
CUSTOMIZABLE DATA DISTRIBUTION FOR SYNCHRONOUS
GROUPWARE

Stephan Lukosch
University of Hagen

Department for Computer Science
58084 Hagen, Germany

Keywords: Collaborative applications, development support, data distribution.

Abstract: The state of a groupware application must be shared to support interactions between collaborating users. There
have been a lot of discussions about the best distribution scheme for the state of a groupware application. Many
existing groupware platforms support only one distribution scheme, e.g. a replicated or a central scheme, and
apply the selected scheme to the entire application. None of these schemes fits well for every groupware
application. Different applications and even single applications have different requirements concerning data
distribution. This paper describes DreamObjects, a development platform that simplifies the development of
shared data objects. DreamObjects supports a variety of distribution schemes which can be applied per shared
data object. Additionally, it offers an interface that developers can use to introduce their own distribution
schemes.

1 INTRODUCTION

Synchronous groupware brings together users who
are geographically distributed and connected via a
network. It encompasses a wide range of applica-
tions like collaborative whiteboards, text editors or
Web browsers. All these applications have to share
data to support interactions between their users.

There have been a lot of discussions about the best
distribution scheme for the data objects of a group-
ware application. Many existing groupware platforms
support a replicated distribution scheme or a central
one and apply the supported scheme to the entire ap-
plication. None of these schemes fits well for ev-
ery groupware application. Different applications or
even single applications have different requirements
concerning data distribution. Therefore, developers
should be able to select the distribution scheme per
shared data object.

This paper presents the DreamObjects platform
(Lukosch, 2003), which substantially simplifies the
development of shared data objects. DreamObjects
is based on DreamTeam (Roth, 2000). DreamTeam
is a platform for synchronous collaboration and fo-
cusses on the coordination and communication of dis-
tributed users. DreamTeam offers a hierarchical class
library with groupware specific solutions, e.g. aware-

ness widgets, and provides an infrastructure with spe-
cial groupware facilities. This, e.g., includes a ses-
sion manager that is responsible for starting, joining,
and leaving sessions, and a rendezvous manager that
determines the actual network addresses of all team
members.

In DreamObjects, developers can select between
an asymmetric, a replicated, and different adaptive
distribution schemes. Adaptive distribution schemes
dynamically change the distribution of a shared data
object according to a user’s working style or accord-
ing to the topology of the connecting network. Ad-
ditionally, DreamObjects offers interfaces and build-
ing blocks that permit developers to define their own
distribution schemes and integrate them into the plat-
form. Developers can specify the distribution scheme
of a shared data object at runtime. Thereby, they can
use the same data object with different configurations
and adapt the configuration to the runtime needs of an
application.

Further benefits of DreamObjects are a flexible and
extensible concurrency control mechanism, an adapt-
able notification service, a flexible latecomer support,
and a decentralized persistency service. By applying
the object-oriented substitution principle, DreamOb-
jects achieves all these benefits with a maximum of
transparency for the developer. After an initial con-

70
Lukosch S. (2004).
CUSTOMIZABLE DATA DISTRIBUTION FOR SYNCHRONOUS GROUPWARE.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 70-77
DOI: 10.5220/0002633900700077
Copyright c© SciTePress

figuration, developers can use shared data objects like
local objects of a single-user application. Developers
do not have to care about data sharing issues.

The next section discusses the requirements con-
cerning data distribution. Section 3 compares these
requirements to the state-of-the-art. Section 4 and
section 5 introduce the DreamObjects platform and
its data distribution mechanisms, followed by conclu-
sions.

2 REQUIREMENTS

Roth and Unger introduce an extensible classification
model for synchronous groupware (Roth and Unger,
2000). In contrast to former classification models,
e.g. Patterson’s taxonomy (Patterson, 1995) or De-
wan’s generic architecture (Dewan, 1996), this model
directly addresses the distribution characteristics of
a groupware application. It consists of an applica-
tion scheme and a distribution scheme. The applica-
tion scheme strictly separates the user interface of an
application from the underlying data and algorithms.
To classify existing groupware platforms, Roth and
Unger identify different distribution schemes: central
state, asymmetric state, and replicated state.

Fig. 1 shows the central state distribution scheme.
The dotted frames indicate different sites inside a net-
work. The user interface is replicated to every site.
A well-known server manages the shared data objects
of an application. The main advantage of this distri-
bution scheme is that it is very simple to ensure data
consistency and to handle persistency. However, one
has to maintain the server, and the server is a bottle-
neck for the communication between the participat-
ing sites. Slow network connections increase the re-
sponse time of an application. For interactive applica-
tions, it is a quite important issue to keep the response
time low, as this time is directly perceived by the user
and a high response time disturbs the interaction of
the user with the application.

Shared data
objects

User interface
objects

User interface
objects

Figure 1: Central state distribution scheme

In the asymmetric state distribution scheme (see
fig. 2), an arbitrary participating site fulfills the tasks
of a server. Using this scheme, every participant can

easily share local data. Apart from this advantage, this
scheme has the same drawbacks as the central distri-
bution scheme. However, both schemes, the central
and the asymmetric one, can be useful in cooperative
applications, e.g. to share large amounts of data or to
introduce local data.

Shared data
objects

User interface
objects

User interface
objects

Figure 2: Asymmetric state distribution scheme

In the replicated state distribution scheme (see fig.
3), the shared data objects are distributed to every
participating site. As an application can access the
shared data objects locally, the response time of an
application is reduced. This can be useful in highly
interactive cooperative applications, like e.g. coopera-
tive games. However, as already discussed by Molina
(Garcia-Molina, 1986), this distribution scheme also
has its drawbacks. The runtime system has to use
more complex algorithms, e.g. for concurrency con-
trol. The network traffic increases to keep the shared
data consistent, since every site has to be informed
about a modification.

Shared data
objects

User interface
objects

User interface
objects

Shared data
objects

Figure 3: Replicated state distribution scheme

A variant of the replicated distribution scheme
is the partially-replicated one. In this distribution
scheme, the shared data objects are distributed to
more than one site, but not necessarily to all sites.
Compared to the asymmetric and central distribution
scheme, this increases the availability of the shared
data. Compared to the replicated distribution scheme,
this decreases the network traffic that is necessary to
keep the shared state consistent. However, the run-
time system still has to use more complex algorithms.

Different approaches exist for a partially-replicated
distribution scheme. The shared data objects can, e.g.,
be replicated to a predefined set of sites. These sites

CUSTOMIZABLE DATA DISTRIBUTION FOR SYNCHRONOUS GROUPWARE

71

can access the shared state locally and have to keep
the shared state consistent. The other sites choose
an arbitrary site to access the shared state. Fig. 4
shows this scenario. On the one hand, this approach
increases the availability of the shared data objects,
but on the other hand the predefined sites may not be
the sites that intensively access them.

Shared data
objects

User interface
objects

User interface
objects

Shared data
objects

User interface
objects

Figure 4: Partially-replicated state distribution scheme

Normally, not all users view or edit all shared data
objects. Thus, not every participating site requires all
shared data objects at all times. Instead, a site only re-
quires the shared data objects the user currently views
or edits.

To take this into account, a platform can replicate
a shared data object on demand, e.g. as soon as a
user accesses the part of a document that the shared
data object represents. When a site does not ac-
cess a shared data object anymore, e.g. the local user
changed his working focus, it has to discard it. Other-
wise the set of replicas continually grows and finally
the shared data object is replicated to all participating
sites. As the working style of a user is not determin-
istic, this approach can lead to high communication
costs.

A partially-replicated distribution scheme that
takes the changing working style into account, is
called adaptive or dynamic and was postulated by
Gavish et al. (Gavish and Sheng, 1990). Wolfson et al.
(Wolfson et al., 1997) describe a distributed algorithm
for an adaptive replication that uses a cost-function to
adapt the replication scheme of a shared data object.
They show that their algorithm compared to a static
replication significantly reduces the network traffic.

The discussion shows that every of the presented
distribution schemes has its drawbacks and advan-
tages and that none suits well for every groupware ap-
plication or for all data objects of an application. The
asymmetric distribution scheme fits well when a user
wants to introduce local data into a collaborative ses-
sion. The replicated distribution scheme offers high
responsiveness. Developers choose an adaptive distri-
bution scheme, if they want to increase the availability
of a data object and, compared to the replicated dis-
tribution scheme, want to decrease the network traffic.
They can also choose an adaptive distribution scheme,

if the data of an application can be divided into sin-
gle logical pieces, e.g. sections or paragraphs in a text
document, and they want to adapt the distribution of
the data to a user’s working style. Thus, to cover all
possible requirements of a collaborative application,
a platform has to support an asymmetric, a replicated,
and an adaptive distribution scheme.

3 RELATED WORK

There exist platforms that use a central, a replicated,
or a partially-replicated distribution scheme, others
offer a variety of distribution schemes.

Rendezvous (Hill et al., 1994), Suite (Dewan and
Choudhary, 1992), and Notification Service Transfer
Protocol (NSTP) (Patterson et al., 1996) are sample
groupware platforms, which use a central distribu-
tion scheme for the data of a collaborative applica-
tion. A lot of groupware platforms, e.g., GroupKit
(Roseman and Greenberg, 1996), COAST (Schuck-
mann et al., 1996), or DECAF (Strom et al., 1998) use
the replicated distribution scheme. DÀgora (Simão
et al., 1997) is a sample platform for the partially-
replicated distribution scheme.

In contrast to the previous platforms, TCD (Ander-
son et al., 2000), Clock (Urnes and Graham, 1999),
GEN (O’Grady, 1996), and DistView (Prakash and
Shim, 1994) support a variety of distribution schemes.
DistView is a part of the Collaboratory Builder’s En-
vironment (CBE) (Prakash et al., 1999). Normally,
all shared objects are replicated. If this is not possi-
ble, e.g., if a shared object accesses a file in the local
filesystem, the shared object is maintained at the cre-
ating site. Thus, DistView supports a replicated and
an asymmetric distribution scheme.

TCD and Clock build groupware applications from
components. In both platforms, the components can
be customized via a visual programming environ-
ment. A developer may, e.g., choose between a
central and a replicated distribution strategy. While
TCD supports concurrency control for both distri-
bution schemes, Clock supports concurrency control
only for the central one.

GEN especially focuses on flexible distribution
strategies. It provides shared objects as a high-level
abstraction and allows a developer to specify, how a
shared object is distributed and how its consistency
is maintained. For this purpose, the developer has to
be completely aware of the underlying concepts and
protocols, as he has to change the implementation. As
default, GEN offers implementations for a central and
a replicated distribution scheme. Additionally, GEN
offers a distribution scheme that is based on migra-
tion.

In summary, platforms for almost every distribu-

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

72

tion scheme exist. As already argued, every distribu-
tion scheme has its advantages and drawbacks. As
different applications or even single applications can
have different requirements, none of the distribution
schemes fits well for every groupware application.
For this reason, some of the presented groupware plat-
forms support different distribution schemes, but none
supports an adaptive distribution scheme.

4 DREAMOBJECTS

DreamObjects is a platform that simplifies the devel-
opment of shared data objects. It consists of two parts,
an object-oriented framework and a runtime environ-
ment. Both are entirely implemented in Java. The
object-oriented framework provides building blocks
for the development of shared data objects. These
building blocks offer a lot of configuration possibil-
ities and even allow developers to integrate their own
solutions.

As already mentioned, DreamObjects enhances the
DreamTeam platform (Roth, 2000). At our insti-
tute, we created several groupware applications with
DreamTeam, e.g. a brainstorming tool, a collaborative
Web browser, and a distance teaching environment
(Lukosch et al., 1999). During the development, we
noticed that the major obstacles are concerned with
data sharing issues.

In our opinion, the development of a groupware
application should be almost as simple as the de-
velopment of a single-user application. A platform
should support a developer such that he can con-
centrate on application-specific details. For this rea-
son, we extended DreamTeam with DreamObjects.
They complement one another, reduce the develop-
ment costs for a collaborative application, and even
allow a developer to reuse existing single-user appli-
cations (Lukosch and Roth, 2001).

DreamObjects divides a collaborative application
in data objects and user interface objects. The data
objects are split up in shared and private objects. The
user interface objects control the user interface behav-
ior and display the content of the data objects. Users
collaborate by modifying the shared data objects via
the user interface of the application.

DreamObjects offers a set of services to man-
age the shared data objects, e.g. distributed method
calls and object creations. Most of the services
are handled completely transparent for developers
(Lukosch, 2002), i.e. they can use shared data ob-
jects like local objects of single-user applications. To
achieve this transparency, DreamObjects uses substi-
tutes (Lukosch and Unger, 2000), which are based
on the substitution principle of object-oriented pro-
gramming languages. A substitute class extends a

developer-defined data class and overwrites some of
their methods to add functionality, e.g. the mecha-
nisms for modifying and reading method calls.

As a substitute class offers the same interface as
the developer-defined data class, it can easily be used
to replace a developer-defined data object. For this
purpose, a developer has to call a special registration
method of the runtime system, which creates and re-
turns the substitute to the developer. When calling
the registration method a developer has to provide the
runtime configuration of the shared object. This, e.g.,
defines how the shared object is kept consistent or
how it is distributed to the other participating sites.

When a new shared object is registered, the regis-
tering site informs all other participating sites, which
results in creating a substitute for the new shared ob-
ject. Thus, each site can access a shared data object
like a local object. However, depending on the cho-
sen distribution scheme only some sites may hold the
data of the shared object. These sites are called data
holder. A data holder can execute a method call lo-
cally. A site that does not hold the data of a shared
object must involve a data holder in the execution of
a method call. Then the substitute for the shared ob-
ject maps possible method calls to data holding sites.
For this purpose, DreamObjects uses mechanisms that
reduce the number of involved sites to a minimum
(Lukosch, 2002). A reading method call is, e.g., only
executed by one data holding site, while a modifying
method call is executed by all data holding sites to
ensure the consistency of the shared data objects.

To fulfill the requirements as discussed in section 2,
DreamObjects offers an asymmetric, a replicated, and
an adaptive distribution scheme. When developers
register a new shared object, they have to define the
distribution scheme for the shared object. Thereby,
developers can use the same data class with different
distribution schemes.

5 DISTRIBUTION SCHEMES

Let D denote the set of shared data objects used in
a collaborative session, let S denote the participating
sites, and finally let DHd ⊆ S denote the sites that are
data holders of a shared object d ∈ D.

Each distribution scheme in DreamObjects is con-
trolled by an instance of an Evaluator class that
must be defined during the registration of a shared ob-
ject.

5.1 Static Distribution Schemes

DreamObjects offers two predefined evaluators for
static distribution schemes. The asymmetric distribu-
tion scheme fits well, when a developer wants to allow

CUSTOMIZABLE DATA DISTRIBUTION FOR SYNCHRONOUS GROUPWARE

73

the users of a collaborative session to introduce local
data, e.g. a video that is stored in the local filesystem
of a user. The replicated distribution scheme fits well
for highly interactive cooperative application, as it re-
duces the response time of an application.

DreamObjects uses an evaluator for a static dis-
tribution scheme to determine the set DHd, when
a shared data object d is created, and to determine
whether a latecomer’s site becomes a data holder of
a shared object d. Furthermore, the runtime system
uses an evaluator to sort the data holders in DHd when
a site s 6∈ DHd executes a reading method call. In a
first attempt, the runtime system involves the first site
in the execution of the reading method call. If an error
occurs, the runtime system passes the task to execute
the reading method call to the next site. Thereby, it is
possible to define arbitrary further static distribution
schemes.

If a developer, e.g., develops an application that
is used in a predefined network, he can define an
specific evaluator and only distribute a shared ob-
ject to the sites that have a good network connection.
For this purpose, a developer has to extend the basic
Evaluator class and implement the three methods:
getDataHolders, becomesDataHolder, and
sortDataHoldersForRead. The runtime sys-
tem calls these methods in the respective cases. Fig.
5 shows the corresponding class hierarchy.

+getDataHolders()
+becomesDataHolder()
+sortDataHoldersForRead()

Evaluator

ReplicatedEvaluatorAsymmetricEvaluator

Figure 5: Class hierarchy of static evaluators

5.2 Adaptive Distribution Schemes

In case of a static distribution scheme, the set of data
holders only changes when either a site joins the ses-
sion or leaves the session. In case of an adaptive
distribution scheme, the set of data holders can also
change in dependence of how a site accesses a shared
data object. Developers choose an adaptive distribu-
tion scheme, if they want to increase the availability
of a data object and, compared to the replicated distri-
bution scheme, want to decrease the network traffic.

To adapt the distribution of a shared object, the run-
time system informs the local evaluator for d about
the method call, whenever the local site initiated and
executed a method call directed to a shared object
d ∈ D. It passes the name of the method, a boolean
value that indicates, whether the method call modified

the content of the object, and the size of the shared
data object in bytes to the evaluator. Based on this in-
formation and the information about previous method
calls, the evaluator can initiate a change in the set of
data holders DHd.

DreamObjects associates a write master wmd ∈
DHd with every shared object. The write master
of a shared data object, e.g., ensures that a method
call or a method call result is distributed (Lukosch,
2002). When the write master of a shared object
leaves the session, DreamObjects deterministically
selects a new write master. Concerning adaptive data
distribution, the write master of a shared object en-
sures that the number of data holding sites does not
fall below a developer-defined minimum. To ensure
the availability of a data object, the specified mini-
mum has to be greater than or equal to two. When
|DHd| falls below the specified minimum, the write
master wmd of the shared object increases the num-
ber of data holding sites.

To develop an evaluator for an adaptive distribu-
tion scheme, developers have to extend the basic
AdaptiveEvaluator class (see fig. 6). Com-
pared to the static distribution schemes, following
methods must be implemented:

1. methodCalled: This method is called by the
runtime system, whenever the local site initiated a
method call. Based on the passed parameters, the
name of the method etc., this method has to de-
cide if the distribution of the shared object has to
be changed.

2. getMinDataHolders: This method has to re-
turn the minimum number of data holding sites.

3. getNewDataHolders: When the number of
data holding sites falls below the defined minimum,
this method has to determine the sites that become
a data holder.

+getDataHolders()
+becomesDataHolder()
+sortDataHoldersForRead()

Evaluator

+methodCalled()
+getMinDataHolders()
+getNewDataHolders()

AdaptiveEvaluator

UserOrientedEvaluator NetworkOrientedEvaluator

Figure 6: Class hierarchy of adaptive evaluators

DreamObjects offers two pre-defined evaluators for
an adaptive data distribution: a user-oriented and a
network-oriented evaluator. Both evaluators are based
on the following ideas:

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

74

1. If a site s 6∈ DHd intensively accesses a shared data
object d ∈ D, it should become a data holder. So
the site can execute reading method calls locally
and thus decrease the response time of the applica-
tion.

2. If a site s ∈ DHd does not access a shared data ob-
ject d ∈ D frequently, it should give up its role as
a data holder. So the number of data holding sites
is reduced. This decreases the number of messages
that is necessary to keep a shared data object con-
sistent and thus the response time of an application
at every site.

5.2.1 User-oriented Adaptive Distribution

Developers choose the user-oriented distribution
scheme, if the data of an application can be divided
into single logical pieces. For instance, consider a
collaborative text editor. A text document is struc-
tured into single logical pieces, i.e. words, sentences,
paragraphs, sections, and chapters. Depending on the
kind of collaboration that a developer wants to sup-
port between the users of the collaborative text editor,
he can use a shared data object for every single word,
sentence, etc. of the text document. Normally, only
a few users of a text editor work at the same logical
piece of the document. The user-oriented distribution
scheme takes this into account and distributes a data
object to those sites that intensively access it. As a
user’s working style can change during a collabora-
tive session, the evaluator reflects these changes in the
distribution of the shared data object.

When a new object d ∈ D using this scheme is cre-
ated, the evaluator as default selects two of the par-
ticipating sites as initial data holders. One of the data
holding sites is the object creating site sd, which also
becomes the initial write master wmd. To select the
other initial data holders for the shared data object,
the evaluator chooses the sites with the fastest net-
work connection.

When a site s 6∈ DHd initiates a reading method
call, one of the data holding sites has to execute the
method call. To determine this site, the evaluator sorts
the data holding sites according to their network con-
nection. In a first attempt, a site s 6∈ DHd selects the
first site in the list to execute the reading method call.
If this site fails, the next one is selected, until there is
no site left in the list or the method call was executed.

When a site joins a session, the evaluator has to
decide whether this site becomes a data holder of d. A
latecomer’s site only becomes a data holder if |DHd|
is lower than the defined minimum.

To adapt the distribution of a shared data object to
the working style of the collaborating users, the eval-
uator observes how a site accesses and uses a data ob-
ject. It uses the information about every method call
the local site initiates to calculate an overall load, a

read load, and a write load in calls per second. The
overall load includes all, the read load the reading,
and the write load the modifying method calls.

To calculate these values, the evaluator for a data
object d at a site s counts how many reading, modify-
ing, and general methods of the data object the local
site calls in a developer-defined period of time ∆t.
Every ∆t the evaluator calculates new load values.
All load values in calls per second are calculated in
the same way. When, e.g., ols

d
denotes the current

value of the overall load at a site s for a data object d,
wold

denotes the developer-defined weight of the last
load value, and mcs denotes the number of all method
calls in the last period of time ∆t, the evaluator cal-
culates the new overall load ols

d

′ as follows

ol
s

d

′ = ol
s

d
wold

+
mcs

∆t
(1−wold

), with 0 ≤ wold
≤ 1.

A developer can specify different weight values
and can set minimum and maximum limits for every
load. When at a site s ∈ DHd a load falls below a
minimum limit, the evaluator decides that the site s

does not need to be a data holder anymore. Then, the
site s informs the other participating sites which re-
move s from the set of data holders DHd. After s was
removed, it is not notified about modifying method
calls anymore and the network load is reduced. To
ensure the availability of a shared object, a site may
just give up its role as data holder, if |DHd| is greater
than the defined minimum.

When at a site s 6∈ DHd a load exceeds a maximum
limit, the evaluator calculates the expected transmis-
sion time of the shared data object. By specifying
a maximum transmission time, a developer can pre-
vent that large data objects are transferred to a site
with a poor connection type. If the expected time is
below the developer-defined maximum, the evaluator
requests the state of the data object, stores it in the
local substitute for d, and informs the other partici-
pating sites about the new data holder s.

5.2.2 Network-Oriented Adaptive Distribution

Developers use the network-oriented distribution
scheme for shared data objects that rarely change and
that are mostly accessed with reading method calls,
e.g. shared data objects that contain the configuration
of a shared application.

To reduce the network traffic and thus the response
time of an application in this case, the network-
oriented distribution scheme attempts to optimize the
distribution of a shared data object with regard to
the underlying network structure of the collaborating
group. When a new object using this scheme d ∈ D

is created, the evaluator determines a partition of sub-

CUSTOMIZABLE DATA DISTRIBUTION FOR SYNCHRONOUS GROUPWARE

75

sets SNi:

S =

n⋃

i=0

SNi, with n ∈ N

For this purpose, the evaluator checks the IP ad-
dress of every site. Sites whose IP address only varies
in the last octet are assumed to be in one subnet and
added to one subset SNi. After this, the evaluator se-
lects one site from every subset SNi as a data holder
of the new shared object. For the subset SNi with
sd ∈ SNi, the object creating site sd is chosen as the
data holding site. In the other subnets, the evaluator
chooses the site with the fastest network connection.
This is done for the following reasons:
• Usually, sites in a subnet have a good network con-

nection to each other, i.e. there is a low network de-
lay and a high transfer rate between the sites. If one
site s in a subset SNi is a data holder of a shared
data object d ∈ D, the other sites in the subnet can
access d via s.

• As only one site in every subnet becomes a data
holder of the shared data object, the number of data
holders, compared to, e.g., the replicated distribu-
tion scheme, is reduced. This, e.g., decreases the
network load for modifying method calls and thus
the response time of an application.
When a new shared object is created, the evaluator

selects one site from every subnet to become a data
holder. Of course, the object creating site becomes
a data holder. If the participating sites cannot be di-
vided into as many subnets as the defined minimum
of data holding sites, the evaluator sorts the sites ac-
cording to their network connection. From these sites,
the evaluator selects as many sites as are necessary ac-
cording to the defined minimum.

When a site joins a session, the evaluator has to
decide, whether this site becomes a data holder of d.
The evaluator checks if the joining site belongs to one
of the subsets SNi. In this case and if |DHd| is greater
than or equal to the defined minimum, a latecomer’s
site does not become a data holder. If the latecomer’s
site is the first site of a new subnet, it becomes a data
holder in any case.

When a site s 6∈ DHd executes a reading method
call, it is the task of the evaluator to determine a sorted
list of data holding sites. For this purpose, the evalu-
ator sorts the list of data holding sites as follows. For
a site s ∈ SNi, the data holding sites in the same sub-
net, i.e. SNi∩DHd, are put into the first places. After
the data holding sites from the same subnet SNi were
added to the list, the evaluator adds the rest of the data
holding sites to the list. Again, data holding sites with
a better network connection are rated higher than oth-
ers.

To adapt the distribution, the evaluator again cal-
culates an overall load, a read load, and a write load

(see section 5.2.1). A developer can again set mini-
mum and maximum limits for the different load and
can specify a maximum transmission time. When at a
site s 6∈ DHd a load exceeds a maximum limit and the
expected transmission time is below the developer-
defined maximum time, the evaluator requests the
state of the shared object d and the site s becomes
a data holder of d.

When at a site s ∈ DHd a load falls below a mini-
mum, the evaluator decides that the site s has to give
up its role as a data holding site. However, to en-
sure that each subnet contains at least one data hold-
ing site, a site must not give up its role as data holder
if there is not another data holder in its subnet. Addi-
tionally, a site must not give up its role as data holder
if the number of data holders is less than or equal to
the defined minimum or if it is the write master.

6 CONCLUSIONS

An ideal platform has to support a variety of distribu-
tion schemes, as different applications or even single
applications have different requirements concerning
data distribution. Compared to the other platforms
discussed in section 3, DreamObjects does not only
support the common asymmetric and replicated dis-
tribution scheme, it also supports two adaptive distri-
bution schemes. One of these distribution schemes
adapts the distribution of a shared data object in re-
lation to a user’s working style. The other distribu-
tion scheme attempts to optimize the distribution of a
shared data object with regard to the underlying net-
work structure of the collaborating group. The sup-
ported distribution schemes can be applied on a per-
object basis and first have to be defined at object reg-
istration time. Thus, a developer can use the same ob-
ject with different distribution schemes. In addition
to the supported distribution schemes, DreamObjects
offers an interface that enables developers to define
their own distribution schemes and to integrate them
into the platform.

Nevertheless, there are still open issues. The adap-
tive distribution schemes use a heuristic approach. A
developer can define limits for different load values.
Based on these limits, an evaluator decides, whether
it changes the distribution of a shared data object
or not. As already argued, it is an application- and
network-dependent task to choose appropriate limits.
However, DreamObjects enables further research in
adaptive distribution schemes for collaborative appli-
cations, e.g. to evaluate different limits for different
application types and network topologies. The results
could be used to provide a developer with a set of
instructions, how to choose the appropriate evaluator
for a data object.

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

76

REFERENCES

Anderson, G. E., Graham, T. N., and Wright, T. N. (2000).
Dragonfly: Linking Conceptual and Implementation
Architectures of Multiuser Interactive Systems. In
Proceedings of the 22nd International Conference on
Software Engineering, ICSE 2000, pages 252–261,
Limerick, Ireland.

Dewan, P. (1996). Multiuser Architectures. In Proceed-
ings of IFIP WG2.7 Working Conference on Engi-
neering for Human-Computer Communication, pages
247–270.

Dewan, P. and Choudhary, R. (1992). A High-Level and
Flexible Framework for Implementing Multiuser In-
terfaces. ACM Transactions on Information Systems,
10(4):345–380.

Garcia-Molina, H. (1986). The Future of Data Replication.
In Proceedings of the IEEE Symposium on Reliability
in Distributed Software and Database Systems, pages
13–19, Los Angeles, CA, USA.

Gavish, B. and Sheng, O. R. L. (1990). Dynamic File Mi-
gration in Distributed Computer Systems. Communi-
cations of the ACM, 33(2):177–189.

Hill, R. D., Brinck, T., Rohall, S. L., Patterson, J. F.,
and Wilne, W. (1994). The Rendezvous architecture
and language for constructing multiuser applications.
ACM Transactions on Computer-Human Interaction,
1(2):81–125.

Lukosch, S. (2002). Adaptive and Transparent Data Dis-
tribution Support for Synchronous Groupware. In
Groupware: Design, Implementation, and Use, 8th
International Workshop, CRIWG 2002, LNCS 2440,
pages 255–274, La Serena, Chile. Springer-Verlag
Berlin Heidelberg.

Lukosch, S. (2003). Transparent and Flexible Data
Sharing for Synchronous Groupware. Schriften zu
Kooperations- und Mediensystemen - Band 2. JOSEF
EUL VERLAG GmbH, Lohmar - Köln.

Lukosch, S. and Roth, J. (2001). Reusing Single-user
Applications to Create Multi-user Internet Applica-
tions. In Innovative Internet Computing Systems
(I2CS), LNCS 2060, pages 79–90, Ilmenau, Germany.
Springer-Verlag Berlin Heidelberg.

Lukosch, S., Roth, J., and Unger, C. (1999). Marrying On-
Campus Teaching to Distance Teaching. In Proceed-
ings of the 19th World Conference on Open Learning
and Distance Education, Vienna, Austria.

Lukosch, S. and Unger, C. (2000). Flexible Management of
Shared Groupware Objects. In Proceedings of the Sec-
ond International Network Conference (INC 2000),
pages 209–219, University of Plymouth, United King-
dom.

O’Grady, T. (1996). Flexible Data Sharing in a Group-
ware Toolkit. Master’s thesis, University of Calgary,
Department of Computer Science, Calgary, Alberta,
Canada.

Patterson, J. F. (1995). A Taxonomy of Architectures for
Synchronous Groupware Architectures. ACM SIGOIS

Bulletin Special Issue: Papers of the CSCW’94 Work-
shops, 15(3):27–29.

Patterson, J. F., Day, M., and Kucan, J. (1996). Notifi-
cation Servers for Synchronous Groupware. In Pro-
ceedings of the ACM 1996 Conference on Computer
Supported Cooperative Work, pages 122–129, Boston,
Massachusetts, USA.

Prakash, A. and Shim, H. S. (1994). DistView: Support
for Building Efficient Collaborative Applications us-
ing Replicated Objects. In Proceedings of the ACM
1994 Conference on Computer Supported Coopera-
tive Work, pages 153–164, Chapel Hill, NC, USA.

Prakash, A., Shim, H. S., and Lee, J. H. (1999). Data Man-
agement Issues and Trade-Offs in CSCW Systems.
IEEE Transactions on Knowledge and Data Engineer-
ing, 11(1):213–227.

Roseman, M. and Greenberg, S. (1996). Building
Real-Time Groupware with GroupKit, A Groupware
Toolkit. ACM Transactions on Computer-Human In-
teraction, 3(1):66–106.

Roth, J. (2000). ’DreamTeam’: A Platform for Synchronous
Collaborative Applications. AI & Society, 14(1):98–
119.

Roth, J. and Unger, C. (2000). An extensible classification
model for distribution architectures of synchronous
groupware. In Proceedings of the Fourth International
Conference on the Design of Cooperative Systems
(COOP2000), Sophia Antipolis, France. IOS Press.

Schuckmann, C., Kirchner, L., Schümmer, J., and Haake,
J. M. (1996). Designing object-oriented synchronous
groupware with COAST. In Proceedings of the ACM
1996 Conference on Computer Supported Coopera-
tive Work, pages 30–38, Boston, Massachusetts, USA.

Simão, J., Domingos, H. J., Martins, J. L., and Preguiça,
N. (1997). Supporting Synchronous Groupware with
Peer Object-Groups. In Proceedings of the Third
USENIX Conference on Object-Oriented Technolo-
gies (COOTS), Portland, Oregon, USA.

Strom, R., Banavar, G., Miller, K., Prakash, A., and Ward,
M. (1998). Concurrency Control and View Notifica-
tion Algorithms for Collaborative Replicated Objects.
IEEE Transactions on Computers, 47(4):458–471.

Urnes, T. and Graham, T. N. (1999). Flexibly Mapping Syn-
chronous Groupware Architectures to Distributed Im-
plementations. In Proceedings of Design, Specifica-
tion and Implementation of Interactive Systems (DSV-
IS’99).

Wolfson, O., Jajodia, S., and Huang, Y. (1997). An Adap-
tive Data Replication Algorithm. ACM Transactions
on Database Systems, 22(2):255–314.

CUSTOMIZABLE DATA DISTRIBUTION FOR SYNCHRONOUS GROUPWARE

77

