
IMPROVING QUERY PERFORMANCE ON OLAP-DATA  
USING ENHANCED MULTIDIMENSIONAL INDICES 

Yaokai Feng, Akifumi Makinouchi, and Hiroshi Ryu 
Graduate School of Information Science and Electrical Engineering, Kyushu University,  

  Fukuoka City, Japan 

Keywords: OLAP, multidimensional index, R*-tree, range query 

Abstract: Multidimensional indices are efficient to improve the query performance on OLAP data.    As one multi- 
dimensional index structure,   R*-tree is popular and successful, which is a member of the famous R-tree 
family. We enhance the R*-tree to improve the performance of range queries on OLAP data.   First,  the 
following observations are presented. (1) The clustering pattern of the tuples  (of the OLAP data) among  
the R*-tree leaf nodes is a decisive factor on range search performance and it is controllable.  (2) There  
often exist many slender nodes when the R*-tree is used to index OLAP data, which causes some problems 
both with the R*-tree construction and with queries.  And then,   we propose an approach to control the 
clustering pattern of tuples and propose an approach to solve the problems of slender nodes, where slender 
nodes refer to those having a very narrow side  (even the side length is zero)  in some dimension.  Our 
proposals are examined by experiments using synthetic data and TPC-H benchmark data. 

1 INTRODUCTION  

There is increasing requirement for processing 
multidimensional range queries on business data 
usually stored  in relational tables. For example, 
Relational On-Line Analytical Processing (ROLAP) 
in data warehouse is required to answer complex and 
various types of range queries on large amount of 
such data. A typical ROLAP range query is as 
follows. “Select  sum (EXTENDEDPRICE* 
DISCOUNT) From  LINEITEM Where 
QUANTITY ≤ 25 and 0.1 ≤ DISCOUNT≤0.3 
and 2001-01-01≤SHIPDATE ≤ 2001-12-31”, where 
LINEITEM  is a table having sixteen attributes used 
in TPC-H benchmark (Council, 1999). In this query, 
three attributes QUANTITY, DISCOUNT, and 
SHIPDATE form the range condition.  In order to 
get good performance for such multidimensional 
range queries, multidimensional indices are helpful 
(V. Markl and Bayer, 1999a; V. Markl and Bayer, 
1999b), in which the tuples  are  clustered among 
the leaf nodes to restrict the nodes to be accessed  
for a query. 

Many index structures have been proposed in the 
last two decades.  Among them, R*-tree 
(Beckmann and Kriegel, 1990) is one of the 
well-known and successful ones and widely used in 
many applications and researches (C. Chung and 

Lee, 2001; D. Papadias and Delis, 1998; H. 
Horinokuchi and Makinouchi, 1999; H. P. Kriegel 
and Schneider, 1993; Jurgens and Lenz, 1998). In 
this study, the R*-tree is enhanced for indexing 
business data  to improve the  performance of 
multidimensional range queries on the business  
data. Note that our proposal can also be used to  
other members of the famous R-tree family. 

In the works (C. Chung and Lee, 2001; Kotidis 
and N. Roussopoulos, 1998; Jurgens and Lenz 1998; 
N. Roussopoulos and Y. Kotidis, 1997; S. Hon and 
Lee, 2001), the aggregate values are pre-computed 
and stored in a multidimensional index as 
materialized view. The OLAP queries find aggregate 
values of data within a given range.  When 
required, the aggregate values can be retrieved  
efficiently.  In this study, we also use a 
multidimensional index for OLAP data.   However, 
it is completely different from the related works in 
that our study focuses on using an enhanced R*-tree 
to speed up evaluation of range queries themselves. 

In this paper,  first, it is pointed out that, when 
the R*-tree is used for indexing business data, the 
clustering pattern of tuples among the  leaf nodes is 
a decisive factor on range  search performance. 
Then, we explain the clustering pattern is 
controllable and show how to control it to improve 
the group performance of range queries, i.e., to 
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improve the total performance of evaluating a group 
of range queries issued on a relational table.  
Meanwhile, we also point out that there often exist 
many very slender leaf nodes when the R*-tree is 
used to index business data, which causes some 
problems both with the R*-tree construction and 
with queries, where Slender nodes means those 
having a very narrow side (even the side length is 
zero) in some dimension.  We also propose an 
approach to solve the problems of slender nodes. 

The rest of the paper is organized as follows. 
Section 2 introduces the R*-tree and describe how to 
use multidimensional indices for relational table. 
Section 3 presents our new observations when the 
R*-tree is used to business data.  Section 4 
describes our proposal. Section 5 gives experimental 
comparison using synthetic data as well as realistic 
data, and Section 6 concludes the paper. 

2 R*-TREE IN BUSINESS DATA 

This section gives a brief review of the R*-tree and 
describe how to use it to business data. 

2.1 R*-tree 

Let us briefly recall the R*-tree. 
The R*-tree (Beckmann and Kriegel, 1990) is a 

hierarchy of nested d-dimensional MBRs (Minimum 
Bounding Rectangles).  Each non-leaf node of the 
R*-tree contains an array of entries, each of which 
consists of a pointer and an MBR.  The pointer 
refers to one child node of this non-leaf node and the 
MBR is the minimum bounding rectangle of the   
child node referred to by the pointer. Each leaf node 
of the R-tree contains an array of entries, each of 
which consists of an object identifier and its 
corresponding point (for point-object databases) or 
its MBR (for extended-object databases). The 
R*-tree is built by inserting the objects (tuples for 
relational tables) one by one. Throughout the 
remainder of this paper, no distinction is made 
between R*-tree nodes and their corresponding 
MBRs in the corresponding multidimensional space 
when the meaning is clear in the context. Also, the 
terms of tuple and object are also used 
interchangeably. 

The R*-tree  is one of the most successful 
variants of the well-known R-tree family. It uses 
sophisticated insertion and node splitting algorithms 
with the forced reinsertion mechanism.  

2.2 Indexing Business Data Using 
R*-tree 

Now, we briefly recall how the R*-tree index 
business data stored in a relational table and give  
some terms. Let T be a relational table with n 
attributes, denoted by T(A1, A2, …, An). Attribute Ai 
(1≤i≤n) has domain D(Ai),  a set of possible values 
for  Ai. The attributes often have types such as 
Boolean, integer, floating point, character string, 
date and so on. Each tuple t in T is denoted by <a1,a2, 
…,an>, where ai (1≤i≤ n) is an element of D(Ai). 

When the R*-tree is used in relational tables, 
some of the attributes are usually chosen as index 
attributes, which are used to build the R*-tree. For 
simplification of description, it is supposed without 
loss of generality that the first k (1≤k≤n) attributes of 
T, <A1,A2, … ,Ak>, are chosen as  index attributes. 
Since the R*-tree can only deal with numeric data, 
an order-preserving transformation is necessary for 
each non-numeric index attributes. 

After necessary transformations, the k index 
attributes form an k-dimensional space, called index 
space, where each tuple of T corresponds to one 
point. 

It is not difficult to find such a mapping 
function for Boolean attributes and date attributes. 
For Boolean data, “True” and “False” can be 
mapped onto 1 and 0, respectively, if “True” > 
“False” is assumed forcedly. This ordering has no 
practical problems, because the predicate of 
“equality” such as “A = True” or “A = False” is the 
only predicate pattern for the Boolean attribute. 
Although implementation of “date” depends on 
DBMS, typical example of “date” in TPC-H 
benchmark consists of three integers representing 
year, month, and day. A simple function to get a 
numeric value for a “date” is to use the number of 
days from some reference date to this ``date''.  In 
this paper, the day of Jan. 1, 1900 is used as the 
reference day, that is, the number of days from Jan. 1, 
1900 to Apr. 5, 1998 is used to represent the date of 
Apr. 5, 1998. 

It is not easy to map an arbitrary character 
string to a unique numeric data. The work (H. V. 
Jagadish and Srivastava, 2000) proposes an efficient 
approach that  maps  character strings to  real 
numeric values within [0,1], where  the  mapping 
preserves the lexicographic order. This approach is 
also used in this study to deal with attributes of 
character string.  

We call  the value  range of Ai, [li,ui] (1 ≤i 
≤k), data range  of Ai  attribute (in this paper, 
“dimension” and “index attribute” are used 
interchangeably). The length of the data range of Ai, 
|ui-li|, is denoted by R(Ai). The k-dimensional 
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hyper-rectangle, [l1,u1]× [l2,u2]×…×[lk,uk], forms the 
index space. 

Let us see the following example. 
 

Table 1: YearlySales 
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3 OBSERVATIONS ON R*-TREE  
USED FOR OLAP DATA 

Because of the particularity of business data, some 
new features occur when the R*-tree is used to index 
business data.  

As a feature of business data, the data ranges of 
the attributes are very different from each other. For 
instance, the data range of ``Year'' from 1990 to 
2003 is only 13 while the amount of “Sales” for 
different ``Product'' may be up to several hundreds 
of thousands. 

Another typical example of such domains with 
small cardinalities is Boolean attribute, which has 
inherently only two possible values. Attribute with 
other data type may also semantically have small 
cardinality (e.g., day of the “week” with seven 
values). In LINEITEM table of TPC-H benchmark, 
RETURNFLAG, SHIPINSTRUCT, and 
SHIPMODE have only 3, 4, and 7 distinct values, 
respectively, although their data type is character 

 Year Product Sales 
t1 1999 “TV” 6,000,000 
t2 2000 “VIDEO” 3,000,000 
t3 2001 “CAMERA” 1,000,000 

(“TV”)   0.3851 

9 0 1 
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string. These attributes cause inappropriate   
clustering pattern of the tuples among the R*-tree 
leaf nodes, which  may deteriorates the search 
performance. 

3.1 Imbalanced Clustering 
Deteriorates Range Search 
Performance 

Let us see the above example again. 
 The length of data range in “Sales” dimension 

is very large (e.g., 5,000,000) while that in “Year” 
dimension is very small (e.g., only 14 from 1990 to 
2003). According to our investigations, the MBR of 
each leaf node almost cover entire data range of Year 
dimension. This incurs fatal deterioration of range 
query performance. If only Sales dimension is 
specified as the query attribute, the query can restrict 
the nodes to be accessed, so it is evaluated more 
efficiently. On the other hand, if only Year attribute 
is specified in the range query condition like “Year = 
1993”, almost all nodes of the index have to be 
accessed to evaluate the queries.  Thus, range query 
performance in this case depends on what attributes 
are used as query attributes. 

Fortunately, the clustering pattern of the tuples 
among the R*-tree leaf nodes can be controlled,  
which will be discussed in detail later. 

3.2 The Problems of Slender Nodes 

Slender nodes means those having a very narrow 
side (even side length is zero) in some dimension.  



Some examples are those MBRs   roughly shaped 
as line segments in 2-dimensional spaces and 
roughly shaped as plane segments in 3-dimensional 
spaces.  

The existing of slender nodes leads to some 
problems both with R*-tree construction and with   
queries.  

3.2.1 Problem with R*-tree Construction 

Let us consider the insertion algorithm of the 
R*-tree, using the example depicted in Figure 2 (a).  
Point p is to be newly inserted. Certainly it should be 
inserted in Node B since it is nearer to Node B than 
to Node A. However, according to the insert 
algorithm of the R*-tree, p will be inserted to Node 
A in this case. This is because the area increment of 
doing so is smaller than that of inserting p to Node B. 
This will lead to a bad clustering of tuples among 
the leaf nodes, which greatly cut down the 
performance of queries. 

Let us to see another case shown in Figure 2 (b). 
There are two MBRs shaped as line segments, A and 
B. Let assume p is a point to be inserted. Intuitively, 
p should be included in Node B whose MBR is a 
line segment. Actually, p may be inserted in Node A, 
although this may enlarge the overlap of A and B. 
This is because the insertion algorithm of the 
R*-tree cannot determine which node, A or B, 
should be selected since both volume increment and 
overlap increment of selecting A and selecting B are 
0. As a result, either Node A or Node B is selected as 
default without consideration of actual overlap.  
Here, we assume that Node A is selected. When a 
new point with the same coordinate of A2 dimension 
as p is inserted again, the same process is repeated 
and the point is also inserted into Node A. The 
repeated insertion of such points leads to the 
overflow of Node A. The node is split into Node A 
and a new node, say Node A″. Repeated insertions  

 
Figure 2: Slender nodes exist 

 
of points like p leads to node A splitting again, 
which generate a new Node A″, and so on. As a 

result, the space utilization of such nodes degrades 
and the total number of nodes tends to increase. 
Moreover, the heavy overlaps among the leaf nodes 
also greatly influence the search performance.  

3.2.2 Problem with Range Query 

In all the range search algorithms, it is necessary to 
decide whether one node MBR and the query range 
intersect or not. The existing method to do so is to 
calculate the overlap volume between them. If one 
of them has the volume of zero, their overlap 
volume is zero and they are considered not 
intersected with each other even if the fact is 
contrary, which may lead to a wrong query result. 

In addition, the range query performance with 
imbalanced clustering depends on what attributes are 
used as query attributes (discussed in Section 3.1). 
That is, if some attributes are used in query, the 
query performance may be much worse than that of 
some others being used. 

4 ENHANCING R*-TREE FOR 
OLAP DATA 

In this section, we explain how to control the 
clustering pattern to improve range search 
performance and how to solve the problems of 
slender nodes. 

4.1 Controlling the Tuples Clustering 
Pattern to Improve Range Search 
Performance 

It is well known that normalization is a common 
way to deal with the big difference among the data 
range in different dimensions. In the existing 
normalization, the attribute data are scaled so as to 
fall within a small range of [-1.0, 1.0] or [0.0, 1.0]  
in each index dimension (H. Horinokuchi and A. 
Makinouchi, 1999; J. Han and Kamber, 2001). 

However, the existing normalization is too stiff; 
that is, all the index attributes are dealt with in the 
same way. In this study, extended normalization is 
used to control the clustering pattern according to   
requirement (e.g., according to importance degrees 
of the index attributes).  

A point (a1,a2,…,ak) in the  index space is 
virtually mapped to  
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where (l1,l2,…,lk) is the left-lower corner of the 
index space , R(Ai) (1≤i≤k) is the length of data 
range of Ai, and c(Ai) (1≤i≤k) is control coefficient 
of Ai. The new normalized distance Ndist(p1,p2) 
between two points p1(a1,…,ak) and p2 (b1,…,bk) is 
defined as 
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While the existing normalization  relocates 

virtually the data range of each dimension to [0.0, 
1.0] or [-1.0, 1.0], the extended normalization 
relocates the data range of Ai (1≤i≤k) dimension to 
[0,c(Ai)]. Obviously, the existing normalization is a 
special case of the extended normalization when   
c(Ai)= 1 for 1 ≤i ≤k. Data clustering among the leaf 
nodes will change along with the control coefficients 
varying. Our basic idea is, by selecting appropriate 
control coefficients for each dimension, to control 
the tuples clustering pattern among the leaf nodes 
and then to improve the group performance of range 
queries, where the group performance refers to the 
total performance of a group of range queries. 

If the index attributes with larger control 
coefficients are used as query attributes, the number 
of index nodes to be accessed to evaluate the range 
query becomes smaller. This consideration leads to 
the idea that giving larger control coefficients to 
more important attributes may improve the total 
performance of range queries. 

A simple idea to determine importance degree 
of an attribute is based on the number of its 
occurrences in the range conditions of the given 
query group. The more frequent it is used,   the 
bigger its importance degree is. The control 
coefficients of the attributes used in the index 
construction are roughly proportional to their 
importance degrees.  Importance degree of an 
attribute is not necessarily proportional to the 
number of its occurrence, if some attribute(s) need to 
be more emphasized. Anyway, it is not necessary to 
create a new data set for the extended normalization, 
which can be realized when the data are inserted in 
the index. 

4.2 Solving the Problems of Slender 
Nodes 

Extended normalization can improve the group 
performance of range queries. However it can not 
solve the problems of slender nodes. The reason is as 
follows. After normalization or extended 

normalization, the density of objects (or say tuples) 
along every dimension may become very different 
from each other. Thus, when the objects are inserted   
one by one to build the R*-tree, some dimension 
may be chosen as split axis very often. As a result, 
many slender nodes arise. 

Our solution  to the Problems of Slender 
Nodes includes the following measures.  
 
1. Revising the insert algorithm of the R*-tree. It 

is known that the insert algorithm of the R*-tree 
is a decisive factor to the clustering pattern of 
the objects among the leaf nodes, which greatly 
affect the query performance. The R*-tree use   
area-criterion, including area-enlargement and 
overlap-enlargement of nodes, to decide the   
sub-tree that the insert algorithm should follow 
next. However, this method has caused some 
problems, as discussed before, when the R*-tree 
is used on business data. In this study, a novel 
distance-criterion is introduced to settle this 
problem.  When a new object is inserted to the 
R*-tree, the distance-criterion is used first to 
decide which sub-tree should be followed next.  
Concretely speaking, the insert algorithm will 
recursively choose the child node having the 
nearest distance from the new object to follow. 
In the case that more than one node have the 
nearest distance from the new object, the 
existing area-criterion is used.  Let the points s 
= (s1,…,sn)  and t = (t1,…,tn) be  the two 
vertices of the node MBR with the minimum 
coordinates and maximum coordinates in each 
axis, respectively. The distance of a node ν(s,t) 
from  point  p = (p1,…,pn)  is given by: 
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Figure 3 is an example. If the existing     
area-criterion is used in the insertion algorithm, 
the new object p is inserted in Node A. If the 
distance-criterion is used in this case, p is 
inserted in Node B, which, obviously, leads to a 
better clustering of the tuples among the leaf 
nodes. Again, the clustering of the tuples 
among the leaf nodes is a decisive factor on the 
search performance. 
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Figure 3: Choosing node to follow in 
the insert algorithm. 
 

 2.  When deciding whether one node and the 
query range intersect or not, we check if they 
overlap in every dimension, instead of 
calculating the overlap area between them. 
Overlap area of one node MBR and the query 
range can not be used in this case since a node 
MBR and the query range may intersect even 
if their overlap area is zero. 

5 EXPERIMENTS 

We performed various experiments to show how 
much the range query performance is improved 
using our proposals.  Due to the limitation of space, 
only the result of the examination using realistic data 
based on TPC-H benchmark is presented. The page 
size in our system is 4KB and all the index 
structures are built based on “one node one  page”. 
To evaluate the performance of range queries we use 
average number of node accesses, which is a 
common criterion for evaluation of search   
performance (H. V. Jagadish and Srivastava, 2000). 
In OLAP field, attributes are generally categorized 
into two types (R. Agrawal and Sarawagi, 1997):   
index attributes (dimensions in index space) and 
measure attributes (whose values are often 
aggregated).  

We examine our proposals using the following 
four R*-tree based structures. (1) Original R*-tree.  
(2) AR*-tree: created using the new distance- 
criterion. (3) NAR*-tree, using the new  
distance-criterion  and the original normalization 
(normalized to [0, 1] in each dimension). (4)  
FER*-tree:  Fully Enhanced R*-tree, enhanced by 
the new distance-criterion and the extended 
normalization.  

We use LINEITEM table (in TPC-H 
benchmark) having sixteen attributes, of which the 

six attributes, SHIPDATE (date), QUANTITY 
(floating point data), DISCOUNT (floating point 
data), SHIPMODE (character string), SHIP- 
INSTRUCT (character string), and RETURNFLAG 
(character string), are selected as index attributes 
since they are used in the queries of the benchmark 
as query attributes. The total   number of tuples is 
600,000.  We implemented the approach proposed 
in the work (H. V. Jagadish and Srivastava, 2000) to 
handle character string attributes, where the string 
data is stored in a file outside the index. Thus, the 
number of string accesses was also measured for 
comparison. 

5.1 Effect of the New 
Distance-criterion 

We created two indices: the original R*-tree and 
AR*-tree. The number of nodes and storage 
utilization of each tree are shown in Table 2. Total 
number of nodes in the original R*-tree is about 
twice as many as that in AR*-tree. Since the   
storage utilization of the original R*-tree used for 
common spatial data is expected to be approximately 
70% (Jurgens and Lenz, 1998), 58.7% utilization 
(see Table 2) is a serious degradation. On the 
contrary, AR*-tree can achieve reasonable storage 
utilization even when some attributes have small 
cardinalities. 

 
Table 2: R*-tree vs. AR*-tree 

 R*-tree AR*-tree 
Number of non-leaf 
nodes 

16713 15145 

Number of leaf 
nodes 

90012 69308 

Total number of 
nodes 

106725 84453 

Storage utilization 
(%) 

58.7 72.1 

Number of node 
accesses 

46319 10201 

Number of string 
accesses 

102042 22560 

 
Performance of range query is also presented in 

Table 2. The query ranges of the attributes of   
SHIPDATE, QUANTITY, and DISCOUNT are 
intervals like “2002-01-01≤SHIPDATE ≤ 2002 -12 
-31”, where the intervals are set to  10% of data 
range. The other attributes, i.e., RETURNFLAG, 
SHIPINSTRUCT, and SHIPMODE, are used in 
“equality” predicates because of their data types. 
The query is executed 30 times and each execution 
is done with randomly selected query range. Table 2 
shows the search performance using the AR*-tree is 

Node A 

Node B 

p 

A1 

A2 
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much better than that using the original R*-tree.   

5.2 Effect of the Extended 
Normalization 

Using the above-mentioned TPC-H table, 
comparison among the three indices of AR*-tree, 
NAR*-tree, and FER*-tree is made in terms of 
group performance of range queries. Certainly, we 
can not exhaust all the possible patterns of range 
query group using six index attributes. We select 
range queries using three or two  index attributes. 
Two groups of range queries are tested as examples.  

Table 3 shows the attributes and their 
corresponding dimensions. Tables 4 and 5 are the 
two groups of queries. 

Table 4 is Query group A having five range 
queries, each of which  has three or two query 
attributes. Table 5 shows Query group B consisting 
of four range queries. Unlike Query Group A, each 
query has same number of query attributes in Query 
Group B. The importance degree given to each 
attribute, which is used to construct FER*-tree, is 
based  on  the  occurrence of each attribute in the  

 
 
 
 

Table 3: Attributes and their dimensions 
Attributes Dimensions 
SHIPDATE A1
QUANTITY A2
SHIPMODE A3
SHIPINSTRUCT A4
DISCOUNT A5
RETURNFLAG A6

 
 

Table 4: Query group A 
 A1 A2 A3 A4 A5 A6
query-1 ○ ○   ○  

query-2 ○  ○    

query-3  ○  ○  ○ 
query-4 ○   ○   

query-5  ○ ○    

Importance 
Degree 

3 3 2 2 1 1 

 
 

 
 

Table 5: Query group B 
 A1 A2 A3 A4 A5 A6
query-1  ○ ○ ○   

query-2 ○  ○  ○  

query-3 ○ ○    ○ 
query-4 ○ ○  ○   

Importance 
Degree 

3 3 2 2 1 1 

 
query group. Predicates concerning SHIPDATE, 
DISCOUNT, and QUANTITY use intervals like 
“l≤A≤ u”. Constants l and u are selected so that the 
selectivity of each predicate is 10%. Attributes of 
RETURNFLAG, SHIPINSTRUCT, and 
SHIPMODE are used in “equality” predicates. 
Cardinalities of these 3 attributes are 3, 4, and 7, 
respectively.  Each query is executed 30 times and 
the average numbers of index node accesses are 
presented in Tables 6 and 7.  

In the two tables, the numbers in parentheses 
are the number of strings accesses. The last row of 
each table indicates the total number of index node 
accesses of the query group. FER*-tree clearly 
outperforms the other two trees in terms of both total 
number of index node accesses and that of strings   
accesses.  However, the AR*-tree is the most 
efficient when query-1 in Query Group A and 
query-3, 4 in Query Group B are concerned, which 
seems because that the queries using  SHIPDATE 
and QUANITITY  restrict most the nodes to be 
searched. These experiments indicate that the group 
performance of range queries is improved using the 
FER*-tree more than using NAR*-tree. 
 

Table 6: Performance of Query group A 
 AR*-tree NAR*-tree FER*-tree 

Number 
of 

nodes 

84453 83446 83653 

query-1 1164(0) 2565(0) 2030(0) 
query-2 8106(6704) 7730(7291) 5998(5690) 
query-3 8676(14143) 3122(6211) 2601(5119) 
query-4 8564(7902) 8410(8367) 6242(6225) 
query-5 12533(8556) 8557(8061) 7049(6616) 

Total  39046(3735) 30384(29940) 23922(23650) 
 

Table 7: Performance of Query group B 
 AR*-tree NAR*-tree FER*-tree 
query-1 11862(19474) 3593(6932) 2873(5539) 
query-2 6800(5429) 2595(2376) 2666(2463) 
query-3 1188(976) 3017(3007) 1770(1746) 
query-4 1409(1219) 2932(2894) 1617(1602) 
Total 21259(27098) 12137(15209) 8926(11350) 
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6 CONCLUSIONS 

In the field of OLAP, it is important to process 
various types of range queries on business data. The 
R*-tree is one of the successful multidimensional 
index structures and is also helpful to improve the 
query performance on OLAP data. In this paper, we 
tried to enhance the R*-tree in order to evaluate 
range queries on OLAP data more efficiently. It is 
pointed out that there often exist many slender nodes 
when the R*-tree is used on OLAP data, which 
cause some problems. This paper presented two 
approaches.  One is to control the clustering pattern 
of the tuples among the R*-tree leaf nodes and then 
to improve the group performance of range queries. 
The other is to introduce a distance criterion to the 
insert algorithm of the R*-tree. Our proposals are 
discussed in detail and examined by experiments. 
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