
TOWARDS A BUSINESS PROCESS FORMALISATION BASED
ON AN ARCHITECTURE CENTRED APPROACH

Fabien Leymonerie, Lionel Blanc Dit Jolicoeur, Sorana Cîmpan, Christian Braesch, Flavio Oquendo
University of Savoy at Annecy – ESIA Engineering School - LISTIC Laboratory

B.P. 806 - 74016 Annecy Cedex - France

Keywords: enterprise modeling, business process, enterprise application integration, architectural description language,
architectural styles.

Abstract: Nowadays, enterprises need to control their business processes and to manage more and more information.
EAI - Enterprise Application Integration - solutions offer a partial response to these requirements.
However, the lack of formalisation that characterises such solutions limits the reuse and verification of
properties. This paper claims that business processes have to be formally defined using a formalism that
presents certain features (representation of several abstraction levels, domain specific concepts, property
expression and preservation, etc.) and proposes the use of an ADL - Architecture Description Language - as
formalism. A case study illustrates our proposition.

1 INTRODUCTION

Enterprises are increasingly aware that the control of
their information system is a key element in
industrial performance and a differential element in
competitiveness. Today, one of the main issues
restraining this competitiveness is the large number
of application integrations required to synchronise
and optimise business processes throughout
enterprises. EAI - Enterprise Application Integration
- solutions provide a new framework able to take
synchronisation of business processes into account.
This paper claims that business processes have to be
formally defined using a formalism that presents
certain features (representation of several abstraction
levels, domain specific concepts, property
expression and preservation, etc.) and proposes the
use of an ADL - Architecture Description Language
- as formalism.

In the following sections we go deeper into the
problem we address (management of application
integration synchronised with the optimisation of
business processes) and we illustrate the use of this
ADL in a specific industrial case study.

2 BUSINESS PROCESSES TO
OPTIMISE, APPLICATIONS TO
INTEGRATE

In a free market context, enterprises have to adopt
new organisation models in order to meet customer
requirements. Rather than acquiring new know-how,
more and more enterprises work with external
partners that are already efficient and consequently
cheaper. Enterprises have to be able to react quickly
to changes by adopting new effective organisation
instead of betting on static organisation mode. In
fact, enterprises have to identify, standardise and
update their business processes which become the
enterprise referent. Moreover, in order to have their
information system in accordance with these
business processes, most of the enterprises have
generally deployed an Enterprise Resource Planning
(ERP) system.

However, even if an ERP system covers a large
spectrum of functionalities, it is not modifiable
enough to support all kinds of system evolution
(MESA, 1997a) (MESA, 1997b). Today, the trend is
clearly oriented towards integration of
heterogeneous applications based on EAI concepts
(Mann, 1999) (Hostachy, 2000) (Schmidt, 2000)
(Beck et al., 2000).

513
Leymonerie F., Blanc Dit Jolicoeur L., Cîmpan S., Braesch C. and Oquendo F. (2004).
TOWARDS A BUSINESS PROCESS FORMALISATION BASED ON AN ARCHITECTURE CENTRED APPROACH.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 513-518
DOI: 10.5220/0002636405130518
Copyright c© SciTePress

An EAI system is often viewed as the enterprise

skeleton (Hostachy, 2000). An EAI system is a set of
tools and integration software which allows
connecting several enterprise applications, relying
on different technologies (Linthincum, 2000).

An EAI system aims at controlling interactions
between heterogeneous applications existing into an
enterprise (legacy software or specific applications
developed for internal needs) with the purpose to
(Schmidt, 2000) (Stonebraker, 1999):
– build an efficient support to enact business

processes by solving consistency problems
arising from application interactions,

– supply a structure able to evolve by taking
environment changes into account,

– propose to the end-user aggregated information
to help him take decisions; this information is
built with data managed by different
applications.
The architecture of the EAI system can be

structured in terms four parts:
– the connection part interfaces the EAI system

and the COTS - Component Of the Shelf - of the
enterprise,

– the transformation part aims at transforming the
collected data format of the COTS to a pivot
format,

– the routing part transmits the information to the
good COTS, being based on the modeling of the
business processes,

– the modeling part aims at providing a
representation of the business processes of the
enterprise.
An EAI system evolves continuously in order to

be adapted to the COTS and especially to the
enterprise business processes. It is essential to
continuously check the consistency of the EAI
system to take the COTS and process evolutions into
account. So, it is necessary to formalize the business
processes architecture.

Moreover, due to the structure of the enterprise
in several interacting and co-evolving levels, the
language used for the formalisation has to exhibit
some features like:
– capability to express evolvable business

architectures integrating business processes at
different abstraction levels,

– capability to refine the business architecture into
a concrete architecture defining integration
between enterprise legacy software,

– capability to express quality attributes describing
extra-functional properties related to the
considered domain.
Two communities of researchers tackled the

problem of formalising business processes: the
software engineering community and the industrial

engineering one. The first community started from
the software engineering perspective, and focused on
on the software processes. Efforts were put on
finding approapriate means for their formalization.
Although the work started from the study of
software processes in general, the proposed
formalisms are suitable for the definition of
processes in general. Recent work adopts an
architecture centric approach software development
process, leading to the production of a certain
number of architecture description languages
(ADLs). The industrial engineering community
focused on formalisms for business process
description, as well as on processes themselves.
Several process models and formalisms are proposed
in the literature, and unification efforts are noted
(Braesch et al., 2000) (Vallespir et al., 2003)
(GERAM, 1999) (Vernadat, 2001).

The first community focused more on
formalisms, leading to formal description languages
allowing the description of evolvable systems, while
the second focused more on models, leading to the
production of better organization models. In this
paper we propose to make the bridge between the
two communities, and use performant formalisms
for better modeling the identified processes. We use
thus an architecture description language for the
modeling of business processes. The ADL we adopt
has been proposed in the ArchWare European
project presented below in this draft.

More precisely, our work aims at using a
parameterized ArchWare environment able to
develop solutions adapted to the industrial
management of SMI/SME companies. This
industrial management is based on COTS such as
ERP, Quality Management Software, Maintenance
Management Software, etc. In our solution, we
integrate these COTS within an EAI solution built
following a style-based software development
process.

3 THE ARCHWARE ADL

The presented work has been partially funded by the
European Commission in the framework of the IST
ArchWare Project (IST–2001–32360). Hereafter, we
present the main issues of the ArchWare project and
the language it proposes.

The ArchWare project (www.arch-ware.org)
aims to develop and validate an innovative
architecture-centric software engineering
framework, i.e. architecture description and analysis
language, architectural styles, refinement models,
architecture-centric tools, and a customisable
software environment. The main concern is to

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

514

guarantee required quality attributes throughout
evolutionary software development (initial
development and evolution), taking into account
domain-specific architectural styles, reuse of
existing components, support for variability on
software products and product-lines, and run-time
system evolution.

Evolvable software systems such as EAI systems
are those that are capable of accommodating change
over an extended lifetime with reduced impact for
cost and schedule and controlled impact for quality.
The key novelty of the ArchWare project approach
is its holistic view of evolvable software systems.
This starts with a high-level description of the
software system expressed in a formal architecture
description, possibly using domain-specific
architectural styles. The required quality attributes
(e.g. scalability, performance, modifiability, safety,
reliability) of the software system may then be
proved/checked/evaluated using analysis tools. This
high-level description may then be incrementally
refined into more low-level, intermediate
descriptions until reaching a concrete level that may
be used for application generation. Refinements are
applied to architecture descriptions as well as to
quality attributes.

The architecture description is based on
architectural styles. An architectural style counts the
whole of the functionalities and of the architectural
properties of a particular field; its objective is to
limit the architecture definition space (Cîmpan et al.,
2003). Using architectural styles allows an architect
to reuse the collected wisdom of the architecture
design community in much the same way that
object-oriented design patterns give novice designers
access to a vast array of experience collected in the
object-oriented design community (Klein and
Kazman, 1999).

The ArchWare ADL (Oquendo et al., 2002)
(Cîmpan et al., 2002) is a formal language for
modeling evolvable software architectures. It
provides a higher level of abstraction based on
formal foundation based on the concepts of the π-
calculus formal algebra (Milner et al., 1992), the µ-
calculus formal algebra (Kozen, 1983), persistent
programming and dynamic system composition and
decomposition. The ArchWare ADL also defines a
set of style mechanisms that allows starting from the
core language, the creation of domain specific
languages.

The ArchWare ADL core description language is
based on the concept of formal composable
components and on a set of operations for
manipulating these components. The ADL supports
the concepts of behaviours, abstractions of
behaviours, to represent respectively running
components and parametric component types.

Behaviour is described using all the basic π-calculus
(Milner et al., 1992) operations as well as
composition and decomposition. Communication
between components is via channels represented by
connections (representing component interfaces as
well). The ArchWare ADL allows the definition of
evolvable architectures, i.e. where new components
and connectors can be incorporated and existing
ones can be removed, governed by explicit policies.

The style layer of the language allows the
definition of architectural element styles,
represented by property-guarded behaviour
abstractions. Thus, we can define kinds of
architectural elements and express constraints on
their internal structure and their behaviour. The style
layer allows the definition of domain specific
extensions of the core language, where the domain
properties can be explicitly defined and preserved.

These ArchWare ADL features make it suitable
for the modeling of enterprise processes, which due
to the changes in their economic environment are
constantly changing. We use this ADL to describe
the evolution characteristics of an EAI system and to
define the EAI domain.

4 EAI FORMALISATION

Currently, there is no EAI solution proposing a
model able to represent and control the business
processes of the company. We claim that the
business process view of an enterprise is the key
element to the definition of the EAI architecture.

Within the framework of our work, we
especially were interested in the “modeling” level.
In fact, we need on the one hand to verify the model
at a “generic level”, and on the other hand, to verify
the interactions between the different elements of the
model.

4.1 EAI architecture

In order to apprehend this modeling part, we have
decomposed it in three abstraction levels:
– The Inter-Enterprises level where enterprises are

organised for providing a product or a service
are defined.

– The Enterprise level where ICs - Industrial
Component (Chaudet, 2002) (Braesch et al,
2000) -, one PS - Performance System - and one
RMS - Resource Management System - are
defined.
– The Performance System identifies the

industrial components able to satisfy a need
and evaluates the goal reached by these
components,

TOWARDS A BUSINESS PROCESS FORMALISATION BASED ON AN ARCHITECTURE CENTRED APPROACH

515

– The Resource Management System manages
the different enterprise resources.

– The Workflow level where COTS and a
Workflow engine are defined. The Workflow
engine synchronizes the COTS interactions.
This architectural framework aims at enhancing

modifiability decoupling interactions between
various architectural elements at the three
abstraction levels.

In the following section we illustrate the use of
the ArchWare ADL in the modeling of a framework
for the Inter-Enterprises level, and more particularly
a process related to negotiation.

Negotiation
Mediator

Contractor

Supplier Supplier

Supplier Supplier

Contractor

4.2 Architecture formalisation

The process used to illustrate an EAI system
architecture design is placed in the context where an
enterprise needs to sub-contract a part of its
manufacturing process and begins a negotiation
process with several suppliers (Blanc dit Jolicoeur et
al., 2002).

The negotiation process involves a contractor
and several suppliers, identified as enterprise
components in the architecture (cf. Figure 1). A
negotiation mediator, entailing the negotiation
protocol, is added to the architecture.

The protocol is succinctly described below:
– The contractor opens an invitation to tender by

sending an offer to chosen suppliers,
– The suppliers reply to this invitation to tender by

sending a response (a proposal if they are
interested or a signal if not),

– The contractor studies the received proposals
and establishes a contract from interesting
proposals.

Figure 1: Architecture for negotiation process

The set of suppliers concerned by the negotiation
depends on the offer. As there are several
negotiations, the suppliers are not always the same.
So, the architecture evolves during the production
plan construction. Thus, the architecture needs to be
dynamically evolutive.

We first define the communication interface of
elements and the negotiation protocol between one
contractor and one supplier.

The interface of an architectural element is given
by a set of connections. We use the view type
provided by the ADL in order to structure the
interface (attachment) in several interaction points.
Thus we defined the Negotiation_Attachment type.
type Negot is view[iation_Attachment
 offer:connection[String, String],
 answer:connection[String,String],
 noanswer:connection[String],
 contract:connection[String, String],
 close:connection[String]]

The one_one_negotiation protocol expresses the

negotiation between one contractor and one supplier
by an ordonnanced set of communication actions.
via ATTACHMENT_NAME ::CONNECTION_NAME send MESSAGE

It is formally described in the following.

value one_one_negotiation is abstraction(
 contractor: Negotiation_Attachment,
 supplier: Negotiation_Attachment).{
{ via contractor::offer
 receive offer:String.
 via plier::offer send offer. sup
 choose
 { { via supplier::answer
 receive answer:Stri ng.
 via tractor::answer send answer. con
 choose
 { { via contractor::contract
 receive contract:String.
 via supplier::contract
 send contract.
 via contractor::close receive }
 or{ via contractor::close receive.
 via supplier::close send }
 }
 or{ via supplier::noanswer receive.
 via contractor::noansw send er .
 via contractor::close receive }
 or{ via contractor::clos receive. e
 via supplier::close send }
} }

Several one_one_negotiation protocols need to

be dynamically generated in order to contract with
several suppliers. Thus, we define a recursive
abstraction (negotiation_creation) that instantiates a
new one_one_negotiation protocol after receiving
the corresponding order.
recursive value negotiation_creation is
abstraction().{
 value egotiation is free new_n
 connection(Negotiation_Attachment).
 via new_negotiation receive
 ttachment, supplier attachment. contractor_a
 compose{
 one_one_negotiation(contractor_attachment,
 supplier attachment)
 and
 negotiation_creation()
} }

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

516

This particular negotiation process is thus
formalized, allowing the verification of several
properties. In the following section we focus on
how domain know-how can be captured using
architectural styles.

4.3 Domain formalisation

Using ArchWare ADL we can formalise an EAI
style in order to give support for EAI architect. On
the one hand the EAI style describes the various
elements of EAI architectures. On the other hand it
defines the whole of the constraints specific to this
kind of architecture (Blanc dit Jolicoeur et al.,
2003a).

We use styles in order to provide specific kinds
of architectural elements for the industrial domain
(cf. Figure 2).

Figure 2: Architectural styles

For each main part involved in the process

(enterprises, mediator) a style is introduced. Thus we
define an InterEnterprise style which gives a
framework for the whole system. The
InterEnterprise style refers to other styles like the
Enterprise style. There are two sub-styles of
Enterprise, namely Contractor and Supplier. These
styles give a framework for sub-structures of the
system.

At definition, each of these styles has a
parameterized computational part guarded by a set
of additional properties (in the verifying part of the
definition). The use of mixfix notations for new
architectural elements (mechanism provided by the
ADL) offers the possibility to introduce domain-
specific notations for the new constructs (in the as
part of the definition).

The InterEnterprise style must be parameterized
with a set of Enterprise components and a Mediator
component. If these components verify expressed
constraints, they are composed when the style is
applied. The constraints mean that components must
be of Enterprise and Mediator kind, and that
enterprises are not directly connected but using a
Mediator.

value InterEnterprise is
style(terprises:sequence[rprise_T], en Ente
 r:Mediator_T). mediato
{ compose{
 iterate enterprises by e
 from ent_comp is abstraction().{}
 accumulate compose{e and ent_comp}.
 comp ent_
 and mediator
 }
}.
verifying(
 to enterprises apply{
 forall(e|e in style Enterprise) and
 forall(e1,e2|not(connect(e1,e2)) and
 forall(e1| connect(e1,mediator))
 }.
 mediator in style Mediator
)
as{ interEnterprise grouping
 enterprises
 which are mediated by
 mediator }

As a sub-style of Enterprise, the Contractor

style exhibits additional properties.

Contractor
Mediator

Supplier1

Supplier2 In
ter

-en
ter

pr
ise

s lev
el

Enterprise
style

Mediator
style

Contractor
style

Supplier
style

Inter-enterprise
style

value Contractor is Enterprise{}.
verifying(CONTRACTOR SPECIFIC PROPERTIES)

Finaly an architecture can be instantiated from

the style. In the following example we used the style
specific notation for defining an EAI system with
one contractor and one supplier.
value contractor is Contractor(PARAMETERS).
value supplier is Supplier(PARAMETERS).

value system is
 interEnterprise grouping
 sequence(contractor,supplier)
 which are mediated by
 negotiation_Med

5 CONCLUSION

As we saw, enterprises need to integrate existing
applications in order to stay competitive. But these
applications are heterogeneous and have to
synchronise and optimise well-defined business
processes. The EAI approach provides a framework
enabling the synchronisation of these business
processes. However, if this approach gives a broad
spectrum of tools that can be used to control
enterprise activities, there is a lack of formalisation
leading to the incapacity to handle the co-evolution
between the several enterprise processes situated in
different abstraction levels. In order to face this need
for co-evolution we propose the use of an
architecture description language allowing the
description of evolvable systems. This language has
been proposed in the the ArchWare European
project, who’s main concern is to guarantee required
quality attributes throughout evolutionary software

TOWARDS A BUSINESS PROCESS FORMALISATION BASED ON AN ARCHITECTURE CENTRED APPROACH

517

development (initial development and evolution),
taking into account domain-specific architectural
styles, reuse of existing components, support for
variability on software products and product-lines,
and run-time system evolution.

REFERENCES

Beck, M., Finout, J., and Westlake, B., 2000. “Change
Management and EAI”, in eAI Journal, September
2000, pp. 77-79.

Blanc dit Jolicoeur, L., Braesch, C., Dindeleux, R.,
Gaspard, S., Le Berre, D., Leymonerie, F., Montaud,
A., Chaudet, C., Haurat, A., and Théroude, F., 2002.
“Final Specification of Business Case 1, Scenario and
Initial Requirements”. ARCHWARE European RTD
Project IST-2001-32360. Deliverable D7.1b.
December 2002.

Blanc dit Jolicoeur, L., Braesch, C., Dindeleux, R.,
Gaspard, S., Le Berre, D., Leymonerie, F., and
Montaud, A., 2003a. “Definition of Architectural
Styles and Process Models for Business Case 1”.
ARCHWARE European RTD Project IST-2001-
32360. Deliverable D7.2. June 2003.

Blanc dit Jolicoeur, L., Braesch, C., Dindeleux, R., and
Théroude, F., 2003b. “An EAI system based on an
Industrial Component model”. In proceedings of
CESA 2003, IMACS Multiconference, July 9-11
2003, Lille, France.

Braesch, C., Théroude, F., and Haurat, A., 2000.
“OLYMPIOS : towards a component-based enterprise
modeling”, CEN Workshop, Berlin.

Chaudet, C., 2002. “Pi-Space : langage et outils pour la
description d’architectures évolutives à composants
dynamiques. Formalisation d’architectures logicielles
et industrielles”. Ph.D. Thesis (in french) of the
University of Savoy.

Cîmpan, S., Oquendo, F., Balasubramaniam, D., Kirby,
G., and Morrison, R., 2002. “The ArchWare ADL:
Definition of the Textual Concrete Syntax”.
ARCHWARE European RTD Project IST-2001-
32360. Deliverable D1.2b. December 2002.

Cîmpan, S., Leymonerie, F., and Oquendo, F., 2003.
“ArchWare ADL Foundation Style”. ARCHWARE
European RTD Project IST-2001-32360. Internal
Report, R1.3-1. June 2003.

GERAM, 1999. “Generalised Reference Architecture and
Methodology”. Version 1.6.3, IFIC-IFAC Task Force,
March 1999.

Hostachy, E., 2000. “Le système d’information doit être
centré sur l’EAI”, in Informatiques Magazine, May
2000, pp. 40-44.

Klein, M., and Kazman, R., 1999. “Attribute-Based
Architectural Styles”, technical report of Carnegie
Mellon University.

Kozen, D., 1983. “Results on the propositional Mu-
Calculus”, in Theorotical Computer Science 27, 1983,
pp 333-354.

Linthincum, D., S., 2000. “Application Servers and EAI”,
in eAI Journal, 2000.

Mann, J., E., 1999. “Workflow and EAI”, in eAI Journal,
September-October 1999, pp. 49-53.

MESA International, 1997a. “Execution-Driven
Manufacturing Management for Competitive
Advantage”, White Paper number 5.

MESA International, 1997b. “MES Functionalities &
MRP to MES Data Flow Possibilities”, White Paper
number 2.

Milner, R., Parrow, J., and Walker, D., 1992. “A calculus
of mobile processes”. Information and Computation,
September 1992, pp. 1-40.

Oquendo, F., Alloui, I., Cimpan, S., and Verjus, H., 2002.
“The ArchWare ADL: Definition of the Abstract
Syntax and Formal Semantics”. ARCHWARE
European RTD Project IST-2001-32360. Deliverable
D1.1b. December 2002.

Schmidt, J., 2000. “Enabling Next-Generation
Enterprises”, in eAI Journal, July-August 2000, pp.
74-80.

Stonebraker, M., 1999. “Integrating Islands of
Information”, in eAI Journal, September-October
1999, pp. 1-5.

Vallespir, B., Braesch, C., Chapurlat, V., and Crestani, D.,
2003. “L’intégration en modélisation d’entreprise: les
chemins d’UEML”. MOSIM’03, French conference on
modeling and simulation in enterprise, Toulouse, April
23-25 2003, pp. 140-145.

Vernadat, F., 2001. “UEML: towards an unified enterprise
modeling language”. MOSIM’01, French conference
on modeling and simulation in enterprise, Troyes,
April 25-27 2001, pp. 3-10.

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

518

