
SYSTEM DEVELOPMENT USING A
PATTERN LANGUAGE-BASED TOOL

Rosana Braga, Paulo Masiero and Fernao Germano
ICMC - University of Sao Paulo, SCE

13560-970 Sao Carlos
Brazil

Keywords: System Development, Pattern Languages, Frameworks, Systems Engineering Methodologies

Abstract: Domain-specific pattern languages can be used to model applications, so that following particular paths in
the pattern language lead to the complete design of particular systems. This paper shows how to use a
pattern language-based analysis method and tool to help in the development of domain-specific systems,
where the development is basically done at the analysis level. The requirements of the target system are
matched against analysis patterns, so that the system is specified in terms of the patterns used to model it.
The tool is fed with this information and uses it to instantiate a framework that was built based on the same
pattern language. The result is the source-code for the target system, that can be used as a prototype,
extended or improved to become the real system.

1 INTRODUCTION

Software reuse is a goal pursued since the beginning
of the computer era, because reusing already tested
artefacts leads to more productivity and quality in
software development. Providing means of writing
less code is an important topic of research, and in
this sense, several approaches have emerged in the
last decades, as for example object-oriented
programming, domain analysis, software
components, frameworks, and patterns. In particular,
object oriented frameworks are composed of
concrete and abstract classes that represent a family
of systems for a specific domain, and they can be
specialized to produce many different applications in
that domain.

Software patterns document solutions to
common problems found during software
development, so that inexperienced developers can
use these solutions when facing the same problems
(Gamma et al., 1995; Aarsten et al., 2000). A pattern
language is a structured collection of patterns that
can be applied sequentially to obtain the entire
architecture of a system (Coplien, 1998). A pattern
language represents the temporal sequence of
decisions that lead to the complete design of an
application, so it becomes a method to guide the

development process (Brugali & Menga, 1999).
Pattern languages reflect experience in specific
domains, covering all their main aspects.
Consequently, particular systems of that domain can
be specified in terms of the patterns applied to model
them. A framework can be built based on a pattern
language composed of analysis patterns that cover
the desired functionality of a specific domain (XXX
et. al., 2002). Such framework supports the
implementation of applications modelled using the
corresponding pattern language, so that the
development can be focused on the analysis level,
i.e., by knowing which patterns of the pattern
language were used to model a specific application,
it is possible to easily instantiate the framework to
that application. A visual builder can aid this task,
by automatically creating the source-code needed to
produce specific applications.

In this work we postulate that the use of a pattern
language-based tool, which automates the
instantiation of a framework, built based on the same
pattern language, substantially eases the
development of domain-specific systems. They can
be developed with no programming, focused only on
the system functionality at the analysis level. This
helps to shorten the gap between system
requirements and implementation, as the patterns are

155
Braga R., Masiero P. and Germano F. (2004).
SYSTEM DEVELOPMENT USING A PATTERN LANGUAGE-BASED TOOL.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 155-162
DOI: 10.5220/0002639001550162
Copyright c© SciTePress

situated on the analysis level and can be easily
mapped to the users requirements. At the same time,
the framework construction, which was based on the
pattern language, allows the mapping of the patterns
into the implementation classes. The pattern
language-based tool closes the cycle, allowing the
user to inform the patterns used to model the system
and automatically produce the application source-
code that, together with the framework source-code,
composes the final application.

A case study is used in this paper to illustrate the
approach. It consists of the development of a pothole
repair system, using GREN-Wizard (XXX & YYY,
2003), which is a tool to instantiate the GREN
framework (XXX & YYY, 2002), based on GRN, a
pattern language for business resource management
(XXX et al., 1999). We use this particular pattern
language and tool, but the approach is general and
can be reused for other domains.

The focus of this paper is the use of the pattern
language-based tool to obtain domain specific
systems. Before using this tool, the target system is
analyzed based on a pattern language, producing an
analysis model marked with the patterns used to
model it. This modelling is shown in Section 2.
After automatically producing the source-code of the
application, as described in Section 3, it has to be
validated and may be extended to add functionalities
not provided by the pattern language. This is
described in Section 4. Section 5 discusses the
proposed approach and related work. Finally,
Section 6 presents the conclusions and future work.

2 MODELING WITH THE USE OF
A PATTERN LANGUAGE

The first step of our approach is the system analysis
based on a domain-specific pattern language. To
begin with, it is considered that there is a domain-
specific pattern language, composed of analysis
patterns, which present solutions, in terms of class
diagrams, to solve all the main problems found when
modeling systems in that domain. Each pattern has a
solution to a particular problem and the use of this
pattern leads to a small class diagram representing
part of the target system. After applying one pattern,
the pattern language provides means of deciding
about the next patterns to be applied.

For example, consider the GRN Pattern
Language, for Business Resource Management
(Gestão de Recursos de Negócios, in Portuguese),
which was built based on practical experience
acquired during development of systems for
business resource management. We will use this
pattern language to illustrate the process proposed in

this paper. Business resources are assets or services
managed by specific applications, as for example
videotapes, products or physician time. Business
resource management applications include those for
rental, trade or maintenance of assets or services.

GRN has fifteen patterns (see Figure 1), that
guide the developer during the analysis of systems
of this domain. Its main patterns are RENT THE
RESOURCE, TRADE THE RESOURCE, and MAINTAIN
THE RESOURCE. Patterns are grouped according to
their purpose: the first three patterns concern the
identification, quantification and storage of the
business resource. The next seven patterns deal with
several types of management that can be done with
business resources, as for example, rental,
reservation, trade, quotation, and maintenance. The
last five patterns treat details that are common to all
the seven types of transactions, as for example
payment and commissions.

Figure 2 shows part of pattern 9, extracted from
GRN. Observe that the pattern structure diagram
uses the UML notation with some modifications.
Special markers are included before input and output
system operations, which are more than methods, as
they are executed in response to system events that
occur in the real world. A ? mark is used for input
operations and a ! mark is used for output
operations. A * mark before a method name means
that its call message is sent to a collection of objects,
instead of to a single instance, i.e., it will probably
be implemented as a class method. So, each pattern
has participant classes, each of them with attributes,
methods and operations. Besides, a pattern can have
alternative solutions depending on the specific
context in which it is applied. Pattern variants are
used to denote each possible solution to the same

QUANTIFY THE RESOURCE (2)

RESERVE THE
RESOURCE (5)

RENT THE RESOURCE (4) TRADE THE RESOURCE (6)

CHECK RESOURCE
DELIVERY (8)

MAINTAIN THE RESOURCE (9)

PAY FOR THE
RESOURCE

TRANSACTION (12)

ITEMIZE THE
RESOURCE

TRANSACTION (11)

IDENTIFY THE TRANSACTION
EXECUTOR (13)

QUOTE THE
TRADE (7)

QUOTE THE
MAINTENANCE

(10)

IDENTIFY
MAINTENANCE TASKS

(14)

IDENTIFY MAINTENANCE
PARTS (15)

IDENTIFY THE RESOURCE (1)

Section
2.2

Business
Transactions

Section
2.1

Business
Resource

Identification

Section
2.3

Business
Transaction

Details

STORE THE RESOURCE (3)

Figure 1: GRN Pattern Language

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

156

problem. A pattern can have optional participants, as
for example, Source Party of Pattern 9, and this is
explained in the “Participants” element. The
“Following Patterns” element guides the user to the
next patterns to be used.

Figure 2: Example of a GRN Pattern

We consider that the software engineer is

familiar with the pattern language, i.e., its domain,
the patterns available, and how to apply them. It is
also considered that a requirements artifact has been
produced that describes the desired functionality for
the system to be developed. So, this artifact has to be
studied to allow the decision of whether the analysis
pattern language and the corresponding framework
can be used for the system development.For
example, consider a Pothole Tracking Repair System
(PHTRS), as the one defined by Pressman (2001). In
this system, citizens can log onto a Web site and
report the location and severity of potholes. As
potholes are reported, they are logged within a
“Public works department repair system” and are
assigned an identifying number, stored by street
address, size (on a scale of 1 to 10), location
(middle, curb, etc.), district (determined from street
address), and repair priority (determined from the
size of the pothole). Work order data are associated
with each pothole and include pothole location and
size, repair crew identifying number, number of
people on crew, equipment assigned, hours applied
to repair, hole status (work in progress, repaired, not
repaired), amount of filler material used, and cost of
repair (computed from hours applied, number of
people, material and equipment used).

After studying GRN, the software engineer
easily recognizes that, in PHTRS, the pothole is the
resource being managed and its repair is one of the
transactions allowed to be made with resources, in
particular it is a resource maintenance, so PHTRS
can be modeled using GRN.

Once decided to go ahead, the pattern language
has to be used to model the system. The pattern
language has to be self-contained, in terms that it
needs to have the necessary information to allow its
application. In order to discipline the work, a class
diagram can be sketched that shows the portion of
the system that will use a certain pattern, using
distinct colors or symbols to stress possible
attributes, methods, or operations added to those of
the pattern. This class diagram grows gradually as
new patterns are applied. For each applicable
pattern, a mark in the requirements document has to
be made to indicate which requirements have been
satisfied by each pattern.

UML stereotypes can be used to indicate the
roles played by each class of the pattern. For each
applicable pattern, its name has to be recorded, as
well as its variant or sub-pattern, if it exists. If the
pattern has an element “Following Patterns” or
equivalent, then it is suggested which possible
patterns to investigate after applying or not a certain
pattern. This defines several possible paths to follow
that should be recorded by the developer and

SYSTEM DEVELOPMENT USING A PATTERN LANGUAGE-BASED TOOL

157

investigated individually. The requirements
document then should be examined to detect
requirements not satisfied or only partially satisfied
by the pattern language. The class diagram then has
to be complemented by the addition of new
attributes, classes, relationships, methods, and
operations, using a different color and registering in
the requirements document the parts not covered by
the pattern language.

A table containing the history of patterns and
variants used could be prepared containing: the
pattern applied; the variant or sub-pattern used
(“default” should be marked if the pattern has been
used as presented in the solution); the name of the
class participating of the pattern; and the name of the
application class that plays the role of the pattern
class participant. This table is latter useful to supply
information to be filled in the visual builder GUI
forms. The result of this step is a class diagram
complemented with information about the patterns
used and the requirements not fulfilled by the pattern
language. Alternatively, experienced developers can
proceed directly to use the tool, based only on the
analysis model.

In the PHTRS example, after applying several
patterns, the system analysis model shown in Figure
3 is obtained, together with Table 1, which shows
the history of patterns applied and roles played by
each PHTRS class. The analysis model is marked

with the patterns, using UML stereotypes, to ease
the future interaction of the software developer with
the visual builder. Notice, in Figure 3, that the P#N
stereotypes are used to denote the patterns used and,
at the same time, the roles played by a PHTRS class
in each pattern. For example, Work Order plays the
role of Resource Maintenance in patterns 9, 14, and
15, and the role of Transaction in pattern 13. These
roles can also be seen in Table 1. In fact, this table
contains the same data shown in the diagram, but
organized in such a way to ease the next step, which
consists of feeding the visual builder.

3 USING THE VISUAL BUILDER
BASED ON THE SYSTEM
MODEL MARKED WITH THE
PATTERN LANGUAGE

The second step of our approach is the use of a
visual builder or tool to implement the specific
application. Based on the analysis model of the
specific application, together with the log of the
patterns and variants used, the tool is fed with the
information needed to automatically generate the
source code of the specific application classes.

* 1

*
1

*

*

*

asks for *

1

«P#9:Destination-Party»
Public works department

idCode
name
!*list in alphabetic order
!*list work orders by department

«P#9, P#14, P#15:
Resource Maintenance»

«P#13: Transaction»
Word Order

workOrderNumber
beginDate
endDate
faultsPresented
costOfRepair
numberOfPeopleOnCrew
?open work order
?close work order
!*list pending work orders

«P#1, P#9:Resource»
«P#2:SingleResource»

Pothole
idNumber
address
status
!*list by street address
!*list by district
!*list by size
!*list by location

«P#1:ResourceType»
District

idCode
name
!*list in alphabetic order

1

«P#1:ResourceType»
Size

idCode
description
repairPriority
!&list in alphabetic order

1

«P#1:ResourceType»
Location

idCode
description
!*list in alphabetic order

1

«P#1:ResourceType»
Citizen

idCode
name
address
phoneNumber
!*list in alphabetic order

*
is reported by

«P#13:Transaction Executor»
Repair Crew

idCode
name of members
!*list work orders by repair crew

«P#14:Maintenance Task»
Repair Task

problem to solve
labor description
hours applied to repair
cost of repair
!*list tasks by repair crew

*

«P#15: Part used in Maintenance»
Material used to repair

quantity
cost

*

«P#15: Part»
Material

idCode
name
quantity in stock
!*list by name
!*list out of stock

* 1

is a

*

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

158
Figure 3: PHTRS Analysis Model

Table 1: History of patterns applied to model PHTRS
Pattern: 1 - Identify the Resource

Variant Pattern
Participant

Application
Class

Resource Pothole
Resource Type District
Resource Type Size
Resource Type Location

Multiple types

Resource Type Citizen
Pattern: 2 - Quantify the Resource

Single Resource Resource Pothole
Pattern: 9 - Maintain the Resource

Resource Pothole
Resource

Maintenance
Work Order

No source party

Destination-Party Public Works
Department

Pattern: 13 - Identify the Transaction Executor
Transaction

Executor
Repair Crew No commission

Transaction Work Order
Pattern: 14 - Identify Maintenance Tasks

Resource
Maintenance

Work Order Transaction
Executor instead
of Task executor Maintenance Task Repair Task

Pattern: 15 – Identify Maintenace Parts
Resource

Maintenance
Work Order

Part used in
Maintenance

Material used
to repair

Default

Part Material

It is considered that a framework was built,

based on the pattern language, to support the
implementation of classes in the same domain of the
pattern language. Also, there is a mapping between
the patterns of the pattern language and the
framework classes, i.e., for each participant class of
a pattern, with its attributes and methods, it is
possible to know the corresponding framework
classes, attributes, and methods. This framework can
be manually instantiated based on this mapping, but
this task is time consuming and error prone. So, a
visual builder can be built to help this task, with the
following desirable features:
 It controls the sequence of application of the

patterns, because a pattern language usually has
restrictions about the order in which the patterns
are applied, and the application of one pattern
may require the application of one or more other
patterns;

 It allows the future use of specifications when
modeling similar systems, i.e., it has to log all the
information about the patterns used to model a
particular application, to ease other
developments;

 It allows the application of one pattern more than
once, because the same problem may occur
several times during system development;

 It automatically creates the concrete application
classes and database to persist objects, which can
be done based on the mapping between patterns
and framework classes.
Table 2 summarizes the five sub-steps involved

in the use of a visual builder. The first sub-step may
require iteration through the pattern language, as
many real applications deal with more than one
resource. For example, in a car repair shop, “car” is
the resource being maintained and “part” is the
resource being sold to the customer during the
repair. Besides, “part” is the resource being bought
from the supplier. So, there are two resources being
managed in this example, the first related to a
transaction (maintenance), and the other to two
corresponding transactions (sale and purchase).

In the second sub-step, the user has to decide
about which reports, among those offered by the
pattern language, are part of the specific application
requirements. For example, in PHTRS it is
interesting to have a report of the pending work
orders, i.e., work orders that are in progress. This
corresponds to the system operation:
“!*getPendingMainten()”, which is part of the class
diagram of Figure 2 (Resource Maintenance class).
It is important to notice that basic system operations,
such as inclusion or update of the work order, search
of objects by idcode or description, etc., are
automatically provided by GREN-Wizard, so they
do not need to be chosen by the user.

Table 2: The process for using the visual builder

Step Description
1 – Model
definition

The model of the target application
is informed to the visual builder, in
terms of patterns applied.

2 – Choose
reports

Output system operations, denoted
in the pattern language with a !
mark, can be chosen to make part of
the final application.

3 – Generate
classes

Final application classes are
generated, overriding the necessary
methods and dealing with added
attributes and classes.

4 – Generate
database

Depending on the framework, the
corresponding database is created to
persist objects.

5 – Adapt the
graphical user
interface

Adjustments are made to the final
application to adapt its graphical
user interface according to the
specific application.

SYSTEM DEVELOPMENT USING A PATTERN LANGUAGE-BASED TOOL

159

Sub-steps 3 and 4 deal with code and tables
generation, and depend on the particular framework.
Sub-step 5 takes care of small adaptations done to
the generated code, as for example changing labels
and position of widgets in the GUI. More elaborated
adaptations are part of the third step of our approach,
shown in Section 4.

As an example, consider the GRN pattern
language, introduced in Section 2. The GREN
framework (XXX & YYY, 2002) was developed to
support the implementation of applications modeled
using GRN. All the behavior provided by classes,
relationships, attributes, methods, and operations of
GRN patterns, is available on GREN. Its
implementation was done using VisualWorks
Smalltalk, and the MySQL DBMS for object
persistence. The first GREN version contains about
150 classes and 30k lines of Smalltalk code.

GREN instantiation consists of adapting its
classes to particular requirements of concrete
applications. This is done by creating subclasses
inheriting from GREN abstract classes and
overriding the necessary methods. As GREN has
been built based on GRN, its documentation was
done in such a way that, by knowing which patterns
and variants were applied, several mapping tables
can be consulted to determine which classes need to
be specialized, and which methods need to be
overridden, to obtain the concrete application.

GREN-Wizard is a visual builder to support
GREN instantiation. It was designed so that
framework users need only to know the GRN pattern
language in order to obtain the Smalltalk code for
their specific applications. So, the interaction with
GREN-Wizard GUI forms is inspired on using
GRN. In fact, they are used in parallel. The user will
be asked which patterns to use, which variants are
more appropriate to the specific application, and
which classes play each role in the pattern variant
used. For example, in Figure 4, Pattern 9 of GRN –
Maintain the Resource – is being applied, so the user
is feeding information about the resource
maintenance. A specific variant has been selected,
which allows the omission of a pattern participant
(see Figure 2). After applying this pattern, several
choices will be offered to proceed with the
application of other GRN patterns.

Some characteristics of GREN-Wizard are: 1)
storage of the pattern language meta-model,
containing the patterns, their possible variants, the
classes, methods, and attributes belonging to each
pattern, the relationship among patterns, the possible
sequence of application of the patterns, etc. For
example, the fields of the form shown in Figure 4
are dynamically built from a database; 2) creation
and storage of new applications, generated based on
GRN, with information about the patterns used and

the patterns application order. This information can
be used to reengineer the application, or to build
similar systems. Furthermore, reports about the
history of patterns applied to model the application,
can be shown; 3) addition of new attributes to the
classes (other than the pattern attributes), which can
be of a simple data type (for example, integer, string,
float, etc.), obtained from a Table or discrete List, or
a multi-valued type. The last three types make easier
to include N to 1 and N to N relationships between
classes; 4) reuse of attributes or classes from
previous systems implemented with the builder. For
example, if you have developed an application in
which the attributes of the Customer class have been
entered, you can reuse most of them when
developing a Patient class; and 5) partial or total
reuse of systems implemented with the builder, in
the construction of similar systems.

Returning to our example, after PHTRS is fully
specified in terms of GRN patterns, this information
is saved using GREN-Wizard. Then, the reports that
will be available in the final application are chosen,
and the code generator is invoked to automatically
create classes, methods, and the graphical user
interface. Also, the MySQL tables are automatically
created by GREN-Wizard, for objects persistence.
The result of this step is a prototype for the PHTRS
system that has to be tested and possibly extended.

4 PROTOTYPE VALIDATION AND
EXTENSION

The third step of our approach is the adaptation of
the source-code, to satisfy the requirements that are
not covered by the pattern language and by the
framework. This action is optional, as some
applications can be fully generated in an automatic
way. During the first step of our approach, when the
target system was analyzed using the pattern
language, the requirements document was annotated,
to highlight all possible non-covered requirements.
However, an elaborated test may help to find other
more fine-grained requirements that should be
fulfilled. So, a complete functional test has to be
conducted, aiming at producing a list of adaptations
to be done to the prototype, which will evolve into
the real system.

Once decided to enhance the prototype with
additional functionality, the framework technical
documentation and code have to be understood, to
allow the adaptations to be made. The result is the
application specific code, that has to be submitted to
new tests, before delivery to the final user.

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

160

It is important to notice that this step will depend

exclusively on the coverage of the domain provided
by the framework. A framework may cover less than
half of the functionality of a particular domain, so a
lot of work has to be done after instantiating it, or it
can offer a 100% coverage of the functionality,
implying in no programming at all.

In our PHTRS example, GREN-Wizard was able
to cover all the functionality, so the system could be
executed with no additional programming, except
that we have improved the GUI with more
meaningful labels and repositioned some widgets.
The fact that GREN-Wizard allows the inclusion of
typed attributes, as proposed by the Type-Object
pattern (Johnson & Wolf, 1997), eases substantially
the coverage of the domain, because classes that are
not part of the patterns can be added to the model
using these typed attributes. Nevertheless, if new
functionality is needed by the system, the resulting
source-code can be modified using the VisualWorks
environment and, in this case, the GREN
documentation needs to be studied by the software
engineer, to determine which classes need to be
modified or added. Adaptations should be evaluated
to determine if they are worth to be implemented in
the framework for future use, or if they are specific
to the application and should be implemented only
in the specific system.

5 RELATED WORK

The approach presented in this paper follows the
patterns proposed by Roberts and Johnson (1998) for
framework development, but differs in an important
aspect: the use of a pattern language to guide the
instantiation process. This makes the instantiation
process easier, because it occurs in a higher semantic
level than other framework instantiation processes.
Another advantage, for the framework developer, is

that it is possible to construct a visual builder
without needing to gradually build a component
library and developing black box objects.

Our approach is similar to the software product-
line engineering approach, that aims at generating
code for families of applications (Weiss and Lai,
1999). Both approaches generate code to be
compiled and executed, but differ on how the code is
generated. The product-line approach generates code
from templates of code, whose place-holders are
filled in by instructions supplied by the application
developer, from a high level Application Modeling
Language, while the visual builder instantiates a
framework following the same procedure that would
be followed by a human application developer, when
instantiating the white-box version of the GREN
framework. We think that this is only possible
because the framework and the visual builder were
developed based on a pattern language.

Similar work, concerning the relationship
between pattern languages and frameworks, was
done by Brugali et al. (2000), who have developed a
framework for flexible manufacturing systems,
based on a pattern language for the same domain.
However, their pattern language is not an analysis
pattern language, like the one presented in this work,
and we do not know about the existence of a tool to
automate the framework instantiation.

6 CONCLUDING REMARKS AND
ONGOING WORK

System development can be enhanced with the aid
of tools that accept information about the system in
higher abstraction levels. Our approach uses domain
specific pattern languages to achieve this goal, so
that the reuse of object-oriented frameworks can be
done without requiring the user to know the
framework implementation details. Rather, they

Figure 4: Example of the GREN-Wizard Graphical User Interface

SYSTEM DEVELOPMENT USING A PATTERN LANGUAGE-BASED TOOL

161

basically need to know about the pattern language
usage, in order to instantiate the framework. Thus,
system development is focused on the functionality
required, with a clear notion of which requirements
are attended by each pattern.

The visual builder can also be used as an
instrument to compose systems from patterns,
choosing each pattern from its syntactic structure,
instead of its semantic meaning in the pattern
language domain, thus enlarging enormously the
domain of applications that can be generated.

Several systems were developed by students
using GREN-Wizard, with good results in
productivity and requirements satisfaction. The
analysis step, for these case studies, took in average
2 hours for medium applications such as: video
rental with 32 classes, product sales with 16 classes,
car repair shop with 22 classes, library with 24
classes, among others. The time required to develop
these applications, using GREN-Wizard was
approximately half an hour for each of them, while
the same application, when manually instantiated
using the white-box version of the framework, took
approximately 10 hours. Notice that programming
these applications from scratch would require
several one-person-week work.

Other case studies are being conducted to
evaluate the visual builder usability and the
difficulties to implement the functionalities not
provided by the framework. Some early results point
that, a significant part of the non-attended
functionality, can be used as feedback to improve
the framework, while a minor part should be
implemented only in the specific application.

As shown in this paper, the Visual Builder does
not have a graphical interface yet. We are working
now in developing an interface with the UML CASE
tool ROSE, such that the patterns can be chosen
from graphical templates, adapted according to the
application semantic and exported to our tool using
XML, for example.

GREN-Wizard is being used as a prototype
creation tool, to support an agile process, named
PARFAIT, for reengineering in the domain of
business resource management (Cagnin et al. 2003).

Aspect based development (Kiczales, 1996) is
being used within a Master’s research to include
non-functional requirements in applications
instantiated from the framework/pattern language.

REFERENCES

Aarsten, A.; Brugali, D.; Menga, G. 2000. A CIM
Framework and Pattern Language, in “FAYAD, M.
E. & JOHNSON, R. E. (eds.). Domain-Specific

Application Frameworks: Frameworks Experience by
Industry, John Wiley & Sons.”, p. 21-42.

XXX, X. X. X.; YYY, Y. Y. Y.; ZZZ, Z. Z. 1999 A
Pattern Language for Business Resource Management.
Proceedings of the 6th Pattern Languages of
Programs Conference (PLoP’99), Monticello-IL,
USA, v.7, p. 1-34.

XXX, X. X. X.; YYY, Y.Y., 2002. A Process for
Framework Construction Based on a Pattern
Language. In: Proceedings of the 26th Annual
International Computer Software and Applications
Conference, Oxford, IEEE Computer Society, 2002. p.
615-620

XXX, X. X. X.; YYY, Y.Y., 2003. Building a Wizard for
Framework Instantiation Based on a Pattern Language.
In: 9th International Conference on Object-Oriented
Information Systems, Genebra, Suiça. Lecture Notes
on Computer Science, LNCS 2817, Springer, p. 95-
106.

Brugali, D.; Menga, G.; Aarsten, A. 2000. A Case Study
for Flexible Manufacturing Systems, in in “Fayad, M.
E. & Johnson, R. E. (eds.). Domain-Specific
Application Frameworks: Frameworks Experience by
Industry, John Wiley & Sons.”, p. 85-99.

Brugali, D. & Menga, G. (1999). Frameworks and Pattern
Languages: an Intriguing Relationship. In ACM
Computing Surveys, march 1999.

Cagnin, M.I.; Maldonado, J.C.; Penteado, R.; Germano, F.
2003. PARFAIT: Towards a Framework-based Agile
Reengineering Process. In: Agile Development
Conference (ADC'2003), IEEE Proceedings, p. 22-31.

Coplien, J.O. 1998. Software Design Patterns: Common
Questions and Answers, in Linda Rising (editor)
(1998) The Patterns Handbook: Techniques,
Strategies, and Applications, Cambridge University
Press, New York, p. 311-320.

Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. (1995).
Design Patterns – Elements of Reusable Object-
Oriented Software. Reading-MA, Addison-Wesley.

Johnson, R. & Woolf, B. 1997. Type Object, chapter 4, In
“Martin et al. et al. (1998), Pattern Languages of
Program Design 3, Reading-MA, Addison-Wesley”, p.
47-65.

Kiczales, G. 1996. Aspect-oriented programming. ACM
Computing Surveys, v. 28, n. 4es, p. 154.

Pressman, R. S. Software Engineering – A Practitioner’s
Approach, 2001. 5th edition. McGraw Hill.

Roberts, D. & Johnson, R. E. (1998). Evolving
Frameworks: A Pattern Language for Developing
Object-Oriented Frameworks, in “Martin et al. (1998),
Pattern Languages of Program Design 3, Reading-
MA, Addison-Wesley”, p. 471-486.

Weiss, D. M. & Lai, C. R. R. 1999. Software product-line
engineering. Addison-Wesley.

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

162

