
FLOW-ORIENTED DEPLOYMENT OF A MULTI-AGENT
POPULATION FOR DYNAMIC WORKFLOW ENACTMENT

A different view on how to use agents for workflow management

Sebastian Kanzow, Karim Djouani, Yacine Amirat
Laboratotory of Industrial Informatics and Automation(LIIA) ,University Paris 12,

120-122, rue P. Armangot, 92400 Vitry sur Seine, France

Keywords: workflow management, multi-agent systems

Abstract: In the virtual enterprise paradigm, workflow processes are shared between different businesses partners,
leading to new requirements for workflow management applications. Several multi-agent systems have been
proposed to cope with their inherently distributed nature. Most of those systems define agents as some kind
of helper programs situated on (human) resource level, instantiated on some workflow participant’s personal
computer. We argue that this concept is not adequate and propose an approach to create and deploy agents
on a virtual flow level, where one agent takes care of one workflow sub-process, instead of attaching one or
more agents to an existing resource. Finally, we present a probabilistic classification approach to decide on
the assignment of tasks to agents.

1 INTRODUCTION

Due to the introduction of electronic data processing
in nearly every business domain, many companies
have begun to use automated workflow
management. Standards have been established for
workflow description and information routing
between the different departments of medium-sized
and large business concerns (WfMC, 2002). Today,
workflow management includes not only the
different departments of the same company, but also
information processing and task scheduling between
various business partners, like suppliers, customers
and sometimes even economic rivals. The virtual
enterprise paradigm deals with the creation of a
consortium of independent companies committed to
the completion of a common product. This leads to
new requirements for automated workflow concepts,
by introducing the idea of confidentiality and
security, as well as to the need for solutions of
difficulties linked to the variety of operating
software and the diversity of protocols and process
description standards. The domain being inherently
distributed, several research projects have been
dealing with multi-agent approaches to overcome

the drawback of centralized approaches (Jennings,
2000). Most often, those agents are attached to
resources (human or other), their function is mainly
communicative. For an example, see (Sacile et al,
2000) or (Chen, 2000).

2 RESOURCE BASED VS.
PROCESS BASED AGENT
DEPLOYMENT

Companies are in general organized around human
resources and not along process flows, very much
like in the beginning of industrialization, where
manufacturing was organized in production cells. Of
course, as to what concerns the manufacturing
process, this concept has been abandoned for the
sake of production lines, but it is still valid in most
other domains, like administration, management and
service. So the most natural way of introducing
agents into workflow processes would be to consider
agents as more or less automated helper programs,
who are attached to physical resources, like desktop
computers or production machines. This approach
has the convenience of being similar to the

510 Kanzow S., Djouani K. and Amirat Y. (2004).
FLOW-ORIENTED DEPLOYMENT OF A MULTI-AGENT POPULATION FOR DYNAMIC WORKFLOW ENACTMENT - A different view on how to use
agents for workflow management.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 510-514
DOI: 10.5220/0002623905100514
Copyright c© SciTePress

prevailing human role-actor model. On the other
hand, the equivalence of resources and agents in a
workflow management concept poses several
problems. The first inconvenient is the lack of
supervision between the execution of different tasks,
which is needed to guarantee the overall progress of
workflow execution. Secondly, scheduling gets quite
complicated and needs a lot of inter-agent
communication when every agent schedules locally
its tasks, without consideration for the rest of the
workflow, due to the fact that process execution
logic is not necessarily linked to resource
organization (Figure 1). Another problem is the
reactivity in the case of disturbances, occurring
during process execution, because one agent can’t
easily see the impact of a local perturbation on the
rest of the process flow. Finally, most often tasks
can be executed by a choice of several different
resources, which means that supplementary inter-
agent negotiation would be needed to assign a task.
In this paper, we suggest to rather consider agents as
virtual entities on workflow sub-process level than
as helper programs on resource level. The creation
and the lifeline of agents should be transparent from
the user’s point of view. Starting from a
standardized workflow description, the system
should autonomously decide the number of agents it
needs to guarantee optimal supervision of an
ongoing process, while minimizing communication
between different workflow participants.

3 RELATED WORKS

Multi-agent workflow enactment is a well-studied
research domain. Most often, like for example in
(Joeris, 2000), every task is coordinated by its own
task coordination agent which interacts with related
task agents by event passing. (Aalst, 2002) models
hierarchical interorganizational workflows but
doesn’t deal with workflow enactment and
automatic task assignment. (Dogac et al, 2000)
describe another workflow concept based on
communication between resource-situated agents
and provide an authentication and certification
process to enable agent communication via public
networks. (Cichocki and Rusinkiewicz, 1997)
propose their “migrating workflow” model with
agents that are dynamically instantiated, following
the execution of a workflow from host to host.

4 DISTRIBUTED WORKFLOWS

Work processes that are shared between several
companies can’t rely on centralized workflow
engines for reasons of confidentiality. Owning the

central server means being able to control the status
of all connected participants, which is not desirable
in commercial relationships between business rivals.
Who should for example host the data server in the
case of a workflow, which is distributed between
two competing companies and their common
supplier? For this reason, every participant hosts his
own data and exchanges only limited information,
which is needed for scheduling and global progress
supervision.

4.1 Requirements for inter-
organizational workflow
management

We fixed four main corner stones to define the frame
of a workflow engine adapted to the virtual
enterprise concept:
The system has to be reactive and dynamic in order
to be able to attenuate the global impact of local
disturbances and adapt itself to changes during task
execution.
Confidentiality must be respected in any case and
only the minimal information necessary for optimal
task execution may be transmitted to other
participants.
The system should be organized in autonomous
entities, in order to be able to deal with a variable
number of resources (scalability).
It has to be universal, which means it must be
independent of computer platforms and it should use
a standardized language to describe workflow

Figure 1: The logic of task execution does not necessarily
follow physical resource layout (the arrows indicate

precedence constraints between tasks)

Task #1

Human
Resource

#1

Human
Resource

#2

Human
Resource

#3

Task #3

Task #5
Task #2

Task #4
Task #6

FLOW-ORIENTED DEPLOYMENT OF A MULTI-AGENT POPULATION FOR DYNAMIC WORKFLOW
ENACTMENT: A different view on how to use agents for workflow management

511

processes in term of tasks, resources, security
matters and information flow.
The workflow engine should take care of task
assignment to resources and supervision of the
progress of task execution, but does not necessarily
include task execution itself, because it depends
entirely on each participant’s specialized knowledge.

4.2 Workflow description language
The workflow description is used to build
dynamically a workflow execution environment. It
contains information about tasks and their resources,
estimated durations and precedence constraints.
Resource constraints depend on the type of task, it
can for example be a human resource or a capacity
needed to accomplish the task. A precedence
constraint means that one task’s execution must be
finished, before the next task’s execution starts. Due
to the workflow’s distributed nature, its description
is fragmented and hierarchical. Precedence
constraints are only known locally, which means
that a local workflow description contains references
to immediately following or preceding tasks.
We use an XML-based workflow description
language, containing the tags <role>, <task> and
<successor> (Kanzow et al, 2003) The role tag
contains task’s to be accomplished by a resource
belonging to a specified role, e.g. “accountancy” or
“secretary”. The task tag defines the name of a task,
its estimated duration and can contain one or more
successor tags, to define precedence constraints. An
example:

<role name=”accountancy”>
 <task name=”register_bill” duration=”5”>
 <successor name=”send_product” role=”shipper”>
 </task>
</role>
<role name=”shipper”>
 <task name=”send_product” duration=”7” />
</role>

We’re also working on the integration of more
sophisticated routing elements, as defined in the
eXchangeable Routing Language (XRL) (Aalst et al,
2001), introducing elements like <choice> and
<sequence> to allow for more flexible workflow
modelling.

5 FLOW-ORIENTED AGENTS
As shown in the preceding section, workflow
fragments are defined locally using a resource-based

view. Creating resource-oriented agents from this
description would be straightforward, but to create
flow-oriented agents, we first need to classify the
tasks in order to decide which of them belong to the
same workflow sub-process. The main decision
criterion is the number of precedence constraints that
link a task to its successors. Tasks should be
assigned to agents in a way that:
minimizes the existence of inter-agent precedence
constraints and
minimizes parallelism in task’s belonging to the
same agent.
Optimally, each agent deals with the execution of
one task at a time and has only intra-agent
precedence constraints (= Tasks that have
precedence links only to other tasks belonging to the
same agent). In reality though, there’ll exist a certain
number of inter-agent dependencies, because real-
world workflow’s sub-processes are in general
interconnected.

5.1 Algorithmic approach for task
assignment

We negotiate task assignment in three phases:
Creation of initial agents and iterative assignment of
tasks to those agents
Decision process to assign tasks that are not clearly
assigned during the first phase
Split and merge process of agents to ensure minimal
temporal parallelism during execution of one agents’
tasks
Workflows are executed in more or less uncertain
environments. That means that most of the given
parameters (like task execution duration) are in
reality probability distributions instead of fixed
values. During the first negotiation phase, we
calculate the degree of probability for the
assignment of some task to each of the agents.
Initially, for every task that doesn’t have any
predecessor, an agent is created. Those newly
created agents start an iterative assignment process.
For every task T that is assigned to an agent Ax, it
analyzes the successor list and calculates for each of
the successors Tj a probability value:

)1(
),(

)(),(
:)(

.

.

∑
∑

∈

∈

∈
=∈

predj
ij

xjij
predj

xi TTC

ATPTTC
ATP

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

512

This is the sum of all precedence constraints linking
the task to its predecessor tasks, multiplied by those
tasks’ probabilities to belong to the agent Ax, divided
through the total number of the successor’s
precedence constraints. The agent with the highest
probability value takes the successor task, but also
remembers the probability values for the assignment
of this task to other agents. That means, even after
some agent has taken a task, there can still be a
probability greater than 0 that it belongs to some
other agent. If there’s no clear winner, a second
criterion is evaluated, in order to choose the solution
where possible temporal parallelism during some
agents’ tasks execution is minimized. In other
words, we assign a task Ti to an agent A in a way to
minimize the risk of the same agent having to take
care of several parallel task executions at a time. The
criterion is calculated by the following equation: Figure 2: A randomly generated test scenario of 36

s with precedence constraints (indicated by arrow task s)

)2(,,
1)(

:)(ij
j

xj

xiiTi Tij
n

ATP
ATP PP ∈≠

+∈
=∈
∑

Pi is the set of all tasks that can possibly be executed
at the same time as task Ti , which means that there
are no direct or indirect precedence constraints
between the members of Pi and Ti. n is the
cardinality of Pi and the value P(Tj ∈ Ax) has been
calculated in equation (1).
The last phase is a “split or merge” negotiation,
where agents can fusion or new agents can be
created, based on the estimated occurrence of
parallelism of one agent’s tasks.

5.2 Workflow execution

When every task has been assigned to an agent,
workflow execution can start. Every agent moves
from resource to resource, along with the progress of
its tasks’ execution. This way, the current state of
process execution will not be sent to some
centralized server and thus the confidentiality of data
is respected. Only one centralized network node is
needed to keep the white pages of active agents up
to date and to be able to react in the case of some
agent’s premature death, e.g. because of a system
crash. On every resource, on arrival of some agent
with its list of tasks to execute, the local scheduler
agent, based on priority criteria specific to each
domain, creates a local schedule. If several resources
capable of executing some task do exist, the newly

arrived agent can choose the resource as a function
of the proposed schedules.

5.3 Benefits and difficulties of flow-
oriented agent approach

The main advantage of our flow-oriented approach
compared to other resource-oriented agent
approaches lies in the fact that in our case workflow
execution supervision is inherent. One of the most
difficult points in distributed workflow management
is to guarantee the liveliness of every running
process by detecting tasks that have got stuck. A
flow-oriented agent supervises closely its tasks,
ideally one at a time, and can thus react
immediately, should a disturbance occur. The
agent’s objective is clear: it has to reach the end of
its sub-workflow. The main difficulty concerns the
ability of an agent to move from one resource to
another, the same multi-agent platform has to be
installed on all workflow participants’ computers.
Furthermore, the agent platform must be able to
encode every agent’s state, to send it along some
network and to recreate the same agent on a distant
node. To summarize, we have a look at how our
concept respects the four main requirements from
section 2: reactivity and dynamicism are ensured,
confidentiality is respected and the system is
scalable, due to the agents’ autonomous nature. The
only one of our four corner stones that poses
difficulties is the lack of independence of computer
platforms, but with the gain of importance of multi-

FLOW-ORIENTED DEPLOYMENT OF A MULTI-AGENT POPULATION FOR DYNAMIC WORKFLOW
ENACTMENT: A different view on how to use agents for workflow management

513

agent technologies and particularly the progress in
agent mobility a standardized agent platform might
soon emerge.

6 IMPLEMENTATION AND
RESULTS

We implemented a multi-threaded agent testbed
(Figure 2) with XML-based communication
(Kanzow, 2004). Task configurations are generated
automatically, using random distributions for
numbers of tasks, resources and constraints. In the
case of workflow scenarios with relatively few
precedence constraints (less than 30% of tasks are
linked through precedence constraints), tasks can
easily be assigned to virtual agents using the simple
negotiation algorithm described above (Figure 2 –
Figure 4), but for more complex settings more
investigation into the second and the third
negotiation phase will be needed. We’re working on
a mathematical formulation of the criteria to
minimize (inter-agent dependencies and degree of
task parallelism). Nevertheless, the first results we
obtained endorse our idea that workflows agents
should logically correspond to sub-flows, rather than
being situated on some workflow participant
resource.

REFERENCES
van der Aalst, W.M.P., 2002, Inheritance of

Interorganizational Workflows to Enable Business-to-
Business, In Electronic Commerce Research, Volume
2, Number 3, July 2002

van der Aalst, W.M.P.; Verbeek, H.M.W.; Kumar, A.,
2001, Verification of an XML/Petri-net based
language for inter-organizational workflows, In

Proceedings of the 6th Informs Conference on
Information Systems and Technology (CIST-2001)

Chen,Q. and Dayal, U., 2000, Multi-Agent Cooperative
Transactions for E-Commerce", In Proceedings of the
Fifth IFCIS Conference on Cooperative Information
Systems (CoopIS'2000)

 Cichocki, A. and Rusinkiewicz, M., 1997, Migrating
workflows, Advances in Workflow Management
Systems and Interoperability, Istanbul, Turkey

Dogac, Beeri, Tumer et al., 2000, The MariFlow
Workflow Management System, In Proceedings of the
16th International Conference on Data Engineering
(ICDE-2000)

Jennings, N. R. and Faratin, P. and Norman, T. J. and
O'Brien, P. and Odgers, B. 2000, Autonomous Agents
for Business Process Management, In Int. Journal of
Applied Artificial Intelligence14(2)

Figure 3: Graphical re-arrangement of tasks from
Figure 2, based on precedence constraints

Joeris, G., 2000, Decentralized and flexible workflow
enactment based on task coordination agents, In
Second International Bi-Conference Workshop on
Agent-Oriented Information Systems (AOIS-2000)

Kanzow, S. 2004, A collection of VC++ classes to create a
multi-agent testbed, http://www.liia-paris12.net

Kanzow S, Djouani K., Amirat Y., 2003, A framework for
distributed workflow enactment using dynamic
software agent generation, In 7th International
Conference on Automation Technology,
(AUTOMATION2003)

Sacile, R. Montaldo, E. et al, 2000, Agent-based
architectures for workflow management in
manufacturing, In International Conference on
Advances in Infrastructure for Electronic Business,
Science and Education on the Internet (SSGRR-2000)

WfMC, 2002, Workflow Process Definition Interface --
XML Process Definition Language (XPDL), In
http://www.wfmc.org/standards/docs.htm

Figure 4: Result of task classification using the
algorithm described in section 5.1

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

514

