
MULTI-AGENT SYSTEMS AND THE SEMANTIC WEB
The SemanticCore Agent-based Abstraction Layer

Marcelo Blois Ribeiro
PUC-RS, Informatics Faculty,

Av. Ipiranga 6681, Partenon, Porto Alegre, Rio Grande do Sul, Brazil

Carlos J. P. de Lucena
PUC-Rio, Computer Science Department,

Rua Marquês de São Vicente 225, Gávea, Rio de Janeiro, Brazil

Keywords: Semantic Web, Agents, Multi-agent Systems

Abstract: In the Web first years, it was claimed that it would revolutionize the way people work and learn by creating
a rich information environment where everybody would cooperate through content publish and recovering.
This promising model showed its limitations with the information explosive growth. Many initiatives were
taken to address this problem, but none of them gained such attention as the Semantic Web proposal. The
combination of machine understandable content with human oriented content can avoid information
overload and create a new set of possibilities in terms of software development and integration. Although
the Semantic Web is on its very beginning, some proposals already address some requirements for the
Semantic Web creation. This paper presents the SemantiCore agent-based abstraction layer for the Semantic
Web. The SemantiCore uses high level agent-based abstractions to create applications for the semantic web.
SemantiCore uses the middleware concept to allow the integration with well known technologies such as
the FIPAOS platform and the Web Services standards.

1 INTRODUCION

Over the recent years there has been a growth in the
number of commercial and academic initiatives to
capture and fulfill the Semantic Web requirements.
Content annotation tools, ontology editors and
inference engines where created to enable the
development of applications that can benefit from
the Semantic Web characteristics. None of these
initiatives concentrate efforts on the provision of a
complete set of abstractions to enable the fast
application development combining all the efforts
previously done.

The exploration of the Internet power to provide
a network of interconnected services motivated the
creation of standards and technologies such as RMI,
J2EE (Kurniawan, 2002), CORBA (OMG, 2002)
and Web Services (Champion et al, 2003). All these
mechanisms offer an abstraction level for
developers, hiding unnecessary distribution details

and allowing them to concentrate in the application
business logic.

It is possible to find common points among these
initiatives. They usually present capabilities such as
authentication, service description, service search,
communication among peers and message exchange
protocols. Service distribution is essential to the
Semantic Web, since distributed applications or
agents can communicate with each other and
exchange machine-understandable content. Software
agents are used in the Semantic Web as an entity
capable of automatically consume published content.
Thus, the Semantic Web can be thought as a global
multi-agent system formed by the relation of a large
number of agent societies.

Considering the Semantic Web a neighborhood
of agent societies, it is possible to benefit from the
multi-agent development proposals (Ferber, 1999) to
form a consistent infrastructure for Semantic Web
application development.

263
Blois Ribeiro M. and J. P. de Lucena C. (2004).
MULTI-AGENT SYSTEMS AND THE SEMANTIC WEB - The SemanticCore Agent-based Abstraction Layer.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 263-270
DOI: 10.5220/0002635102630270
Copyright c© SciTePress

The evolution of agent-based systems with
automatic decision capabilities guided the efforts to
build methods and tools to deal with the complex
details of agents (Zambonelli, Jennings & Omicini,
2000). It is necessary to establish a software
development process, a modeling language and an
implementation mechanism suitable to work with
the agent abstraction as the basic building block of a
system. It is easy to find works related to these
aspects of agent-based system development (Nwana
et al, 1999) as the FIPA reference model (FIPA,
2002), the AUML (Odell, Parunak & Bauer, 2002)
and ANote (Noya, 2002) modeling languages and
the Gaia (Wooldridge, Jennings & Kinny, 2000)
development process.

This paper outlines an agent-based abstraction
layer for Semantic Web application development.
The SemantiCore is structured as a framework to
hide platform specific bindings and to provide the
basic services primitives and the main agent internal
definition for multi-agent systems developers.

To explain what services are abstracted by
SemantiCore, Section 2 presents a brief comparison
among different computation distribution platforms.
Section 3 starts the SemantiCore presentation. The
agent abstraction is shown in the first subsection
with an example to illustrate the agent creation
process. This section also discusses the semantic
domain abstraction, which is responsible for society
definition and objects’ modeling. The final section
concludes the presentation discussing the
SemantiCore use and contributions and defining the
future work topics.

2 SERVICE DISTRIBUTION AND
THE SEMANTIC WEB

Distributed systems are rapidly gaining attention by
software vendors as a way to scale system
capabilities and to achieve better profits by
negotiating service units encapsulated in software
components. Although the application logic
distribution is highly attractive, the complexity
involved in the development of such systems are
proportionally high. If we take into account the
Semantic Web requirements this complexity grows
even higher.

To enable complex distributed application
development it is necessary to offer high-level
abstractions. The current distribution architectures
and standards share services as security
management, service registration and transaction
control. It is possible to provide abstractions to
system developers that use these common services
in an independent manner. Although these
architectures and standards provide new distributed

building blocks, some problems arise from their use.
To illustrate these problems lets consider the Web
Services standard.

The Web Services standard provides the
protocols necessary for the implementation of
distributed applications through service
composition. It uses XML-based messages for
service request and response and the HTTP protocol
as the transmission medium. Web Services intend to
glue applications on the Web by providing a
common message transport mechanism independent
of the implementation language used to build the
application. Many vendors are offering APIs
compatible with Web Services standards to enable
application development using different languages,
such as .Net C# API and the Java Web Services
Development Pack.

The Java Web Services Development Pack is
formed by support applications and packages to
enable the development of Web Services using the
Java language. It is easy to notice by the use of this
pack that implementing a Web Service is a very
demanding activity.

In fact, although the implementation model itself
is simplified if compared with the XML message
processing necessary for the application operation,
the application configuration and deployment is
extremely painful. Thus, part of the complexity
involved in the service development is situated in
the creation of the necessary XML configuration
files and in the proper combination of different
configuration applications. Figure 1 illustrates the
Java code necessary to implement a service using
the JAXRPC API.

It is possible to notice that building a service is
quite the same as building a regular Java class. This
particular true in terms of server code but the client
necessary for service invocation has to perform the
stub recovery in order to send messages to the
service. By doing this, the developer has to know
what is the structure generated by the configuration
applications in terms of stubs (an application
distribution detail).

To configure this simple example it is necessary
to create 3 XML files and to run the ANT
application for configuration files execution, WSDL
(Chinnici et al, 2003) service description generation,
stubs and ties development, war package creation
and deployment. The simple model applied to the
service development turns the configuration needed
for its use into a complex task. Other distribution
architectures also suffer from the configuration
intensive problem. This is partially because they do
not change paradigm and try do adapt no distributed
environment and abstractions to distribution.

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

264

import java.rmi.*;
import java.rmi.server.*;

public interface HelloIF extends Remote {
 public String sayHello(String s) throws RemoteException;
}

public class HelloImpl extends UnicastRemoteObject
implements HelloIF {

 public String message = "Hello ";

 public String sayHello(String s) {
 return message + s;
 }
}

Figure 1: Hello service example using JAXRPC.

The existent computation distribution
architectures are not adapted to the Semantic Web as
well, since they do not cover aspects as ontology
processing, inference mechanisms, knowledge
sharing, learning, and adaptation. It could be useful
to provide abstractions to Semantic Web application
developers that could be organized into a layer that
runs over a distribution layer. This is the main
objective of SemantiCore.

3 THE SEMANTICORE

A Web composed by agents and machine-
understandable content was envisioned in (Berners-
Less, Hendler & Lassila, 2001) as the Semantic
Web. The Semantic Web is the mixture of human
understandable contents and machine (agents)
annotated contents, with formal semantics
describing ontologies for agent to operate on.
Software agents would be able to “understand” the
Web content and interact with each other and with
their users in order to achieve certain goals.

The infrastructure necessary to develop the
Semantic Web involves a common language to
represent the semantics of a domain. The main
initiative to provide such language is currently being
standardized as the OWL W3C initiative (Smith,
Welty & McGuinness, 2003), which is a XML-
based language for ontology representation, i. e.,
specify concepts and the relation between them.

The SemantiCore is a framework that provides
an abstraction layer over service distribution
architectures in order to offer high-level artifacts for
Semantic Web application development. The
SemantiCore framework abstractions are an
extension of the work developed in the Web Life
architecture project (Ribeiro, 2002) to facilitate
Web-based multi-agent systems creation.

The main goal of SemantiCore is to allow the
development of agents’ internals and multi-agent
environments, considering the Semantic Web

populated by semantic domains where agents “live”.
SemantiCore abstractions are built over computation
distribution platforms, hiding distributed application
development details from the developers.
Throughout this section the abstractions will be
represented using text boldface.

Another SemantiCore goal is to abstract the
underlying software platform and communication
protocol, enabling the application developers to send
and receive messages using different public
available standards like Web Services SOAP
(Gudgin et al, 2002) or FIPA ACL (FIPA, 2000).
Figure 2 shows the SemantiCore layer-based
architecture.

SemantiCore

Underlying Distribution Infrastructure Standards

Semantic Applications

Infrastructure Technology

SemantiCore

Underlying Distribution Infrastructure Standards

Semantic Applications

Infrastructure Technology

Figure 2: SemantiCore architecture.

The SemantiCore uses as the main abstraction the
semantic agent construction. A semantic agent is
essentially an autonomous execution context
populated with logic processing and decision
making capabilities which autonomously capture
environment events and messages and perform
interaction driven computations. These agents are
organized into semantic domains. By this definition
it is clear that each semantic domain can be thought
as a multi-agent system. Each domain is connected
to each other through the current Internet routing
infrastructure. A semantic domain can be spread
over multiple traditional Web domains. All the
traditional web domain services and data are
available to the semantic domain agents through
semantic objects.

Semantic objects encapsulate attributes,
operations and ontologies to provide the objects use
contexts. Different objects have different meanings
depending on the context they are used. The
SemantiCore uses knowledge representation
languages such as OWL to annotate ontological
information and encapsulate attributes and
operations within a semantic boundary. These
annotations can be modified by software agents
during objects use, creating a sequence of related
ontologies that are transmitted with the object.
Using this mechanism the object is constantly
evolving its use contexts in the semantic web
enabling its better use in the future by other agents.

MULTI-AGENT SYSTEMS AND THE SEMANTIC WEB - THE SEMANTICCORE AGENT-BASED ABSTRACTION
LAYER

265

To help developers build applications the
SemantiCore framework is divided into two models:
the semantic agent model, responsible for the agent
internal definition, and the semantic domain model,
responsible for defining the domain composition and
administrative entities.

The two models provide flexible points (hot-
spots) where the developers can plug-in different
standards, protocols and technologies for specific
task execution. These models are shown in a
simplified view without all their characteristics in
this paper.

3.1 The Semantic Agent Model

The semantic agent model defines all the elements
needed to build a SemantiCore agent. An agent is
defined in (Weiss, 1999) as a computer system
situated in some environment and capable of
autonomous action in order to meet the design
objectives. By this definition the notion of autonomy
indicates that an agent must have its own thread of
control (Bellwood et al, 2002). Another important
notion is the environment in which the agent’s act.
SemantiCore uses the Semantic Web as the agent
interaction environment.

The semantic agents are composed of six
components. Each component is responsible for
specialized tasks and some of them have their own
thread of control. They may be thought as a group of
collaborative threads. The semantic agent
component structure helps the developers to focus in
agent parts. This modularization offers benefits in
terms of maintenance and code organization.

The Factory design pattern (Gamma et al, 1994)
is used to encapsulate the semantic agent drivers and
listeners instantiation. This feature enables the
semantic agent to be used with different underlying
architecture such as FIPAOS or Java Web Services.
Each infrastructure must have its own
PeerAgentDriver to handle the operation the agent
needs to initiate. Drivers are responsible for
transmitting the agents’ commands to the underlying
architecture. The agent can listen to the
infrastructure events through the PeerAgentListener.
These abstractions (hotspots) must be implemented
be layer configuration managers and have to include
message transportation and representation
mechanisms to allow the agent understand different
message types as ACL or SOAP.

The first necessary capability of a semantic agent
is to receive resources from the environment. The
Sensorial Component centralizes the elements that

enable the reception of semantic objects through the
environment. The Sensorial Component has a sensor
pool responsible for storing the sensors defined by
the developers and for verifying if these sensors
were activated by a semantic object received from
the environment. If one or some sensors were
activated, a history object is generated and passed
to other components for processing. One important
issue is the abstraction in sensor instantiation
guaranteed by the SensorFactory use (hotspot).
Developers can define different sensor types to
capture different type of objects in the environment.
The RDF Sensor is a special type of sensor that
captures RDF objects in the environment. RDF
(Larissa & Swich, 1999) is a representation
language used in the Semantic Web initiative to
model domain concepts using a triple (subject,
predicate, object).

Every agent has implied objects to access its
components, a similar mechanism to the one used in
JSP pages to access the generated servlets objects.
The sensorial object is the implied object which
enables the access to the sensorial component
interface and is used to install the sensors defined.
The developer can override the sensor methods if it
is necessary to do operations before the generation
and transmission of the activated sensors history to
other components.

After receiving the semantic object, the agent
sends its content and the activated sensors
identifications through the history object to his
decision component. The decision component
encapsulates the decision making method used by
the agent. There are two factory types in the
decision component structure: one to provide
dynamic language representations in which the rules
and facts are coded and the other to abstract the
decision engine used by the agent (hotspots). These
flexible points must be configured when using the
SemantiCore abstraction layer.

The decision component receives the history
object and processes the semantic objects by
translating them into facts and rules in a given
representation language. These facts and rules are
sent to the decision engine as input and the decision
component waits for the engine’s outputs. For an
output to be understood it must have an action
instance. Actions map all the possible commands a
semantic agent must understand to work properly.
Actions can be applied to internal agent elements or
to the semantic domain elements.

Some actions are predefined in the SemantiCore
actions library. This library provides the basic

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

266

actions over the agent internal elements and over the
semantic domain elements. The developers can
define their own actions through the extension of the
basic framework Action class (hotspot). The class
file created has to be stored in the class library
repository in the SemantiCore configuration
directory. This procedure enables the architecture to
dynamically instantiate the user defined class when
necessary.

Predefined classes such as the
ExecuteProcessAction will signal to the execution
flow component to perform operations. The
execution flow component is responsible for the
agent participation in work processes which
involves the collaboration with other agents. These
processes are called society processes since they
rule the agent society actions to produce a useful
work or achieve a common goal.

The execution flow component abstracts the
workflow engine (WFMC, 1995) used to control
activity transitions in the workflow process
(hotspot). It is important to notice that each agent
has its own image of the society process and may
have some activities assigned to itself while others
actions may be assigned to other agents in the
environment (including humans). Some process
activities may publish semantic objects in the
environment for other agents to consume.

Every semantic object publication in the
environment requires an appropriate effector in the
agent. The effectors are controlled by the agent
effector component. This component receives data
from other components and encapsulates these data
in a semantic object to be transmitted in the
environment. As the sensorial mechanism, the
effector abstracts the resource representation,
allowing developers to use different resource
representation languages (hotspot).

The semantic objects transmitted will be
encapsulated in the underlying message format. The
sender and the receiver of a message will be
identified by the underlying infrastructure, i. e., if
we are using the FIPA model the messages will be
encoded in an ACL envelope which has the sender
and the receiver attributes to properly route the
message.

Society processes often require semantic object
exchange inside their activities. When an object is
received during the process execution, its arrival is
signaled to the execution flow component and it is
stored in the agent memory. The component
responsible for the agent memory management is the
memory component. This component has a

persistence manager which encapsulates the
persistence technique used.

It is possible to store memory objects using a
relational database or an object collection
maintained in a file. When the agent is created, the
developers have to choose the persistence method
for the memory component. It is possible to
associate events in the persistence manager to
queries in a relational database. The basic store and
recover memory mechanism is sufficient to enable
the communication among agent’s components
through the consumed and generated objects.

To enable the evolution of the agent decision
making and the knowledge exchange among agents,
it is necessary a mechanism capable of controlling
and classifying the ontologies used for agent
deliberation. The knowledge component is
responsible for knowledge representation, search
and recovery in a semantic agent. This component
controls the ontology an agent uses when deciding
what to do in the decision component and relates
this knowledge with other agent internal elements
such as rules, sensors and processes.

The knowledge object abstraction encapsulates
all the items related to a certain goal achievement. A
knowledge object can contain ontologies, rules,
sensors, effectors, society processes, facts, actions
and activities. It is possible to exchange knowledge
objects in the environment. Every semantic agent
registers its knowledge in the Environment Manager
administrative entity that will be discussed later.

This simple mechanism enables other agents to
search for knowledge in the Environment Manager
and possibly to get and install (decomposition of
object elements and automatic configuration of
agent components to operate with the new elements)
a certain knowledge object. These search and
acquisition features can be started by the
GetKnowledgeAction class as a result of an
inference or automatically activated when an
element is referenced in the agent operation and its
implementation is not available.

The agent identifies the basic SemantiCore
actions because they are all defined in the
SemantiCore base ontology. If an action is executed
and its implementation class is not found in the class
library, the agent automatically searches for its
implementation in the target namespace
Environment Manager entity.

This section presented the SemantiCore agent
elements. A simplified presentation was used to
show only the main characteristics of the agent
internals. A closer look in the abstraction elements

MULTI-AGENT SYSTEMS AND THE SEMANTIC WEB - THE SEMANTICCORE AGENT-BASED ABSTRACTION
LAYER

267

must be done by the developers who want to create
applications using SemantiCore.

3.2 The Domain Model

An agent must operate within an environment. The
SemantiCore abstraction layer defines the place
where an agent executes as a semantic domain. The
domain concept gives the SemantiCore a very
smooth transition mechanism from the traditional
sense of a Web domain to an enhanced notion of a
domain composed by agents and objects. Semantic
domains require the Web domains to operate. A
semantic domain can be thought as a region in a
Web domain in which the agents live.

A domain is a relation of agent societies that are
organized to achieve a goal through a society
process. The semantic domain also abstracts the
platform where it is running over (hotspot). This
allows the creation of a domain as an extension of a
FIPAOS platform. A Platform class wraps the
command invocations to the platform, translating
them to the proper administrative primitives. A
PlatformListener class is responsible for capturing
the platform events and for translating them to
SemantiCore internal objects.

Each semantic domain is composed by three
main administrative entities: the Resource Manager,
the Domain Manager and the Service Manager. The
Domain Manager is the agent responsible for
registering the other agents in the environment. For
a domain to exist, it is necessary a Domain Manager.
This agent is also responsible for security features
and for the reception of mobile agents from other
domains. As any other agent in a domain the
Domain Manager also is a SemantiCore agent with
sensors, processes and etc configured to provide its
basic authentication services.

The Service Manager is the agent responsible for
the SemantiCore yellow pages system. The Service
Manager links agents to services and enables other
agents to search for a service. This agent also offers
the API for an agent to request other agent services,
similar to the Registry server used in the Web
Services standard. Every agent that runs on a
domain and provides services to other agents must
register in the Service Manager.

The Resource Manager is the bridge between
semantic and conventional domains. This agent
receives messages and translates them to the proper
underlying representation to send them in the
semantic domain environment. The Resource
Manager is also responsible to register the agent
knowledge and to enable the search for a knowledge
object in the environment. This agent manages the
available public semantic objects. If a web page for

example is considered a public semantic object, the
Resource Manager is responsible for providing the
page content to a requester. So, this agent has the
characteristics of a Web Server and a SemantiCore
agent at the same time.
 The administrative entities provide the services
necessary for agents to send and receive knowledge
objects, adapt their behavior and migrate from one
semantic domain to the other. Since these entities
are semantic agents, it is possible to extend the
administrative services by defining other agents
among the semantic domain elements and to
configure the main agent element to access these
new services.

3.3 A Brief Usage Illustration

To better understand the concepts involved in the
agent development, an illustration is necessary. It is
based on the system integration idea. The Semantic
Web can enable the development of semantic agents
that can expand the current enterprise systems
functionality while integrating different system
components not previously designed to operate
together. This integration can be better achieved in
companies that have their business processes
controlled over an Intranet. It is possible to integrate
Intranet-based systems, Internet-based systems and
non-distributed systems to leverage the client
relationship with the company. For the sake of
brevity the example concentrate in the agent society
involved in the integration of key business areas.

A business area agent (BAA) encapsulates
legacy systems logic offering their services to other
BAAs in the company agent society. Consider the
BAA agent used to integrate the ordering system
which controls the client order processing over the
Web to the company production system. The agent
is responsible to receive an order and to decompose
this order for production processing and controlling.

It is possible to think about different levels of
production automation: agents can control each
production task through the used of an automated
production plant or can only coordinate human-
based production activities. The multi-agent
integration system can leverage the level of
precision and reduce production lost rate, while
accelerating the final product delivery to the client
by the integration with the Web-based selling
system.

To build a semantic agent to control the orders,
the developer should extend the SemanticAgent class
and configure the agent internals through the
implicit objects that represent the components. First
of all, it is necessary to install agent sensors to
capture order objects in the environment. The sensor

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

268

must be defined using a Sensor or RDFSensor class
extension. RDFSensors are used to capture semantic
objects represented in RDF (object representation
language hotspot).

After creating and installing the sensor, the
developer must configure the decision component
creating rules and facts that will be translated to a
decision making technique plugged in the
framework. In our example, we used the forward
chaining method of the Java Theorem Prover (JTP)
(Fikes, Jenkins, & Gleb, 2003) inference engine. It
is also necessary to use a certain object
representation language to represent facts and rules.
We used DAML+OIL as the ontology representation
language, which was converted to JTP facts and
rules. This conversion was internally done by
SemantiCore. The selling agent has rules to activate
a selling action plan based on the reception of an
order object.

The order object received is also stored in the
agent memory for further use. The memory storage
method used was a relational database. The objects
are stored as a table and queried for their attributes.
When the order arrive the JTP engine dynamically
instantiates an ExecutePlanAction class. This action
signals to the execution component that a selling
plan must be instantiated. The execution component
instantiates and controls the plan through its
activities. The first activity is to decompose the
order into items. For each item a second activity is
executed to verify the storage availability. A third
activity is executed if there are enough items to be
delivered. This activity creates a delivery order
semantic object that is transmitted through an
effector to the delivery control agent.

It is necessary to configure an effector for the
previous action plan capable of sending a delivery
order in the environment using an object
representation language (in our case the RDF
markup language). It is possible to think about a
priority selling taking into account VIP clients. To
adapt the selling plan to VIP clients the selling agent
must acquire a knowledge object in the semantic
domain Environment Manager. This is done by
transmitting a RequestKnowledgeObject object to
the Environment Manager. It will return the
knowledge object appropriate and the selling agent
knowledge component will install the object
elements in the corresponding components.

A final remark must be done about the semantic
domain configuration. The agents execute over the
Web Services standard using SOAP as the message
format envelop and HTTP as the transmission
protocol. This example presented some extension
points and limitations in the SemantiCore current
structure. Some of them are discussed in the next
section.

4 SEMANTICORE EXTENSIONS
AND FUTURE WORK

SemantiCore is a framework that abstracts the
common points found in the current distributed
technologies to provide high-level agent-based
abstractions for those interested in Semantic Web
application development. SemantiCore uses a
component-based internal agent model to
modularize agent functions. These components work
together for the agent operation and are
synchronized by the agent class lifecycle
mechanism.

A SemantiCore agent must execute within an
environment called a semantic domain. Each domain
has administrative entities responsible for semantic
and knowledge objects storage, object and
knowledge search capabilities, authentication and
security features, and service registration and
discovery.

This paper provided an overview of the
SemantiCore main elements showing a usage
example based on an enterprise business integration
semantic application. The system uses agents to
integrate company business processes and related
systems in the corporate Intranet. Some benefits
from the SemantiCore usage in the enterprise
business automation can be already seen.

The company has information islands that
difficult its operation since the different systems do
not communicate with each other. The customer
order and the production planning and controlling
are done in different moments and databases. It was
a human task to plan the production based on a
customer order. This task, although not completely
straightforward, took into account a few parameters
that could be coded in the agent inference system.
The immediate translation from the customer order
to the production plan enables a faster production
and consequently order fulfillment. Other advantage
of the use of a multi-agent system structure is the
plug and play capability in terms of production
resources and the possibility to extend the business
areas, since another copy of a business area agent
can join the society and may parallelize overused
agents.

SemantiCore certainly requires extensions to
become a fast middleware for agent construction. It
is necessary to reduce the representation language
translations among components by centralizing this
feature in one translation component. This must
enable a faster message exchange and decision
making mechanism.

Another important improvement must be done in
the SemantiCore agent authentication and security
features, providing cryptography-based services,
especially for mobile agents’ security (Tschudin,

MULTI-AGENT SYSTEMS AND THE SEMANTIC WEB - THE SEMANTICCORE AGENT-BASED ABSTRACTION
LAYER

269

1998). It is also possible to extend the knowledge
exchange mechanism to enable behavioral
knowledge as the relation among agents. An agent
can avoid another agent or can be very collaborative
to other agents depending on the behavioral
knowledge. These relationships could be defined in
terms of SemantiCore operations.

Finally, SemantiCore can evolve to a virtual
machine that could be programmed with an agent-
based scripting language. The link between the
SemantiCore and the underlying platform can
continue to be dynamic but the system definition
may be done using a specific language instead of
Java-based packages. SemantiCore can play an
important role for turning the Semantic Web into
reality by providing high level abstractions to work
with all the Semantic Web related low-level
technology.

REFERENCES

Bellwood, T. et al. (2002). UDDI version3.0 . Retrieved
October 25, 2003, from http://uddi.org/pubs/uddi-
v3.00-published-20020719.htm.

Berners-Less, T., Hendler, J., and Lassila, O. (2001). The
semantic web. Scientific American, 1(29), 35-43.

Champion, M., Ferris, C., Newcomer, E., and Orchard, D.
(2003) Web Services Architecture, working draft.
Retrieved October 25, 2003, from
http://www.w3.org/TR/2003/WD-ws-arch-20030514/.

Chinnici, R., Gudgin, M., Moreau, J., and Weerawarana,
S. (2003). WSDL Version 1.2, (2003). Retrieved
October 25, 2003, from
http://www.w3.org/TR/2003/WD-wsdl12-20030611/.

Ferber, J. (1999) Multi-Agent Systems – An Introduction
to Distributed Artificial Intellingence. Addison-
Wesley. 509p.

Fikes, R., Jenkins, J., and Gleb, F. (2003). JTP: A System
Architecture and Component Library for Hybrid
Reasoning. [Electronic Version]. Proceedings of the
Seventh World Multiconference on Systemics,
Cybernetics, and Informatics. Orlando, Florida, USA.

Foundation for Intelligent Physical Agents (FIPA). (2002).
FIPA Agent Management Specification. Retrieved
October 25, 2003, from
http://www.fipa.org/specs/fipa00023/SC00023J.html.

Foundation for Intelligent Physical Agents (FIPA). (2000).
FIPA ACL Message Structure Specification.
Retrieved October 25, 2003, from
http://www.fipa.org/specs/fipa00061.

Gamma, E. et al. (1994). Design Patterns – Elements of
Reusable Object-Oriented Software. Addison-Wesley.
395p.

Gudgin, M., Hadley, M., Mandelsohn, N., Moreau, J., and
Nielsen, H. (2002). SOAP Version 1.2, Retrieved
October 25, 2003, from

http://www.w3c.org/2000/xp/Group/2/06/LC/soap12-
part1.html.

Kurniawan, B. (2002). Java for the web with servlets, JSP,
and EJB. New Riders. 953p.

Larissa, O and Swich, R. R. (1999). Resource Description
Framework (RDF) Model and Syntax Specification.
Retrieved October 25, 2003, from
http://www.w3.org/TR/1999/REC-rdf-syntax-
19990222/.

Noya, R. C. A modeling language for agent based
systems. PhD. Thesis, Computer Science Department,
PUC-Rio, 2002.

Nwana, H., Ndumu, D. Lee, L., and Collis, J. (1999).
ZEUS: A Tool-Kit for Building Distributed Multi-
Agent Systems. [Electronic Version]. Applied Artifical
Intelligence Journal, v. 13 (1), p129-186.

Object Management Group (OMG). (2002). Common
Object Request Broker Architecture: Core
Specification. Retrieved October 25, 2003, from
http://www.omg.org/technology/documents/formal/cor
ba_iiop.htm.

Odell, J., Parunak, H., Bauer., B. (2000). Extending UML
for Agents. In Proceedings of the Agent-Oriented
Information Systems Workshop at the 17th National
Conference on Artificial Intelligence, 3-17.

Ribeiro, M. B. (2002). Web Life – A multi-agent systems
implementation architecture for the Web. PhD. Thesis,
Computer Science Department, PUC-Rio.

Smith, M. K., Welty, C., and McGuinness, D. (2003).
OWL Web Ontology Language, working draft.
Retrieved October 25, 2003, from
http://www.w3.org/TR/owl-guide/.

Tschudin, C. F. (1998). Mobile Agent Security. In:
Klusch, M. (Ed.). Intellingent Information Agents.
Springer-Verlag, 431-445.

Weiss, G. (1999). Multiagent systems: a modern approach
to distributed artificial intelligence. The MIT Press.
619p.

Wooldridge, M.; Jennings, N. R.; Kinny, D. (2000). The
Gaia methodology for agent-oriented analysis and
design. Journal of Autonomous Agents and Multi-
Agent Systems, 3(3), 285-312.

Workflow Management Coalition (WFMC). (1995). The
Workflow Reference Model. Retrieved October 25,
2003, from http://www.wfmc.org/standards/docs.htm.

Zambonelli, F., Jennings, N.R., Omicini, A., and
Wooldridge, M. (2000). Agent-oriented software
engineering for internet applications. In: Omicini, A.
et al. (eds.). Coordination of internet agents: models,
technologies, and applications. Springer-Verlag. 326-
346.

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

270

http://www.iiisci.org/sci2003/
http://www.iiisci.org/sci2003/
http://www.iiisci.org/sci2003/
http://www.fipa.org/repository/ips.html
http://www.fipa.org/repository/ips.html
http://www.fipa.org/repository/ips.html
http://www.fipa.org/repository/ips.html
http://www.fipa.org/repository/ips.html
http://www.fipa.org/repository/ips.html
http://www.fipa.org/repository/ips.html
http://www.fipa.org/repository/ips.html

