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Abstract: Relational data mining deals with datasets containing multiple types of objects and relationships that are pre-
sented in relational formats, e.g. relational databases that have multiple tables. This paper proposes a proposi-
tional hierarchical model-based method for clustering relational data. We first define an object-relational star
schema to model composite objects, and present a method of flattening composite objects into aggregate ob-
jects by introducing a new type of aggregates – frequency aggregate, which can be used to record not only the
observed values but also the distribution of the values of an attribute. A hierarchical agglomerative clustering
algorithm with log-likelihood distance is then applied to cluster the aggregated data tentatively. After stopping
at a coarse estimate of the number of clusters, a mixture model-based method with the EM algorithm is devel-
oped to perform a further relocation clustering, in which Bayes Information Criterion is used to determine the
optimal number of clusters. Finally we evaluate our approach on a real-world dataset.

1 INTRODUCTION

Clustering aims at determining the intrinsic structure
of clustered data when no information other than the
observed values is available. Three types of clustering
methods have been widely used – hierarchical clus-
tering (Meilă and Heckerman, 1998), partition-based
clustering and model-based approach using mixture
models (Fraley and Raftery, 1998).

Most traditional clustering methods handle datasets
that have single relation in flat formats. Recently,
there has been a growing interest in relational data
mining (RDM) (Džeroski and Raedt, 2003; Džeroski
and Lavrač, 2001), which is tackling the problem of
mining relational datasets that contain multiple types
of objects and richer relationships and are presented
in relational formats that have more than one ta-
ble. RDM provides techniques for discovering use-
ful or unknown patterns and dependencies embed-
ded in relational databases. A common solution to
RDM is developing propositional methods that in-
tegrate traditional data mining techniques into rela-
tional data by converting or “flattening” multiple ta-
bles into a single table on which standard algorithms
can be run. One of the shortcomings of this approach
is that it may cause loss of meaning or information.

Another solution leads to relational approaches that
are capable of dealing with data stored in multiple
tables directly in the areas of inductive logic pro-
gramming (ILP) (Džeroski and Raedt, 2003; Džeroski
and Lavrač, 2001) and probabilistic relational models
(PRMs) (Friedman et al., 1999). Some initial work of
relational data classification and clustering based on
ILP and PRMs have been developed in (Džeroski and
Raedt, 2003; Džeroski and Lavrač, 2001; Emde and
Wettschereck, 1996; Taskar et al., 2001).

In this paper, we present a propositional method
which integrates traditional hierarchical model-based
clustering algorithms with relational data that is com-
posed of a set of composite objects. We use aggrega-
tion to efficiently flatten composite objects into flat
aggregate objects, to which model-based hierarchi-
cal agglomerative clustering with log-likelihood dis-
tance and the EM algorithm are then applied. In order
to discover rich aggregate knowledge from relational
data, we define frequency aggregates for composite
objects, which have vector data type and can be used
to record not only the observed values but also the dis-
tribution of the values of an attribute. Frequency ag-
gregates provide extended semantics in reducing the
information loss during aggregation and are helpful to
the computation of log-likelihood distance.
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2 OBJECT-RELATIONAL STAR
SCHEMA

Multi-relational data mining focuses on composite
objects. A general characterization defines a compos-
ite object consisting of several components (possibly
from different types) with relationships in between.
We assume the relationship between a composite ob-
ject and its components is aggregation and the objects
are stored in multiple database tables. A composite
object is defined as composed of a base (sub-object)
associated with a set of additional parts (sub-objects).
Two types of composite objects are distinguished cor-
responding with the two kinds of aggregation defined
in object-oriented modelling – shared aggregation,
where the parts may be parts in any wholes, and com-
position aggregation, in which the particular parts are
owned by one whole at a time and the existence of
the parts is strongly dependent on the existence of the
whole (Eriksson and Penker, 1998).

Two types of relational models can be used to
represent the two kinds of aggregation relationships
between the tables. One is relational star schema
(which can be generalized to the relational snowflake
schema), where the base table is in the middle and
the part tables radiate from the base1. A relational
star schema represents a shared aggregation in the
way that many-to-one relationships are specified from
base to parts. In comparison, a so called relational
aggregate schema, where in the middle is the base ta-
ble and the parts converge on the base, is defined to
represent a composition aggregation in the way that
many-to-one relationships are denoted from parts to
base. Figures 1 and 2 illustrate the schema graphs
and object diagrams of the two schemas respectively.
For example, it is natural to design a product sales
database using a relational star schema (Figure 1),
in which each sale is a composite object with a base
object of SaleRecord class (X0) and several sharable
part objects of classes ({Xk}) such as Product, Time,
Geography, etc. An example of a relational aggre-
gate schema (Figure 2) used in the paper is to model
a housing condition survey database as composed of
a base table of Dwelling and two part tables of Occu-
pants and Rooms. In this way, each house is repre-
sented as a composite object that has a dwelling de-
scription record, a set of occupants who are living in
and a set of rooms of different living conditions.

The two schemas can be unified in the object-
relational (OR) context by introducing object iden-
tifiers (OIDs), reference (REF) and collection data
types (nested tables or collection of REF types) (Con-
nolly and Begg, 2002), which allow us to convert

1The star schema is widely used in data warehousing
and OLAP, where the base table and part tables are called
the fact table and dimension tables respectively.
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Figure 1: (a)The schema graph of relational star schema.
(b)An instance graph of relational star schema, including
6 composite objects, that contain 6 objects of base class X0,
4 objects of part class X1 and 3 objects of part class X2.
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Figure 2: (a)The schema graph of relational aggregate
schema. (b)An instance graph of relational aggregate
schema, including 2 composite objects, that contain 2 ob-
jects of base class X0, 5 objects of part class X1 and 6 ob-
jects of part class X2.

the many-to-one relationship in a relational aggregate
schema from parts-to-base into base-to-parts. In this
way, a relational aggregate schema can be replaced by
a star schema. We call the resulting schema as object-
relational star schema which is treated as a unified
representation of the relational star schema and rela-
tional aggregate schema. For the sake of simplicity,
we assume that only one composite class exists in the
dataset without recursive structures.

More formally, an object-relational star schema de-
fines a composite class X = {X0, X1, . . . , XK},
which consists of a base class X0 and a set of
part classes {X1, . . . , XK}. Each class Xk, 0 ≤
k ≤ K, is an abstract type of an entity in the
domain, and is associated with a set of attributes.
For a star schema, the base class is denoted as
X0(o,A1, . . . , AM0

, R1, . . . , RK) and the k-th part
class as Xk(o,A1, . . . , AMk

). Three types of at-
tributes are distinguished. Xk.o is used to specify an
unique system-generated object identifier for each ob-
ject of class Xk. A descriptive attribute Xk.Am, 1 ≤
m ≤ Mk, represents an attribute of Xk and takes
value from its domain Dom(Xk.Am). A reference
attribute X0.Rk, 1 ≤ k ≤ K, has domain of REF

HIERARCHICAL MODEL-BASED CLUSTERING FOR RELATIONAL DATA

93



type or collection type (e.g., a set of REFs). When
all the reference attributes are REF typed, an object-
relational star schema is identical with a relational
star schema; otherwise, we restrict it to stand for a
relational aggregate schema with composition aggre-
gation. In addition, an instantiation I of an object-
relational star schema X is composed of a set of N
composite objects, IX = {I1, I2, . . . , IN}, where
In = {x0(n), xn1, . . . , xnK}, 1 ≤ n ≤ N ; x0(n)
stands for the n-th object (or case) of the base class
X0 in the database; xnk = {xnk(1), . . . , xnk(Tnk)},
1 ≤ k ≤ K,Tnk ≥ 1, represents a subset of Tnk
objects of a part class Xk involved in the n-th com-
posite object; xnk(t), 1 ≤ t ≤ Tnk, is the t-th object
of class Xk in the n-th composite object. Each ob-
ject is assigned an OID and a list of value mappings
from descriptive attributes to their domains and, for
the base class, an interpretation for all the reference
attributes. Moreover, in the n-th composite object, we
use x0(n).Am, xnk(t).Am and xnk.Am to denote the
observed value of attribute X0.Am in the base object,
the observed value of attribute Xk.Am in any part ob-
ject, and the subset of observed values of attributes
Xk.Am, respectively.

3 FREQUENCY AGGREGATES

In clustering, once the objects of analysis have been
determined, we are faced with the problem of finding
proper measures to decide how far, or how close the
data objects are from each other. The measures can
be either similarity or dissimilarity (Jain and Dubes,
1988). Dissimilarity, which is widely used in prac-
tice, can be measured in many ways and one of them
is distance. Distance measures depend on the type,
scale and domain of attributes we are analyzing. In or-
der to measure likelihood distance between compos-
ite objects, we present a “relational-to-propositional”
method of making composite objects comparable by
defining an aggregate object. The basic idea is to con-
vert each composite object into a single aggregate ob-
ject by preserving aggregate information of part ob-
jects. The notion of aggregate is borrowed from re-
lational algebra and set theory, where a multi-set of
values can be converted into a single aggregation or
summary value by applying with aggregate functions
or operations, such as COUNT, AVG in SQL and
MODE, MEDIAN in set theory.

More precisely, given a composite ob-
ject In = {x0(n), xn1, . . . , xnK}, we de-
fine its aggregate object as AGG(In) =
(AGG(x0(n)), AGG(xn1), . . . , AGG(xnK)),
where AGG(x0(n)) = (x0(n).o, x0(n).A1,
. . . , x0(n).AM0

); AGG(xnk) = (COUNT(xnk),
AGG(xnk.A1), . . . , AGG(xnk.AMk

));

COUNT(xnk) = |xnk| = Tnk; if Tnk = 1,
then AGG(xnk.Am) = xnk(1).Am, otherwise,
AGG(xnk.Am) is equal to a single value after
applying an aggregate function to the multi-set of
values xnk.Am.

The basic aggregate functions to achieve the pur-
pose could be any aggregate operations on a set: car-
dinality or count, maximum, minimum, mean or av-
erage, median, mode, sum, or even some compos-
ite aggregates, etc., depending on the type of at-
tributes. However, the general aggregators are only
good choices in some situations or under some condi-
tions, they are unable to represent the complete distri-
bution of values in a multi-set. We define a new type
of aggregate that is able to represent both value and
the distribution of values in a multi-set. A partial fre-
quency aggregate PFA(A, d) on a discrete attribute A
with Dom(A) = {v1, . . . , vk} in an observed multi-
set of objects d is defined to be a k-dimensional fre-
quency vector [fd1 . . . fdk ], where fdi , 1 ≤ i ≤ k, is
the frequency of value vi within the set d. For ex-
ample, assume the attribute Gender has a domain
of {male,female}. The partial frequency aggregates
of two observations {2 males and 1 female} and {2
males and 3 females} are [ 23

1
3 ] and [ 25

3
5 ] respec-

tively. Together with the count number, PFA provides
a good description and statistics of a subset of part
objects, so that they are sufficient in calculating the
log-likelihood distances between (sets of) composite
objects. An example of a composite object and its ag-
gregate object is shown in Figure 3.

4 MODEL-BASED CLUSTERING

An integrated two-stage model-based clustering
method is developed based on the model-based clus-
tering strategy in (Fraley and Raftery, 1998), where a
mixture model is dealt with by applying HAC to pro-
vide tentative and suboptimal partitions, and the EM
algorithm to refine and relocate the partitions to reach
the optimal result.

4.1 Clustering Models

Here we assume a discrete multinomial mixture model
(Meilă and Heckerman, 1998) for a set of aggregate
attributes X = (AA1, . . . , AAM ) and a set of aggre-
gate objects D = {x(1), . . . , x(N)}. Let Θ stand for
the set of parameters of the model, model-based HAC
is associated with a classification log-likelihood

`C(Θ, C;D) =
N
∑

n=1

C
∑

c=1

M
∑

m=1

logP (x(n).AAm|θc), (1)

where c is used to label the classification: x(n) be-
longs to the c-th cluster only; and θc represents the
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Occupants (Age, Gender, Religion, 
Income) 

Dwelling (Type, ConstructionDate, NetAssetValue, Location, 
Tenure, Satisfaction, {REF(Occupants)}, {REF(Rooms)}) Rooms (Function, Defect) 

(o1, Adult, Male, Protestant, 20k-30k) 
(o2, Adult, Female, Protestant, 10k-20k) 
(o3, Child, Male, Protestant, None) 
(o4, Child, Male, Protestant, None) 
(o5, Old, Female, Catholic, None) 

(d1, House, Post 1980,  61k-130k, Urban, Owner Occupied, 
Yes, {o1,o2,o3,o4,o5}, {r1,r2,r3,r4,r5}) 

(r1, Kitchen, No) 
(r2, LivingRoom, No) 
(r3, Bedroom, No) 
(r4, Bedroom, Yes) 
(r5, Bathroom, No) 

 
 

  

(OccupantsNo, AdultsNo, PfaGender, PfaReligion, TotalIncome) (RoomNo, BedroomNo, PfaDefect) 
(5, 3, [0.6 0.4], [0.8 0.2 0], 30k+,             d1, House, Post 1980,  61k-130k, Urban, Owner Occupied, Yes ,        5, 2, [0.8 0.2]) 

 
Figure 3: An example of a composite object and aggregate object. Each attribute is set to be categorical. Three PFA attributes
are included.

set of parameters of the c-th model distribution, such
thatΘ = {θ1, . . . , θC}. In contrast, a mixture cluster-
ing model is used in the model-based clustering with
EM algorithm, and the relevant mixture log-likelihood
is expressed as

`M (Θ, C;D) =

N
∑

n=1

log
[

C
∑

c=1

πc

M
∏

m=1

P (x(n).AAm|θc)
]

, (2)

where πc is the mixing probability that an object be-
longs to the c-th cluster, πc ≥ 0,

∑C
c=1 πc = 1; and

Θ = {θ1, . . . , θC ;π1, . . . , πC}.
Moreover, the likelihood ratio (LR) criterion

(Everitt, 1981) and Bayesian information criterion
(BIC) (Fraley and Raftery, 1998) are used to detect
the stopping rules and to determine the optimal num-
ber of clusters in the course of clustering. Let k be an
arbitrary number of clusters, qm be the number of cat-
egories of attribute AAm, rm be the number of vec-
tor values if AAm is a frequency aggregate attribute,
and Mv be the total number of frequency aggregate
attributes; we then define, for a given data set D, the
log-likelihood ratio LR(D, k), the BIC score for mix-
ture classification model BICC(D, k) and the BIC
score for mixture clustering model BICM (D, k), re-
spectively, as

LR(D, k) = −2 log `C(Θ, k;D)

`C(Θ, k + 1;D)
, (3)

BICC(D, k) = −2`C(Θ, k;D) + δk log (N), (4)

BICM (D, k) = −2`M (Θ, k;D) + (δk + k − 1) log (N), (5)

where δk = k
[
∑M

m=1 (qm − 1) +
∑Mv

m=1 (rm − 1)
]

.
Note that a frequency aggregate attribute has a do-
main of vector values with a dimension equal to the
number of categories of the original attribute it aggre-
gates from, so the total number of the independent
parameters of both two types of attributes (δk) are
considered in the model complexity penalized term
of BIC scores. In addition, the number of mixing
probabilities (k − 1 for each object) must be penal-
ized in BIC for mixture models as well. The overall
hierarchical model-based clustering algorithm can be
expressed as follows.
1. Detecting stopping rules: Perform model-based HAC

for the data set D to reach up to 2 clusters, while com-
puting LR(D, c) and BICC(D, c) for each cluster num-
ber c in each step; let Cl = argmin(LR(D, c)) and

Cu = d
Cl+arg min(BICC(D,c))

2
e be the lower bound and

upper bound of the stopping rules of further clustering.

2. Clustering: Perform the following two steps for each
number of clusters c = Cl, . . . , Cu

2.1. Tentative clustering: Perform model-based HAC to
reach up to c clusters.

2.2. Relocation partitions: Perform the EM algorithm,
starting with c clusters from HAC and compute
BICM (D, c).

3. Determining the optimal number of clusters: Choose
the clustering with the first local minimum of all the
BICM (D, c) as the clustering result with the optimal
number of clusters, C = argmin(BICM (D, c)).

4.2 Clustering Algorithms

The model-based HAC provides a likelihood distance
measure (Meilă and Heckerman, 1998), such that a
maximum log-likelihood (ML) can be maintained for
the joint probability density of all the data records.
For the discrete multinomial mixture model, the ML
of Cj , the j-th cluster, takes the form

l̂j(θ̂j ;Dj) =
M
∑

m=1

qm
∑

q=1

Njmq log
Njmq

Nj

, (6)

where θ̂j is the ML parameters of Cj ; Dj is the set
of data cases involved in Cj ; Nj and Njmq are the
number of cases (sufficient statistics) in Cj and the
number of cases in Cj whose m-th attribute takes the
q-th category of values, respectively. By merging two
clusters, e.g. Cj and Cs, and assigning all their data
cases to the newly formed cluster C<j,s>, the log-
likelihood distance d(j, s) is set to be the decrease in
ML resulting by the merge

d(j, s) = l̂j(θ̂j ;Dj)+l̂s(θ̂s;Ds)−l̂<j,s>(θ̂<j,s>;D<j,s>).

The algorithm is described as follows, assuming we
maintain two linked lists of clusters and of aggregate
objects, and the stopping number of clusters is set to
be a pre-specified number K < N .
1. Initialization:

1.1. For n = 1, . . . , N , initialize Cn to contain x(n);
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1.2. For n = 1, . . . , N − 1, [for j = n+ 1, . . . , N , com-
pute αn = min(d(n, j)) and βn = argminj αn].

2. Iteration: For k = N,N − 1, . . . ,K, do

2.1. get cluster with minimum distance: for i =
1, . . . , k, search Cn withmin(αi);

2.2. merge clusters: form C<n,βn> by merging Cn and
Cβn , and set Cn ← C<n,βn>;

2.3. update clusters preceding Cn: for n′ = 1, . . . , n−1,
[compute d(n′, n) and update αn′ and βn′ if neces-
sary; if βn′ = βn then recompute αn′ and βn′ ];

2.4. update the new formed cluster Cn: for n′ = n +
1, . . . , k, compute d(n, n′) and update αn and βn;

2.5. update clusters following Cn: for n′ = n +
1, . . . , βn − 1, if βn′ = βn then recompute αn′ , βn′ ;

2.6. erase cluster Cβn from the cluster list.

3. Finish: For k = 1, . . . ,K, output θk, πk and Ck.

The log-likelihood distance depends only on the ob-
jects of the clusters being merged, and all the other
distances remain unchanged. However, the time
complexity of the algorithm is between O(N 2) and
O(N3) (Meilă and Heckerman, 1998).

Another issue is the computation of the distance be-
tween two clusters that contain each one object. For a
nominal (unordered) attribute, the Hamming distance
is used to calculate the differences between two ob-
served values; for an ordinal attribute, the normalized
Manhattan distance is applied; for a frequency aggre-
gate attribute that takes a vector value, the normalized
Euclidean distance between two vector values is cal-
culated with a normalized constant 1√

2
.

In practice, HAC based on classification model of-
ten gives good, but suboptimal partitions. The EM
algorithm can further refine and relocate partitions
when started sufficiently close to the optimal value.
The mixture clustering likelihood is used as the basis
for the EM algorithm, because it models a conditional
probability τnk that an object x(n) belongs to a clus-
ter Ck, in contrast, τnk is assumed to be either 1 or
0 in the classification model. The EM algorithm is
a general approach for maximizing likelihood in the
presence of hidden variables and missing data (Fraley
and Raftery, 1998), i.e. the class label attribute, τnk
and πk.
1. E-step: for n = 1, . . . , N and k = 1, . . . ,K, compute

the conditional expectation of τnk by

τ̂nk =
π̂kPk(x(n)|θ̂k)

P (x(n))
=

π̂k
∏M

m=1

∏qm

q=1 θ̂
xmq(n)

kmq

∑K

k=1 π̂k
∏M

m=1

∏qm

q=1 θ̂
xmq(n)

kmq

where xmq(n) stands for the value (1 or 0) of x(n).AAm

in its q-th category.

2. M-step: for k = 1, . . . ,K, estimate the expectation of
πk and θk by

π̂k =
1

N

N
∑

n=1

τ̂nk, θ̂kmq =

∑N

n=1 τ̂nkxmq(n)
∑N

n=1 τ̂nk
.

The iteration will converge to a local maximum of the
likelihood under mild conditions, although the con-
vergence rate may be slow in most cases.

The BIC provides a kind of score functions that not
only measures the goodness of fit of the model to the
data, but also penalizes the model complexity, e.g. the
total number of model parameters or the storage space
of model structure. We apply BIC to both the classi-
fication model (Equation (4)) and the mixture cluster-
ing model (Equation (5)). Accordingly, the smaller
the value of BIC, the stronger the model. BICC ,
in model-based HAC, is used to compute the upper
bound (stopping rule) of the EM; and BICM , in the
EM algorithm, is applied to find the optimal number
of clusters. A decisive first local minimum indicates
strong evidence for a model with optimal parameters
and number of clusters (see Figure 4 for example).

5 EXPERIMENTAL RESULTS

We apply the approach to a real world relational
dataset, which contains about 10,000 records of the
survey information of various types of dwellings. As
mentioned in section 2, the data is modelled using
a relational aggregate schema, where Dwelling table
plays a role of base class, with Occupants table and
Rooms table being two part classes. We chose some
significant attributes from the three tables and dealt
with their domains of values so that all the attributes
are categorical. After aggregating the attributes of
Occupants table and House table, we got a set of
composite objects with aggregate attributes of (Oc-
cupantsNo, AdultsNo, PfaGender, PfaReligion, Total-
Income, RoomNo, BedroomNo, PfaDefect), in which
PfaGender, PfaReligion and PfaDefect are three par-
tial frequency aggregate attributes with vector values
(see an example in Figure 3).

Table 1: Experimental Result
number of objects 1,000 3,000 5,000 9,530

(Lower,Upper) Bound (2,7) (2,11) (3,13) (2,15)
number of clusters 6 9 11 14

HAC running time (sec.) 50 427 1,159 4,024

After clearing the objects that have missing data,
we got 9,530 aggregate objects left, from which
four groups are selected for clustering, 1,000 objects,
3,000 objects, 5,000 objects and the whole dataset.
The EM algorithm runs until either the difference be-
tween successive log-likelihood is less than 10−5 or
100 iterations are reached. The results for the four
groups is listed in Table 1. Figure 4 show the two
plots of the mixture BIC scores and −2log-likelihood
values against the number of clusters for the last two
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Figure 4: The BIC and log-likelihood versus the number of clusters for the datasets of 5,000 and 9,530 composite objects. The
first local minimum shows the optimal numbers of clusters found by the EM algorithm are 11 and 14 clusters respectively.

groups respectively. An observation from the exper-
iments is that the optimal number of clusters found
by the algorithm is increasing as the total number of
objects increases. This can be verified from Equation
(5), where the likelihood term (O(N)) dominates the
penalty term (O(logN)) as N gets larger.

The clustering results are significant and convinc-
ing. The count aggregates and frequency aggregates
play important roles in the clustering. The dataset
tends to be partitioned into groups that have dis-
tinct number of part objects, e.g., dwellings with
distinct number of occupants and rooms, together
with properties of distinct aggregate frequencies, e.g.,
dwellings of protestant families and dwellings in
which fewer room defects are reported. In addition,
by analysing the BIC curves in Figure 4, it is reason-
able for us to partition the whole dataset into 7 distinct
clusters at last.

6 CONCLUSION

Compared with other work, our method is a proposi-
tional approach in relational data mining. We bor-
rowed some ideas from (Fraley and Raftery, 1998;
Meilă and Heckerman, 1998), and provide some ex-
tensions in dealing with aggregate attributes. We de-
fine frequency aggregates so that both the values and
the distribution of values can be recorded for compos-
ite objects. Frequency aggregates are well applied in
computing log-likelihood distance. We also present
a method of determining the lower and upper bounds
for the EM and get good results from the experiments.

Some future work are planned to do: handling con-
tinuous attributes as well as discrete attributes; deal-
ing with missing data or data with noise; and apply-
ing relational distance measurements, e.g. (Emde and
Wettschereck, 1996) to develop a relational model-
based clustering method.
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Džeroski, S. and Lavrač, N. (2001). Relational Data Min-
ing. Springe-Verlag, Berlin.
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