2).
Modifying the origin class of this attribute
corresponds to modifying the parent in the parent-
child relationship. This schema change is
implemented by the primitive method update (which
is the same for all objects), and a triggered method
(for the event before-update of the attribute
originClass of the class XMLRelationship) to check
the precondition, and four triggered methods (for the
event after-update of the attribute originClass of the
class XMLRelationship) to apply the postactions on
the DB schema and DB instance (see semantics in
§4.3). In our Band example, modifying the origin
class of the attribute Joined, from class Member to
class Band, results in the database shown in Figure
10. From this updated database are retrieved the up-
dated DTD and document shown in Figures 8 and 9.

5 CONCLUSION

In this paper, we addressed the issue of XML docu-
ment schema evolution. We proposed and
implemented the F2/XML method to handle it. Our
method is based on the similarity with database
schema evolution. It stores XML documents with
their DTD in an object database, applies DTD
changes as DB schema changes, and then retrieves
the updated DTD and documents from the database.
Our method supports 25 DTD changes, which form
a complete set of DTD changes according to our
definition of completeness. The semantics of each

F2/XML: MANAGING XML DOCUMENT SCHEMA EVOLUTION

257

DTD change is defined by preconditions and
postactions, such that the new DTD is valid, existing
documents conform to the new DTD, and data is not
lost if possible. To each DTD change corresponds a
DB schema change which is implemented by a
primitive method and triggered methods in the F2
DBMS.

Although we used DTDs as schema specification
language, our method can be easily extended to
XML-Schema. In this case, it will support more
changes, since XML-Schema has a more sophisticat-
ed typing mechanism and supports more features.
Future work includes testing our method in real-life
applications. Querying and manipulating XML
documents stored in databases are other important
issues that we need to address. Also performance
issues deserve to be studied. Research efforts have
been put recently to benchmark XML databases
(Schmidt et al. 2001).

REFERENCES

Al-Jadir L., El-Moukaddem F., 2002. F2/XML: Storing
XML Documents in Object Databases. Proc. Int. Conf.
on Object-Oriented Information Systems, OOIS’02,
Montpellier, France.

Al-Jadir L., El-Moukaddem F., 2003. Once Upon a Time a
DTD Evolved into Another DTD. Proc. Int. Conf. on
Object-Oriented Information Systems, OOIS’03,
Geneva, Switzerland.

Al-Jadir L., Estier T., Falquet G., Léonard M., 1995.
Evolution Features of the F2 OODBMS. Proc. Int.
Conf. on Database Systems for Advanced
Applications, DASFAA’95, Singapore.

Al-Jadir L., Léonard M., 1998. Multiobjects to Ease
Schema Evolution in an OODBMS. Proc. Int. Conf.
on Conceptual Modeling, ER’98, Singapore.

Banerjee J., Kim W., Kim H-J., Korth H.F., 1987.
Semantics and Implementation of Schema Evolution
in Object-Oriented Databases. Proc. ACM Conf. on
Management Of Data, SIGMOD’87, San Francisco,
USA.

Bertino E., Guerrini G., Mesiti M., Tosetto L., 2002.
Evolving a Set of DTDs according to a Dynamic Set
of XML Documents. Proc. EDBT Workshop on XML-
Based Data Management, XMLDM’02, Prague,
Czech Republic.

Bray T., Paoli J., Sperberg-McQueen C.M., Maler E.
(eds), 2000. Extensible Markup Language (XML) 1.0
(2nd Edition). W3C Recommendation,
http://www.w3.org/TR/2000/REC-xml-20001006,
Oct. 2000.

Chung T-S., Park S., Han S-Y., Kim H-J., 2001.
Extracting Object-Oriented Database Schemas from
XML DTDs Using Inheritance. Proc. Int. Conf. on

Electronic Commerce and Web Technologies, EC-
Web’01, Munich, Germany.

Ferrandina F., Meyer T., Zicari R., Ferran G., Madec J.,
1995. Schema and Database Evolution in the O2
Object Database System. Proc. Int. Conf. on Very
Large Data Bases, VLDB’95, Zürich, Switzerland.

Florescu D., Kossmann D., 1999. Storing and Querying
XML Data Using an RDBMS. IEEE Data Eng.
Bulletin, vol. 22, no 3, pp. 27-34.

Kappel G., Kapsammer E., Rausch-Schott S.,
Retchitzegger W., 2000. X-Ray - Towards Integrating
XML and Relational Database Systems. Proc. Int.
Conf. on Conceptual Modeling, ER’00, Salt Lake City,
USA.

Kappel G., Kapsammer E., Retschitzegger W., 2001.
XML and Relational Database Systems – A
Comparison of Concepts. Proc. Int. Conf. On Internet
Computing, IC’01, Las Vegas, USA.

Klettke M., Meyer H., 2000. XML and Object-Relational
Databases - Enhancing Structural Mappings Based on
Statistics. Proc. Int. Workshop on the Web and
Databases, WebDB’00, Dallas, USA.

Penney D.J., Stein J., 1987. Class Modification in the
GemStone Object-Oriented DBMS. Proc. Conf. on
Object-Oriented Programming Systems, Languages
and Applications, OOPSLA’87, Orlando, USA.

Schmidt A., Kersten M., Windhouwer M., Waas F., 2000.
Efficient Relational Storage and Retrieval of XML
Documents. Proc. Int. Workshop on the Web and
Databases, WebDB’00, Dallas, USA.

Schmidt A., Waas F., Kersten M., Florescu D., Carey
M.J., Manolescu I., Busse R., 2001. Why and How to
Benchmark XML Databases. SIGMOD Record, vol.
30, no 3.

Shanmugasundaram J., Tufte K., He G., Zhang C., DeWitt
D., Naughton J., 1999. Relational Databases for
querying XML Documents: Limitations and
Opportunities. Proc. Int. Conf. on Very Large
DataBases, VLDB’99, Edinburgh, UK.

Shimura T., Yoshikawa M., Uemura S., 1999. Storage and
Retrieval of XML Documents using Object-Relational
Databases. Proc. Int. Conf. on Database and Expert
Systems Applications, DEXA’99, Florence, Italy.

Su H., Kane B., Chen V., Diep C., Guan D.M., Look J.,
Rundensteiner E., 2002. A Lightweight XML
Constraint Check and Update Framework. Proc. ER
Workshop on Evolution and Change in Data
Management, ECDM’02, Tampere, Finland.

Su H., Kramer D., Chen L., Claypool K., Rundensteiner
E.A., 2001. XEM: Managing the Evolution of XML
Documents. Proc. Int. Workshop on Research Issues
in Data Engineering, RIDE’01, Heidelberg, Germany.

Tresch M., 1991. A Framework for Schema Evolution by
Meta Object Manipulation. Proc. Workshop on
Foundations of Models and Languages for Data and
Objects, Aigen, Austria.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

258

