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Abstract: Query rewriting using views is an important issue in data integration. Several algorithms have been 
proposed, such as the bucket algorithm, the inverse rules algorithm, the SVB algorithm, and the MiniCon 
algorithm. These algorithms can be divided into two categories. The algorithms of the first category are 
based on use of buckets while the ones of the second category are based on use of inverse rules. The bucket-
based algorithms have not considered the effects of integrity constraints, such as domain semantics, 
functional and inclusion dependencies. As a result, they might miss query rewritings or generate redundant 
query rewritings in the presence of these constraints. A bucket-based algorithm consists of two steps. The 
first step is called view selection that selects views relevant to a given query and puts the views into the 
corresponding buckets. The second step is to generate all the possible query rewritings by combining a view 
from each bucket. In this paper, we consider an improvement of view selection in the bucket-based 
algorithms using domain semantics. We use the resolution method to generate a pseudo residue for each 
view given a set of domain semantics. Given a query, the pseudo residue of each view is compared with it 
and any conflict that exists can be found. As a result, irrelevant views can be removed even before a bucket-
based algorithm is used. 

1 INTRODUCTION 

In a data integration system, data sources are 
autonomous, distributed, and heterogeneous. 
Usually, a logical virtual mediated schema is used to 
make queries and describe the contents of the data 
source. The actual data is however stored in the data 
sources. To answer a user query, we need to 
reformulate it into new queries over the data source 
schemas in order to get access to the data sources. 
This process is called query rewriting. 

In general, there are two main approaches to 
query rewriting, i.e., Global As View (GAV) and 
Local As View (LAV). As stated in (Levy, 2001), 
the LAV approach is more suitable for a data 
integration system in a dynamic environment. 
Hence, we will focus on the LAV approach. Query 
rewriting using views on the LAV approach is 
closely related to the problem of answering queries 
using views, which has recently received 
considerable attention (Levy, 2001). 

So far, there have been a number of rewriting 
algorithms presented. These algorithms can be 

divided into two categories, bucket-based algorithms 
and inverse rule-based algorithms. They can 
generate all the query rewritings in the absence of 
integrity constraints. However, if there are any 
integrity constraints in a mediated schema, a bucket-
based algorithm might miss query rewritings or 
generate redundant query rewritings, because it does 
not consider the effects of these integrity constraints. 

In the context of traditional databases, integrity 
constraints are the rules enforced on a database 
schema. From integrity constraints, some 
relationships among the relations in a database 
schema can be inferred. As mentioned previously, in 
a data integration system, data sources are described 
in terms of a mediated schema. Therefore, if there 
are integrity constraints in the mediated schema, 
some special relationships among the data sources 
can be found, which are useful in query processing.  
There are three most ubiquitous types of integrity 
constraints enforced on a database schema: domain 
semantics, functional dependencies, and inclusion 
dependencies (DSs, FDs and INDs for short 
respectively). There have been some inverse rule-
based rewriting algorithms that address the problem 

177
Bai Q., Hong J. and F. McTear M. (2004).
IMPROVING VIEW SELECTION IN QUERY REWRITING USING DOMAIN SEMANTICS.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 177-183
DOI: 10.5220/0002623101770183
Copyright c© SciTePress



of query rewriting using views in the presence of 
functional and/or inclusion dependencies (Duschka 
et al 2000, Gryz, 98, 99). A logic-based approach for 
the problem of query rewriting using views (Grant 
and Minker, 2002) is presented, where there are 
functional and inclusion dependencies in a mediated 
schema and a resolution method is used to generate 
all the possible query rewritings. However, there has 
been no bucket-based algorithm to address the 
problem of query rewriting in the presence of 
domain semantics. This paper will address this issue. 
The following two examples show that the MiniCon 
algorithm, which is a bucket-based algorithm and 
the best one among the existing algorithms 
(Pottinger and Levy, 2000), generates a redundant 
rewriting or misses a query rewriting because 
domain semantics has not been considered.  
Example 1 (Adapted from (Mitra, 2001)). 
Suppose that there are five data sources as follows: 
V1(Seller):- car(Car1), sells(Seller, Car1).    
                       // List of car sellers. 
V2(Car2, S2):- car(Car2), sells(S2, Car2). 
                     // List of cars and their sellers. 
V3(Car3):- dealer(D3), located(D3, “CA”), sells(D3, 
Car3).           // List of cars that CA’s Dealers sell. 
V4(D4, State):- dealer(D4), located(D4, State4).   
                   // List of dealers and their states. 
V5(Union):- member(D5, Union), dealer(D5), 
located(D5, “CA”).   // CA’s Dealer Union. 

The logical predicates, car(carType), 
dealer(Dealername), located(Dealername, City) and 
sells(Dealername, carType), are defined in a 
mediated schema. 

Assume that there exists domain semantics: 
(x≠ “TESCO”)I located(x,y),sells(x,z), y= “CA”.  
A query is made: 
Q(X):- car(X), dealer(D), located(D, State), 
sells(D,X), D= “TESCO”.  
Using the MiniCon algorithm, we can get the MCDs 
for each view as follows (For simplicity, we list only 
two components of each MCD, where G is a set of 
subgoals of Q covered by the MCD): 
 

Table 1: The MCDs for each view in the query 
(gi,i=1,2,3,4, represents the ith subgoal of Q ) 

V G V G V G 
V2 g1 V2 g4 V3 g2,g3,g4
 
 

V G V G 
V4 g2 V4 g3

 
 
 
Two query rewritings can be formed by 

combining MCDs as follows:  
Q1(X):-V2(X,D),V4(D, “CA”), D= “TESCO”. 

Q2(X):-V2(X,D),V3(X), D= “TESCO”. 
However, in the presence of domain semantics, the 
join of V2(X,D) and V3(X) is null (actually V3(X) 
should not appear in any query rewriting) and Q2 
should be discarded. But, the MiniCon algorithm 
fails to find this. This example shows that domain 
semantics is useful for removing redundant query 
rewritings. 
 
Example 2. Suppose that there is a relation Student 
in a mediated schema: 
Student(S_ID, SName, Gender, Dept, RegDate). 
There are two data sources: 
V1(SName):- Student(S_ID, SName, Gender, Dept, 
RegDate),1000<S_ID, S_ID<2000. 
V2(SName):- Student(S_ID, SName, Gender, Dept, 
RegDate), 2000<S_ID, S_ID<4000. 
The domain semantics is represented in the form of 
rules as follows: 

(1) 1000<S_ID, S_ID<2000 Q Dept= “CS”; 
(2) 2000<S_ID, S_ID <3000 Q Dept= “EN”; 
(3) 3000<S_ID, S_ID <4000 Q Dept= “BI”; 

These rules tell us that S_IDs in a particular 
department are restricted to a specific range. 
    A query is to ask for students’ names from the 
Computer Science department, i.e., 
Q(SName):- Student(S_ID, SName, Gender, Dept, 
RegDate), Dept= “CS”. 
The MiniCon algorithm fails to form any MCD for 
the given query over either V1 or V2, because 
comparisons are not consistent between either Q and 
V1 or Q and V2. However, we can see that there 
exists a query rewriting as follows: 
Q’(SName):- V1(SName). 
The reason is that we can substitute the comparison, 
Dept= “CS”, in Q with equivalent comparisons, 
1000<S_ID, S_ID <2000, as shown in domain 
semantics (1). Then using the MiniCon algorithm, 
we can get the above rewriting for the query. 

 
The rest of the paper is organized as follows. In 

the next section, we have a brief overview of the 
related work. In Section 3, preliminaries of query 
rewriting using views and semantics query 
optimization are given. In Section 4, we discuss 
query rewriting using views in the presence of 
semantic constraints. In Section 5, we conclude the 
paper. 

2 RELATED WORK 

As stated in Section 1, there are two categories of 
query rewriting algorithms, i.e., bucket-based 
rewriting algorithms and inverse rule-based 
rewriting algorithms. The key idea underlying the 
inverse rule-based algorithms is to first construct a 
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set of rules called inverse rules that invert the view 
definitions, and then replace existential variables in 
the view definitions with Skolem functions in the 
heads of the inverse rules. The rewriting of a query 
Q using a set of views V is simply the composition 
of Q and the inverse rules for V using the 
transformation method (Duschka et al, 2000), the 
unification-join method (Qian, 1996), or the 
resolution method (Grant and Minker, 2002). 
      A bucket-based algorithm consists of two stages. 
The first stage is called view selection that selects 
the views relevant to a given query and puts the 
views into the corresponding buckets. The second 
stage is to generate all the possible query rewritings 
by combining a view from each bucket. View 
selection is based on containment mapping from the 
given query to each view. There are three 
representative algorithms. 
Bucket algorithm (Levy et al, 1996a, 1996b): 
      Given a query, a bucket is first created for each 
subgoal of the query. A view is put in the bucket if it 
can be unified with the subgoal in the query. Next, 
candidate query plans are generated by combining a 
view from each of the buckets. These plans are then 
verified using containment tests.  
SVB algorithm (Mitra, 2001): 
      A non-distinguished variable that appears in 
more than one subgoal of a query is called a shared 
variable. In the SVB algorithm, given a query Q, 
two types of buckets are created. The first type of 
buckets, the single-subgoal buckets are built in the 
same way as the bucket algorithm. The second type 
of buckets, the shared-variable buckets are created 
by checking the containment mapping from a set of 
subgoals, containing a shared variable, in Q to some 
subgoals in a view. Once all the buckets are created, 
the algorithm generates rewritings by combining 
views from buckets which contain disjoint sets of 
subgoals of Q. 
MiniCon algorithm (Pottinger and Levy, 2000): 
      In the first phase of the MiniCon algorithm, a 
MiniCon Description (MCD for short) for a query Q 
over a view V is formed to contain a set of subgoals 
in Q and the mapping information. In fact, a MCD 
takes the role of a bucket in the bucket algorithm 
and the SVB algorithm. The MCDs and the 
minimum MCDs in the MiniCon algorithm 
correspond to the single-subgoal buckets and the 
shared-variable buckets in the SVB algorithm 
respectively. In the second phase, the MiniCon 
algorithm combines the MCDs to generate query 
rewritings.  
      In summary, view selection is not needed in 
inverse rule-based rewriting algorithm, but it needs 
to be done in the first stage of bucket-based 
algorithms. As shown in the previous section, the 
problems of missing query rewritings and generating 

redundant query rewritings in bucket-based 
algorithms might occur if domain semantics is not 
taken into account.  

3 PRILIMINARIES 

3.1 Domain Semantics and Residues 

Domain Semantics 
In the context of databases, integrity constraints are 
in the forms of three main practical types of 
constraints, i.e., domain semantics, functional 
dependencies, and inclusion dependencies. The 
functional and inclusion dependencies are mainly 
used for the design of database schemas, e.g., 
normalization of schemas, data duplication. Domain 
semantics is relevant to the knowledge of a specific 
application domain. In this paper, we only consider 
the effects of domain semantics in query rewriting. 
In some cases, a query may even be answered 
without accessing a database if sufficient knowledge 
is contained in the domain semantics. 
      Domain semantics is represented in this paper 
using the following types of rules: 
D1 (Equivalence Proposition): CQ1 Q CQ2. 
D2(Dependency rule): R.CQ1  I S.CQ2. 
D3 (Production rule): CQ1 I R(X), S(Y), CQ2. 
where, CQi (i=1,2) refers to the comparison 
expressions whose variables appear in some 
relations in a mediated schema.  
      D1 means that two expressions are equivalent. D2 
means that if CQ2 holds, CQ1 should be satisfied in a 
database schema. The variables in CQ1 and CQ2 are 
in either relation R or relations R and S. The right-
hand side of D3 is a conjunction of two or more 
relations. CQ1 in Di, i=2,3, can be null.  
 
Residues 
Residues are used in semantic query optimization 
(Chakravarthy et al, 1990) to eliminate redundant 
joins in a given query. In this paper, we exploit 
residues to remove the views irrelevant to a query.  
      The notion of residues, associated with the 
concept of subsumption, is used for semantic query 
optimization in the presence of integrity constraints. 
A clause C1 subsumes a clause C2 if there is a 
substitution θ such that C1θ is a sub-clause of C2. 
The refutation tree is used to test subsumption 
between C1 and C2. C1 subsumes C2 if and only if 
there is a refutation tree that ends with the null 
clause. 
      In general, a null clause can not be obtained 
because integrity constraints rarely subsume 
relations. But integrity constraints may partially 
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subsume a relation, leaving a fragment at the bottom 
of the refutation tree. Such a fragment is called a 
residue representing an interaction between a 
relation and an integrity constraint.  
Definition 1.  An integrity constraint IC partially 
subsumes an atom A, if and only if IC does not 
subsume ¬A, but a sub-clause of IC+ (expansion of 
IC) subsumes ¬A. Let C be the clause at the bottom 
of a refutation tree. Then (C-)θ-1 (C- is a result of 
reducing C) is a residue of IC and A. 

3.2 Query Containment and Query 
Rewriting Using Views 

Queries and views  

We consider the problem of answering conjunctive 
queries using views. A conjunctive query has the 
form: 

QCkXkRXRXQ ),
_

(),...,
_

1(1:)
_

( −  

where  are the subgoals referred 
to database relations, C
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X  are  
distinguished variables, and the others are existential 
variables. We use Vars(Q), Q(D) to refer to all 
variables in Q and the evaluation of Q over a 
database instance D respectively.  
      A view is a named query. If the query results are 
stored, we refer to them as a materialized view and 
the result set as the extension of the view. 
 
Query containment and equivalence  
The concepts of query containment and equivalence 
enable us to make a comparison between queries and 
rewritings. We say that a query Q1 is contained in 
another query Q2, denoted by Q1 ⊆  Q2, if the 
answers to Q1 are a subset of the answers to Q2 for 
any database instance. Containment mappings 
provide a necessary and sufficient condition for 
testing query containment. A mapping ϕ from 
Vars(Q2) to Vars(Q1) is a containment mapping if 
(1) ϕ maps every subgoal in the body of Q2 to a 
subgoal in the body of Q1, and 
(2) ϕ maps the head of Q2 to the head of Q1. 
The query Q2 contains Q1 if and only if there is a 
containment mapping from Q2 to Q1. The query Q1 
is equivalent to Q2 if and only if Q1⊆Q2 and Q2⊆Q1. 
 
Answering queries using views  
Given a query Q and a set of view definitions 
V=V1,...,Vm, a rewriting of Q using the views is a 

query expression Q’ whose body predicates are only 
from V1,...,Vm.  
      Note that the views are not assumed to contain 
all the tuples in their definitions since the data 
sources are managed autonomously. Moreover, we 
cannot always find an equivalent rewriting of the 
query using the views because data sources may not 
contain all the answers to the query. Instead, we 
consider the problem of finding maximally-
contained rewritings. 
Definition 2(Maximally-contained rewriting): Q’ 
is a maximally-contained rewriting of a query Q 
using views V with respect to a query language L if  
(1) for any database D, Q’ ⊆ Q, and 
(2) there is no other query rewriting Q’’ in the 
language L, such that for every above database D, 
Q’’ ⊆ Q, and Q’ ⊆ Q’’. 

4 VIEW SELECTION IN QUERY 
REWRITING USING DOMAIN 
SEMANTICS 

Assume that there are a set of views Vi, (i=1,2,...,n, 
n≤m) and a set of domain semantics in the three 
types of rules as described in Section 3.1. As an 
equivalence proposition, D1 will be added to the 
relevant views without losing any information. D2 
and D3 enforce constraints on certain views. As 
stated later, we will resolute each of D2 and D3 with 
every corresponding view Vi to get a so called 
pseudo residue PRi for Vi. A pseudo residue is a 
fragment at the bottom of the refutation tree, 
representing an interaction between a view and a D2 
or D3. PRi takes a role of the residue, but whether it 
can play a role in view selection also depends on a 
given query. According to (Chakravarthy et al, 
1990), each relation has a residue for each integrity 
constraint, which results in several SCAs 
(semantically constrained axioms) in a view. 
However, in this paper, each D2 or D3 is viewed as a 
whole and there is only one pseudo residue for each 
D2 or D3 over a view. 
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4.1 Computing a Pseudo Residue  

 Computing a pseudo residue for Vi, (i=1,....,n) is 
based on the resolution method as follows:  
 

 Case 1. For each D1(Equivalence Proposition): CQ1 
Q CQ2, where the variables of both CQ1 and CQ2 
are in a relation R, we check whether view Vi 
contains R. If not, then the constraint can not be 
enforced on Vi. Otherwise we check whether CQ1 
(or CQ2) appears in Vi. If so, a pseudo residue is 
CQ2 (or CQ1), denoted by ERi=CQ2 (or ERi =CQ1).  

Figure 1: Computing a pseudo residue of Vi

 

      We show the process of resolution between a 
view and a D3 using the following example.  

  
Case 2. For each D2 (Dependency rule): R.CQ1 I 
S.CQ2, we check whether view Vi contains R and S. 
If not, then the constraint can not be enforced on Vi. 
Otherwise, we check whether CQ2 is consistent with 
Vi. If so, PRi = CQ1. 

Example 3. Continuing with Example 1, we can get 
the pseudo residues for each view as follows: 

 

Case 3. For each D3 (Production rule): CQ1 I 
R(X),S(Y), CQ2, we check whether view Vi contains 
the join of relations R and S. If not, then the 
constraint can not be enforced in Vi. Otherwise, we 
check whether CQ2 is consistent with Vi. If so, PRi = 
CQ1. 

View V1 V2 V3 V4 V5

PRi {} {} {D≠ “TESCO”} {} {} 

 

For simplicity, we show only the process of 
computing the pseudo residue of V3. In this 
example, CQ1 ={located.x ≠ ”TESCO”} and CQ2 ={ 
located.y =”CA”}. 

 
      We use the resolution method to get the PRi of 
Vi for each D3. We construct a linear refutation tree 
with the body of Vi as the root, using at each step an 
element of the right side of D3 in resolution. If the 
tree ends with empty or the subgoals only in Vi, then 
PRi =CQ1.  Figure 1 shows the process.  

 

body(D3) 

Idealer(D3),located(D3,S3),sells(D3,C3),S3=”CA” 

located(x,y)I 

x/D3, y/S3
Idealer(x),sells(x,C3),y=”CA” 

sells(x,z) I 

x/x, z/C3

Idealer(x),y=”CA” 

y=”CA” I 

y/y 

PRi

body(Vi) 

Idealer(x) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Computing the pseudo residue of V3
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Thus, PR3 = {located.x ≠”TESCO”}. For each of the 
other views Vi (i=1,2,4,5), a linear refutation tree 
would not end with such subgoals that appear only 
in the views, then the pseudo residues of the views 
are null, denoted by {}. 

4.2 View Selection in Query Rewriting 
Using Views 

As mentioned in Section 2, the first step in a bucket-
based algorithm is to select the views relevant to a 
given query. For a given query Q, using domain 
semantics we may remove the irrelevant views or 
pick up certain relevant views before using any 
bucket-based rewriting algorithm. As a result, the 
soundness and completeness of query rewriting 
algorithms can be improved.  
      Given a query Q, for each Vi (i=1,2,…,n), if PRi 
of Vi is not compatible with CQ in Q, then the view 
Vi is irrelevant to Q and should not be considered 
when rewriting the query. Note that each pseudo 
residue is in the form of a comparison expression 
and so are both CQ in Q and ones in Vi, we need only 
to check the consistency between two comparison 
expressions. Two comparison expressions, CQ1 and 
CQ2, are comparable if their variables are in the 
same relations. CQ1 is consistent with CQ2 if they 
are equivalent or their conjunct, CQ1 ⌃ CQ2, is not 
always false for any values of the variables involved. 
In the following algorithm, all comparison 
expressions are comparable. Otherwise, the 
corresponding process would have stopped. 
      Our algorithm consists of two steps. In the first 
step, some irrelevant views, in the presence of 
domain semantics, with respect to Q are removed by 
comparing CQ in Q with the pseudo residues of 
views. In the second step, other irrelevant views, in 
terms of unification, with respect to Q are removed 
by unifying Q with the definitions of views, which is 
used in any previous bucket-based rewriting 
algorithm. 
  
Algorithm: View Selection in Query Rewriting 
Using Domain Semantics  
Input: A given query Q, a set of views Vi 
(i=1,2,...,n) associated with a set of pseudo residues 
PRi (i=1,2,...,n). 
Output: A set of buckets or MCDS containing 
views Vj (j=1,2,...,t, t≤n) which are relevant to Q 
both in the presence of domain semantics and in 
terms of unification.  
 
 
 
 

Methods: 
 
Step 1: Removing the irrelevant views with respect 
to Q by comparing CQ with pseudo residues. 
V={ Vi (i=1,2,...,n)}. 
For each view Vi, (i=1,...,n ) associated with a 
pseudo residues PRi, we proceed according to the 
following cases: 
Case 1: The pseudo residue is ERi: We check 
whether CQ in Q is consistent with CQ1 or CQ2 in 
D1. If not, the view Vi is irrelevant to Q, i.e., V= V-
{ Vi }. Otherwise, ERi is added into the definition of 
view Vi.  
Case 2: The pseudo residue is PRi: We check 
whether CQ in Q is consistent with PRi of Vi. If not, 
the view Vi is irrelevant to Q, i.e., V= V-{ Vi }. 
 
Step 2: Selecting relevant views with respect to Q 
by unifying Q with the definitions of views. 
For each view Vi in V, a set of the buckets is built 
according to the SVB algorithm or a set of the 
MCDs is formed according to the MiniCon 
algorithm. This procedure is based on unification 
from Q to views. The views in the buckets or the 
MCDs are relevant to Q in the presence of domain 
semantics and in terms of unification. 
End. 
 
Example 4. Continuing with Example 3, the pseudo 
residue of V3 is PR3 = {located.x ≠”TESCO”}. Note 
that x is the first argument in relation located, 
resulting in the pseudo residue of V3 is D 
≠”TESCO”. It conflicts with the comparison in Q. 
Hence, the view V3 is irrelevant to the given query Q 
in the presence of domain semantics. For the rest of 
views, we use the MiniCon algorithm to form the 
MCDs as follows: 
 

Table 2: The MCDs for V1, V2, V4, and V5

V G V G V G V G 

V2 g1 V2 g4 V4 g2 V4 g3

 

There are two views relevant to Q in terms of 
unification. However, there is only one query 
rewriting formed by combining MCDs so that all 
subgoals of Q can be covered.  

Q1(X):-V2(X,D),V4(D, “CA”), D= “TESCO”. 
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5 CONCLUSIONS 

In previous bucket-based rewriting algorithms, for a 
given query Q, view selection is done by unifying Q 
with the definition of views. In other words, the 
meaning of “relevant to Q” is in terms of unification. 
We found that there is another explanation about 
“relevant to Q”, i.e., in the presence of domain 
semantics. That is, we can remove the irrelevant 
views which could not be found in any bucket-based 
algorithm. Also, in some cases, we can avoid the 
problem of missing relevant views, which occurs in 
bucket-based algorithms. 
      In this paper, we have aimed to solve the 
problems of missing query rewritings and redundant 
query rewritings in bucket-based rewriting 
algorithms so that we can improve the soundness 
and completeness of these algorithms. In the 
presence of domain semantics in a mediated schema, 
we first compute the pseudo residue for each 
constraint over the views using the resolution 
method. In fact, what we have done is to transfer the 
integrity constraints over the relations of the 
mediated schema into a rule over a view. As a result, 
for a given query, we can determine which view is 
irrelevant to the query, in the presence of domain 
semantics, by making a comparison between the 
pseudo residue of a view and the comparison 
expression of the query. The pseudo residues can be 
calculated in advanced, which means that the total 
increased computation in Step 1 in our algorithm is 
only in polynomial size of |D|*|V|, where |D| and |V| 
are the number of domain semantics in a mediated 
schema and of the views respectively. This process 
is useful for query rewriting, which has been shown 
by examples in Section 1. 
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