
IMPROVING VIEW SELECTION IN QUERY
REWRITING USING DOMAIN SEMANTICS

Qingyuan Bai1, Jun Hong2, and Michael F. McTear1

1School of Computing and Mathematics, University of Ulster, Newtownabbey, Co.Antrim, BT37 0QB, UK

2School of Computer Science, Queen’s University of Belfast, Belfast, BT7 1NN, UK

Keywords: Data integration, query rewriting using views, domain semantics, view selection

Abstract: Query rewriting using views is an important issue in data integration. Several algorithms have been
proposed, such as the bucket algorithm, the inverse rules algorithm, the SVB algorithm, and the MiniCon
algorithm. These algorithms can be divided into two categories. The algorithms of the first category are
based on use of buckets while the ones of the second category are based on use of inverse rules. The bucket-
based algorithms have not considered the effects of integrity constraints, such as domain semantics,
functional and inclusion dependencies. As a result, they might miss query rewritings or generate redundant
query rewritings in the presence of these constraints. A bucket-based algorithm consists of two steps. The
first step is called view selection that selects views relevant to a given query and puts the views into the
corresponding buckets. The second step is to generate all the possible query rewritings by combining a view
from each bucket. In this paper, we consider an improvement of view selection in the bucket-based
algorithms using domain semantics. We use the resolution method to generate a pseudo residue for each
view given a set of domain semantics. Given a query, the pseudo residue of each view is compared with it
and any conflict that exists can be found. As a result, irrelevant views can be removed even before a bucket-
based algorithm is used.

1 INTRODUCTION

In a data integration system, data sources are
autonomous, distributed, and heterogeneous.
Usually, a logical virtual mediated schema is used to
make queries and describe the contents of the data
source. The actual data is however stored in the data
sources. To answer a user query, we need to
reformulate it into new queries over the data source
schemas in order to get access to the data sources.
This process is called query rewriting.

In general, there are two main approaches to
query rewriting, i.e., Global As View (GAV) and
Local As View (LAV). As stated in (Levy, 2001),
the LAV approach is more suitable for a data
integration system in a dynamic environment.
Hence, we will focus on the LAV approach. Query
rewriting using views on the LAV approach is
closely related to the problem of answering queries
using views, which has recently received
considerable attention (Levy, 2001).

So far, there have been a number of rewriting
algorithms presented. These algorithms can be

divided into two categories, bucket-based algorithms
and inverse rule-based algorithms. They can
generate all the query rewritings in the absence of
integrity constraints. However, if there are any
integrity constraints in a mediated schema, a bucket-
based algorithm might miss query rewritings or
generate redundant query rewritings, because it does
not consider the effects of these integrity constraints.

In the context of traditional databases, integrity
constraints are the rules enforced on a database
schema. From integrity constraints, some
relationships among the relations in a database
schema can be inferred. As mentioned previously, in
a data integration system, data sources are described
in terms of a mediated schema. Therefore, if there
are integrity constraints in the mediated schema,
some special relationships among the data sources
can be found, which are useful in query processing.
There are three most ubiquitous types of integrity
constraints enforced on a database schema: domain
semantics, functional dependencies, and inclusion
dependencies (DSs, FDs and INDs for short
respectively). There have been some inverse rule-
based rewriting algorithms that address the problem

177
Bai Q., Hong J. and F. McTear M. (2004).
IMPROVING VIEW SELECTION IN QUERY REWRITING USING DOMAIN SEMANTICS.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 177-183
DOI: 10.5220/0002623101770183
Copyright c© SciTePress

of query rewriting using views in the presence of
functional and/or inclusion dependencies (Duschka
et al 2000, Gryz, 98, 99). A logic-based approach for
the problem of query rewriting using views (Grant
and Minker, 2002) is presented, where there are
functional and inclusion dependencies in a mediated
schema and a resolution method is used to generate
all the possible query rewritings. However, there has
been no bucket-based algorithm to address the
problem of query rewriting in the presence of
domain semantics. This paper will address this issue.
The following two examples show that the MiniCon
algorithm, which is a bucket-based algorithm and
the best one among the existing algorithms
(Pottinger and Levy, 2000), generates a redundant
rewriting or misses a query rewriting because
domain semantics has not been considered.
Example 1 (Adapted from (Mitra, 2001)).
Suppose that there are five data sources as follows:
V1(Seller):- car(Car1), sells(Seller, Car1).
 // List of car sellers.
V2(Car2, S2):- car(Car2), sells(S2, Car2).
 // List of cars and their sellers.
V3(Car3):- dealer(D3), located(D3, “CA”), sells(D3,
Car3). // List of cars that CA’s Dealers sell.
V4(D4, State):- dealer(D4), located(D4, State4).
 // List of dealers and their states.
V5(Union):- member(D5, Union), dealer(D5),
located(D5, “CA”). // CA’s Dealer Union.

The logical predicates, car(carType),
dealer(Dealername), located(Dealername, City) and
sells(Dealername, carType), are defined in a
mediated schema.

Assume that there exists domain semantics:
(x≠ “TESCO”)I located(x,y),sells(x,z), y= “CA”.
A query is made:
Q(X):- car(X), dealer(D), located(D, State),
sells(D,X), D= “TESCO”.
Using the MiniCon algorithm, we can get the MCDs
for each view as follows (For simplicity, we list only
two components of each MCD, where G is a set of
subgoals of Q covered by the MCD):

Table 1: The MCDs for each view in the query
(gi,i=1,2,3,4, represents the ith subgoal of Q)

V G V G V G
V2 g1 V2 g4 V3 g2,g3,g4

V G V G
V4 g2 V4 g3

Two query rewritings can be formed by

combining MCDs as follows:
Q1(X):-V2(X,D),V4(D, “CA”), D= “TESCO”.

Q2(X):-V2(X,D),V3(X), D= “TESCO”.
However, in the presence of domain semantics, the
join of V2(X,D) and V3(X) is null (actually V3(X)
should not appear in any query rewriting) and Q2
should be discarded. But, the MiniCon algorithm
fails to find this. This example shows that domain
semantics is useful for removing redundant query
rewritings.

Example 2. Suppose that there is a relation Student
in a mediated schema:
Student(S_ID, SName, Gender, Dept, RegDate).
There are two data sources:
V1(SName):- Student(S_ID, SName, Gender, Dept,
RegDate),1000<S_ID, S_ID<2000.
V2(SName):- Student(S_ID, SName, Gender, Dept,
RegDate), 2000<S_ID, S_ID<4000.
The domain semantics is represented in the form of
rules as follows:

(1) 1000<S_ID, S_ID<2000 Q Dept= “CS”;
(2) 2000<S_ID, S_ID <3000 Q Dept= “EN”;
(3) 3000<S_ID, S_ID <4000 Q Dept= “BI”;

These rules tell us that S_IDs in a particular
department are restricted to a specific range.
 A query is to ask for students’ names from the
Computer Science department, i.e.,
Q(SName):- Student(S_ID, SName, Gender, Dept,
RegDate), Dept= “CS”.
The MiniCon algorithm fails to form any MCD for
the given query over either V1 or V2, because
comparisons are not consistent between either Q and
V1 or Q and V2. However, we can see that there
exists a query rewriting as follows:
Q’(SName):- V1(SName).
The reason is that we can substitute the comparison,
Dept= “CS”, in Q with equivalent comparisons,
1000<S_ID, S_ID <2000, as shown in domain
semantics (1). Then using the MiniCon algorithm,
we can get the above rewriting for the query.

The rest of the paper is organized as follows. In

the next section, we have a brief overview of the
related work. In Section 3, preliminaries of query
rewriting using views and semantics query
optimization are given. In Section 4, we discuss
query rewriting using views in the presence of
semantic constraints. In Section 5, we conclude the
paper.

2 RELATED WORK

As stated in Section 1, there are two categories of
query rewriting algorithms, i.e., bucket-based
rewriting algorithms and inverse rule-based
rewriting algorithms. The key idea underlying the
inverse rule-based algorithms is to first construct a

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

178

set of rules called inverse rules that invert the view
definitions, and then replace existential variables in
the view definitions with Skolem functions in the
heads of the inverse rules. The rewriting of a query
Q using a set of views V is simply the composition
of Q and the inverse rules for V using the
transformation method (Duschka et al, 2000), the
unification-join method (Qian, 1996), or the
resolution method (Grant and Minker, 2002).
 A bucket-based algorithm consists of two stages.
The first stage is called view selection that selects
the views relevant to a given query and puts the
views into the corresponding buckets. The second
stage is to generate all the possible query rewritings
by combining a view from each bucket. View
selection is based on containment mapping from the
given query to each view. There are three
representative algorithms.
Bucket algorithm (Levy et al, 1996a, 1996b):
 Given a query, a bucket is first created for each
subgoal of the query. A view is put in the bucket if it
can be unified with the subgoal in the query. Next,
candidate query plans are generated by combining a
view from each of the buckets. These plans are then
verified using containment tests.
SVB algorithm (Mitra, 2001):
 A non-distinguished variable that appears in
more than one subgoal of a query is called a shared
variable. In the SVB algorithm, given a query Q,
two types of buckets are created. The first type of
buckets, the single-subgoal buckets are built in the
same way as the bucket algorithm. The second type
of buckets, the shared-variable buckets are created
by checking the containment mapping from a set of
subgoals, containing a shared variable, in Q to some
subgoals in a view. Once all the buckets are created,
the algorithm generates rewritings by combining
views from buckets which contain disjoint sets of
subgoals of Q.
MiniCon algorithm (Pottinger and Levy, 2000):
 In the first phase of the MiniCon algorithm, a
MiniCon Description (MCD for short) for a query Q
over a view V is formed to contain a set of subgoals
in Q and the mapping information. In fact, a MCD
takes the role of a bucket in the bucket algorithm
and the SVB algorithm. The MCDs and the
minimum MCDs in the MiniCon algorithm
correspond to the single-subgoal buckets and the
shared-variable buckets in the SVB algorithm
respectively. In the second phase, the MiniCon
algorithm combines the MCDs to generate query
rewritings.
 In summary, view selection is not needed in
inverse rule-based rewriting algorithm, but it needs
to be done in the first stage of bucket-based
algorithms. As shown in the previous section, the
problems of missing query rewritings and generating

redundant query rewritings in bucket-based
algorithms might occur if domain semantics is not
taken into account.

3 PRILIMINARIES

3.1 Domain Semantics and Residues

Domain Semantics
In the context of databases, integrity constraints are
in the forms of three main practical types of
constraints, i.e., domain semantics, functional
dependencies, and inclusion dependencies. The
functional and inclusion dependencies are mainly
used for the design of database schemas, e.g.,
normalization of schemas, data duplication. Domain
semantics is relevant to the knowledge of a specific
application domain. In this paper, we only consider
the effects of domain semantics in query rewriting.
In some cases, a query may even be answered
without accessing a database if sufficient knowledge
is contained in the domain semantics.
 Domain semantics is represented in this paper
using the following types of rules:
D1 (Equivalence Proposition): CQ1 Q CQ2.
D2(Dependency rule): R.CQ1 I S.CQ2.
D3 (Production rule): CQ1 I R(X), S(Y), CQ2.
where, CQi (i=1,2) refers to the comparison
expressions whose variables appear in some
relations in a mediated schema.
 D1 means that two expressions are equivalent. D2
means that if CQ2 holds, CQ1 should be satisfied in a
database schema. The variables in CQ1 and CQ2 are
in either relation R or relations R and S. The right-
hand side of D3 is a conjunction of two or more
relations. CQ1 in Di, i=2,3, can be null.

Residues
Residues are used in semantic query optimization
(Chakravarthy et al, 1990) to eliminate redundant
joins in a given query. In this paper, we exploit
residues to remove the views irrelevant to a query.
 The notion of residues, associated with the
concept of subsumption, is used for semantic query
optimization in the presence of integrity constraints.
A clause C1 subsumes a clause C2 if there is a
substitution θ such that C1θ is a sub-clause of C2.
The refutation tree is used to test subsumption
between C1 and C2. C1 subsumes C2 if and only if
there is a refutation tree that ends with the null
clause.
 In general, a null clause can not be obtained
because integrity constraints rarely subsume
relations. But integrity constraints may partially

IMPROVING VIEW SELECTION IN QUERY REWRITING USING DOMAIN SEMANTICS

179

subsume a relation, leaving a fragment at the bottom
of the refutation tree. Such a fragment is called a
residue representing an interaction between a
relation and an integrity constraint.
Definition 1. An integrity constraint IC partially
subsumes an atom A, if and only if IC does not
subsume ¬A, but a sub-clause of IC+ (expansion of
IC) subsumes ¬A. Let C be the clause at the bottom
of a refutation tree. Then (C-)θ-1 (C- is a result of
reducing C) is a residue of IC and A.

3.2 Query Containment and Query
Rewriting Using Views

Queries and views

We consider the problem of answering conjunctive
queries using views. A conjunctive query has the
form:

QCkXkRXRXQ),
_

(),...,
_

1(1:)
_

(−

where are the subgoals referred
to database relations, C

)(),...,(
__

11 kk XRXR
Q is a comparison expression.

is the head of the query. The tuples _

 contain either variables or constants.
We require that the query be safe, i.e., __

1

_

. The variables in

)(
_

XQ _

1

_

,...,, kXXX

... kXXX ∪∪⊆
_

X are
distinguished variables, and the others are existential
variables. We use Vars(Q), Q(D) to refer to all
variables in Q and the evaluation of Q over a
database instance D respectively.
 A view is a named query. If the query results are
stored, we refer to them as a materialized view and
the result set as the extension of the view.

Query containment and equivalence
The concepts of query containment and equivalence
enable us to make a comparison between queries and
rewritings. We say that a query Q1 is contained in
another query Q2, denoted by Q1 ⊆ Q2, if the
answers to Q1 are a subset of the answers to Q2 for
any database instance. Containment mappings
provide a necessary and sufficient condition for
testing query containment. A mapping ϕ from
Vars(Q2) to Vars(Q1) is a containment mapping if
(1) ϕ maps every subgoal in the body of Q2 to a
subgoal in the body of Q1, and
(2) ϕ maps the head of Q2 to the head of Q1.
The query Q2 contains Q1 if and only if there is a
containment mapping from Q2 to Q1. The query Q1
is equivalent to Q2 if and only if Q1⊆Q2 and Q2⊆Q1.

Answering queries using views
Given a query Q and a set of view definitions
V=V1,...,Vm, a rewriting of Q using the views is a

query expression Q’ whose body predicates are only
from V1,...,Vm.
 Note that the views are not assumed to contain
all the tuples in their definitions since the data
sources are managed autonomously. Moreover, we
cannot always find an equivalent rewriting of the
query using the views because data sources may not
contain all the answers to the query. Instead, we
consider the problem of finding maximally-
contained rewritings.
Definition 2(Maximally-contained rewriting): Q’
is a maximally-contained rewriting of a query Q
using views V with respect to a query language L if
(1) for any database D, Q’ ⊆ Q, and
(2) there is no other query rewriting Q’’ in the
language L, such that for every above database D,
Q’’ ⊆ Q, and Q’ ⊆ Q’’.

4 VIEW SELECTION IN QUERY
REWRITING USING DOMAIN
SEMANTICS

Assume that there are a set of views Vi, (i=1,2,...,n,
n≤m) and a set of domain semantics in the three
types of rules as described in Section 3.1. As an
equivalence proposition, D1 will be added to the
relevant views without losing any information. D2
and D3 enforce constraints on certain views. As
stated later, we will resolute each of D2 and D3 with
every corresponding view Vi to get a so called
pseudo residue PRi for Vi. A pseudo residue is a
fragment at the bottom of the refutation tree,
representing an interaction between a view and a D2
or D3. PRi takes a role of the residue, but whether it
can play a role in view selection also depends on a
given query. According to (Chakravarthy et al,
1990), each relation has a residue for each integrity
constraint, which results in several SCAs
(semantically constrained axioms) in a view.
However, in this paper, each D2 or D3 is viewed as a
whole and there is only one pseudo residue for each
D2 or D3 over a view.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

180

4.1 Computing a Pseudo Residue

 Computing a pseudo residue for Vi, (i=1,....,n) is
based on the resolution method as follows:

 Case 1. For each D1(Equivalence Proposition): CQ1
Q CQ2, where the variables of both CQ1 and CQ2
are in a relation R, we check whether view Vi
contains R. If not, then the constraint can not be
enforced on Vi. Otherwise we check whether CQ1
(or CQ2) appears in Vi. If so, a pseudo residue is
CQ2 (or CQ1), denoted by ERi=CQ2 (or ERi =CQ1).

Figure 1: Computing a pseudo residue of Vi

 We show the process of resolution between a
view and a D3 using the following example.

Case 2. For each D2 (Dependency rule): R.CQ1 I
S.CQ2, we check whether view Vi contains R and S.
If not, then the constraint can not be enforced on Vi.
Otherwise, we check whether CQ2 is consistent with
Vi. If so, PRi = CQ1.

Example 3. Continuing with Example 1, we can get
the pseudo residues for each view as follows:

Case 3. For each D3 (Production rule): CQ1 I
R(X),S(Y), CQ2, we check whether view Vi contains
the join of relations R and S. If not, then the
constraint can not be enforced in Vi. Otherwise, we
check whether CQ2 is consistent with Vi. If so, PRi =
CQ1.

View V1 V2 V3 V4 V5

PRi {} {} {D≠ “TESCO”} {} {}

For simplicity, we show only the process of
computing the pseudo residue of V3. In this
example, CQ1 ={located.x ≠ ”TESCO”} and CQ2 ={
located.y =”CA”}.

 We use the resolution method to get the PRi of
Vi for each D3. We construct a linear refutation tree
with the body of Vi as the root, using at each step an
element of the right side of D3 in resolution. If the
tree ends with empty or the subgoals only in Vi, then
PRi =CQ1. Figure 1 shows the process.

body(D3)

Idealer(D3),located(D3,S3),sells(D3,C3),S3=”CA”

located(x,y)I

x/D3, y/S3
Idealer(x),sells(x,C3),y=”CA”

sells(x,z) I

x/x, z/C3

Idealer(x),y=”CA”

y=”CA” I

y/y

PRi

body(Vi)

Idealer(x)

Figure 2: Computing the pseudo residue of V3

IMPROVING VIEW SELECTION IN QUERY REWRITING USING DOMAIN SEMANTICS

181

Thus, PR3 = {located.x ≠”TESCO”}. For each of the
other views Vi (i=1,2,4,5), a linear refutation tree
would not end with such subgoals that appear only
in the views, then the pseudo residues of the views
are null, denoted by {}.

4.2 View Selection in Query Rewriting
Using Views

As mentioned in Section 2, the first step in a bucket-
based algorithm is to select the views relevant to a
given query. For a given query Q, using domain
semantics we may remove the irrelevant views or
pick up certain relevant views before using any
bucket-based rewriting algorithm. As a result, the
soundness and completeness of query rewriting
algorithms can be improved.
 Given a query Q, for each Vi (i=1,2,…,n), if PRi
of Vi is not compatible with CQ in Q, then the view
Vi is irrelevant to Q and should not be considered
when rewriting the query. Note that each pseudo
residue is in the form of a comparison expression
and so are both CQ in Q and ones in Vi, we need only
to check the consistency between two comparison
expressions. Two comparison expressions, CQ1 and
CQ2, are comparable if their variables are in the
same relations. CQ1 is consistent with CQ2 if they
are equivalent or their conjunct, CQ1 ⌃ CQ2, is not
always false for any values of the variables involved.
In the following algorithm, all comparison
expressions are comparable. Otherwise, the
corresponding process would have stopped.
 Our algorithm consists of two steps. In the first
step, some irrelevant views, in the presence of
domain semantics, with respect to Q are removed by
comparing CQ in Q with the pseudo residues of
views. In the second step, other irrelevant views, in
terms of unification, with respect to Q are removed
by unifying Q with the definitions of views, which is
used in any previous bucket-based rewriting
algorithm.

Algorithm: View Selection in Query Rewriting
Using Domain Semantics
Input: A given query Q, a set of views Vi
(i=1,2,...,n) associated with a set of pseudo residues
PRi (i=1,2,...,n).
Output: A set of buckets or MCDS containing
views Vj (j=1,2,...,t, t≤n) which are relevant to Q
both in the presence of domain semantics and in
terms of unification.

Methods:

Step 1: Removing the irrelevant views with respect
to Q by comparing CQ with pseudo residues.
V={ Vi (i=1,2,...,n)}.
For each view Vi, (i=1,...,n) associated with a
pseudo residues PRi, we proceed according to the
following cases:
Case 1: The pseudo residue is ERi: We check
whether CQ in Q is consistent with CQ1 or CQ2 in
D1. If not, the view Vi is irrelevant to Q, i.e., V= V-
{ Vi }. Otherwise, ERi is added into the definition of
view Vi.
Case 2: The pseudo residue is PRi: We check
whether CQ in Q is consistent with PRi of Vi. If not,
the view Vi is irrelevant to Q, i.e., V= V-{ Vi }.

Step 2: Selecting relevant views with respect to Q
by unifying Q with the definitions of views.
For each view Vi in V, a set of the buckets is built
according to the SVB algorithm or a set of the
MCDs is formed according to the MiniCon
algorithm. This procedure is based on unification
from Q to views. The views in the buckets or the
MCDs are relevant to Q in the presence of domain
semantics and in terms of unification.
End.

Example 4. Continuing with Example 3, the pseudo
residue of V3 is PR3 = {located.x ≠”TESCO”}. Note
that x is the first argument in relation located,
resulting in the pseudo residue of V3 is D
≠”TESCO”. It conflicts with the comparison in Q.
Hence, the view V3 is irrelevant to the given query Q
in the presence of domain semantics. For the rest of
views, we use the MiniCon algorithm to form the
MCDs as follows:

Table 2: The MCDs for V1, V2, V4, and V5

V G V G V G V G

V2 g1 V2 g4 V4 g2 V4 g3

There are two views relevant to Q in terms of
unification. However, there is only one query
rewriting formed by combining MCDs so that all
subgoals of Q can be covered.

Q1(X):-V2(X,D),V4(D, “CA”), D= “TESCO”.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

182

5 CONCLUSIONS

In previous bucket-based rewriting algorithms, for a
given query Q, view selection is done by unifying Q
with the definition of views. In other words, the
meaning of “relevant to Q” is in terms of unification.
We found that there is another explanation about
“relevant to Q”, i.e., in the presence of domain
semantics. That is, we can remove the irrelevant
views which could not be found in any bucket-based
algorithm. Also, in some cases, we can avoid the
problem of missing relevant views, which occurs in
bucket-based algorithms.
 In this paper, we have aimed to solve the
problems of missing query rewritings and redundant
query rewritings in bucket-based rewriting
algorithms so that we can improve the soundness
and completeness of these algorithms. In the
presence of domain semantics in a mediated schema,
we first compute the pseudo residue for each
constraint over the views using the resolution
method. In fact, what we have done is to transfer the
integrity constraints over the relations of the
mediated schema into a rule over a view. As a result,
for a given query, we can determine which view is
irrelevant to the query, in the presence of domain
semantics, by making a comparison between the
pseudo residue of a view and the comparison
expression of the query. The pseudo residues can be
calculated in advanced, which means that the total
increased computation in Step 1 in our algorithm is
only in polynomial size of |D|*|V|, where |D| and |V|
are the number of domain semantics in a mediated
schema and of the views respectively. This process
is useful for query rewriting, which has been shown
by examples in Section 1.

REFERENCES

Arens, Y., Knoblock, C.A., Shen, W., 1996. Query
Reformulation for Dynamic Information Integration.
In Journal of Intelligent Information Systems, Special
Issue on Intelligent Information Integration, 6(2/3):99-
-130.

Cali, A., Calvanese, D., Giacomo, G. D., Lenzerini, M.,
2002. On the Role of Integrity Constraints in Data
Integration. In IEEE Data Engineering Bulletin, 25(3),
Special Issue on Organizing and Discovering the
Semantic Web, 39-45.

Chakravarthy, U.S., Grant, J., Minker, J., 1990. Logic
based approach to semantic query optimization. In
ACM Transactions on Database Systems, 15(2): 162-
207.

Chaudhuri, S., Krishnamurthy, R., Potamianos, S., Shim,
K., 1995. Optimizing Queries with Materialized
Views. In Proceeding of the 11th International
Conference on Data Engineering, IEEE Computer
Soc. Press, 190-200.

Duschka, O.M., Genesereth, M.R., Levy, A.Y., 2000.
Recursive Query Plans for Data Integration. In
Journal of Logic Programming, special issue on Logic
Based Heterogeneous Information Systems, 43(1), 49-
73.

Florescu, D., Raschid, L., Valduriez, P., 1996. Query
Reformulation in Multidatabase Systems using
Semantic Knowledge. In International Journal of
Cooperative Information Systems, 5(1996), 431-468.

Fagin, R., Vardi, M.Y.,1986. The Theory of Data
Dependencies—A Survey. In Proceedings of
Symposia in Applied Mathematics, Volume 34, 19-71.

Godfrey, P., Grant, J., Gryz, J., Minker, J., 1998. Integrity
Constraints: Semantics and Applications. In Chapter 9
of Logics for Databases and Information Systems,
J.Chomicki and G.Saake, editors, Kluwer Press, 265-
306.

Grant, J., Minker., J., 2002. A logic-based approach to
data integration. In TLP, 2(3):323-368.

Gryz, J., 1998. An Algorithm for Query Folding with
Functional Dependencies. In Proceedings of the 7th
International Symposium on Intelligent Information
Systems , 7-16.

Gryz, J., 1999. Query rewriting using views in the
presence of functional and inclusion dependencies. In
Information System, 24(7):597-612.

Hsu, C., Knoblock, C.A., 2000. Semantic Query
Optimization for Query Plans of Heterogeneous
Multidatabase Systems. In IEEE Transactions on
Knowledge and Data Engineering, 12(6):959--978.

Levy, A.Y., 2001. Answering Queries Using Views: A
Survey. In VLDB Journal, 10(4), 270-294.

Levy, A.Y., Rajaraman, A., Ordille, J.J., 1996a. Querying
Heterogeneous Information Sources Using Source
Descriptions. In Proceedings of the 22nd VLDB
Conference, 251--262.

Levy, A.Y., Rajaraman, A., Ordille, J.J., 1996b. Query-
Answering Algorithms for Information Agents. In
Proceedings of the Thirteenth National Conference on
Artificial Intelligence and the Eighth Innovative
Applications of Artificial Intelligence Conference,
AAAI Press / MIT Press, 40--47.

Mitra, P., 2001. An Algorithm for Answering Queries
Efficiently Using Views. In Proceedings of the 12th
Australasian Database Conference, 99-106.

Pottinger, R., Levy, A.Y., 2000. A Scalable Algorithm for
Answering Queries Using Views. In Proceedings of
the International Conference on Very Large Data
Bases(VLDB), 484-495.

Qian, X., 1996. Query folding. In Proceedings of the 12th
IEEE International Conference on Data Engineering
(ICDE’96), 48-55.

IMPROVING VIEW SELECTION IN QUERY REWRITING USING DOMAIN SEMANTICS

183

