
SEMANTIC INTEGRATION OF DISPARATE DATA SOURCES IN
THE COG PROJECT

Jos de Bruijn
Digital Enterprise Research Institute

University of Innsbruck, Technikerstrasse 13, A-6020, Innsbruck, Austria

Keywords: Semantic Information Integration, Semantic Information Management, COG Project, Enterprise Application
Integration.

Abstract: We present a novel approach to the integration of structured information sources in enterprises, based on Se-
mantic Web technology. The semantic information integration approach presented in this paper was applied
in the COG project. We describe Unicorn’s Semantic Information Management along with the Unicorn Work-
bench tool, which is a component part of the Unicorn System, and how they were applied in the project to
solve the information integration problem. We used the Semantic Information Management Methodology and
the Unicorn Workbench tool to create an Information Model (an ontology) based on data schemas taken from
the automotive industry. We map these data schemas to the Information Model in order to make the meaning
of the concepts in the data schemas explicit and relate them to each other, thereby creating an information
architecture that provides a unified view of the data sources in the organization.

1 INTRODUCTION

Information integration across application boundaries
or even across company boundaries is a topic of inter-
est to many enterprises and according to some stud-
ies, up to 30%1 of future IT spending will go into En-
terprise Application Integration (EAI). There are sev-
eral reasons for the increase in the need of integration
existing applications (Fensel, 2003): company merg-
ers require integration of software infrastructure; new
software systems need to be integrated with legacy
systems; there are no integrated optimal solutions for
all the needs of a company and new protocols; stan-
dards continue to emerge and evolve and companies
need to be compliant with these new standards in or-
der to enable cooperation with other companies.

In the Corporate Ontology Grid (COG) project we
aim to overcome the problems in semantic hetero-
geneity between data sources in by semantic integra-
tion of the sources using a central Information Model
(i.e. ontology). We built the Information Model using
existing applications, data sources (assets) and input
from domain experts. We then created a mapping be-
tween each data asset and the central model, thereby

1David Sink in InformationWeek, May 2002,
InfoWorld January 2002 survey of 500 IT leaders.

assigning a well-understood meaning to the concepts
in each asset. The mappings now enabled us to, using
the Information Model, discover the location of infor-
mation throughout the data sources in the enterprise.
Furthermore, because the mappings are created in a
formal way, they enable us to automatically generate
transformations between different sources.

In section 2 we present the Unicorn Workbench
tool, which we used to solve the information integra-
tion problem in the COG project. Then, we present
the information integration problem and the solution
for the COG project in section 3. We then mention
some related work in section 4 and finally provide
some conclusions.

2 INTRODUCING THE UNICORN
WORKBENCH

The Unicorn Workbench, a java-based tool created
by Unicorn, was built to support the Unicorn Seman-
tic Information Management (Schreiber, 2003) (SIM)
and to enable SIM implementations in enterprises.
All phases (except the first) in the SIM Methodology
are to some extent supported by the Unicorn tool.

The basic concept in Unicorn is the Unicorn

9
de Bruijn J. (2004).
SEMANTIC INTEGRATION OF DISPARATE DATA SOURCES IN THE COG PROJECT.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 9-14
DOI: 10.5220/0002623000090014
Copyright c© SciTePress



Unicorn Workbench

External Asset Layer

mapping mapping mapping mapping

Model Layer

Editing Transformations /
Queries

Data Discovery

RDBMS XML documents

Figure 1: Semantic Information Management

Project, which consists of the Information Model, the
schemas belonging to the external assets (the data
sources), the transformations, the queries, and the de-
scriptors (meta-data for human readers) for all these
concepts.

The architecture of Unicorn consists of two main
layers (see figure 1), namely:

• The External Assets layer contains the mappings to
all the (disparate) data sources. All kinds of data
schemas can be imported into a Unicorn project,
as long as there is a parser for it. Current sup-
ported formats are relational database schemas,
XML schemas, as well as COBOL Copybooks.
New parsers can be written using the Asset API.

• The Model Layer contains the ontology (also called
Information Model). The ontology contains all the
packages, classes, properties, and business rules for
describing the meaning of the data residing in the
external assets.

The Model layer describes the meaning of the data
and the External Asset layer describes the location of
the data. In order to make the ontology active, the
Unicorn Workbench provides three functions for the
user. An editing function, used to create and main-
tain the ontology and the mappings to the different
data sources. The second function is the data discov-
ery function, which can be employed by the user to
discover the location of data, residing in the disparate
data sources, using the ontological model in Unicorn.
Finally, there is a transformation and querying func-
tion with which the user can create transformations
of instances between different data sources and issue
queries against the ontology. The queries are syntac-
tically translated to the query language of the data
source and semantically translated (i.e. the query is
automatically rephrased using terms from the external
asset) to be used with the data schema of the source.

Gather
Requirements

Collect
Metadata

Rationalize
(create

mappings)

Utilize

Publish/
Deploy

Construct
Ontology

Figure 2: The Semantic Information Management Method-
ology

Besides these external assets, other Unicorn ontolo-
gies and ERWin2 models can be directly imported into
the Model Layer of the project (the ontology). In this
way, existing logical data models and component on-
tologies can be leveraged in the project. Using com-
ponent ontologies decreases the development effort of
the project and allows to leverage proven models.

2.1 Ontology Engineering In The
Unicorn Workbench

In the COG project, we followed the Semantic Infor-
mation Management (SIM) Methodology (Schreiber,
2003) for the creation of the ontology and the map-
ping of the disparate data sources. The SIM Method-
ology (see Figure 2) consists of six steps:

1. Gather requirements. Requirements for the infor-
mation architecture are collected and the scope of
the project is established.

2. Collect Metadata. All data assets relevant to the
project are catalogued and the metadata (i.e. data
schemas and existing conceptual models) are im-
ported into the Unicorn Workbench.

3. Construct Information Model. Using the imported
metadata, the ontology is created through a pro-
cess of reverse engineering and/or manual identi-
fication of classes, properties, and business rules in
the source schemas.

4. Rationalize. In the rationalization phase, the map-
pings between the data schemas and the ontology
are created. If the model needs to be refined, there
will be an iteration step back to phase three. In
general, when creating mappings from the compos-
ites in the external assets to the ontology, missing
classes, properties, and business rules are discov-
ered, which necessitates many iterations between
the phases three and four to complete the model
and the mappings.

5. Publish/Deploy. The Information Model, along
with the mappings, is published to relevant stake-
holders and the information model along with the

2An Entity-Relationship Diagram editor, see
http://www3.ca.com/Solutions/Product.asp?ID=260

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

10



transformations between the data sources is de-
ployed to the runtime architecture.

6. Utilize. Processes need to be created to ensure
maintenance of the architecture. Changes in the
data sources need to be reflected in the ontology,
mappings need to be updated according to these
changes, etc . . .
The implementation of phases two up to and in-

cluding six of the methodology are facilitated by the
Unicorn Workbench tool.

This paper focusses on the third and fourth phase of
the methodology, the support by the Unicorn tool, and
our experiences with the methodology and the tool
in the COG project. We first describe the Unicorn
Workbench tool and then our experiences in the COG
project.

2.2 Data Schema Integration In The
Unicorn Workbench

During the metadata collection phase, a number of
data schemas have been imported in the Unicorn
project. These schemas have been used in the con-
struction phase to aid in constructing the ontology.
These source schemas now have to be mapped to the
ontology in order to give meaning to the data resid-
ing in these sources and to enable locating data and
to enable data transformation between the disparate
sources and issuing queries to the sources. Just like in
the construction phase, it is very important to involve
the domain experts in the mapping (rationalization)
phase.

During the rationalization phase the user is aided
by the Unicorn Workbench in creating the mappings
between the data assets and the ontology. It is pos-
sible to either view the mappings from the viewpoint
of the data assets and in this way determine for each
type and property to decide to which class/property it
should be mapped and to create the mapping. Another
possibility is to use the Data Discovery feature to drill
down the class hierarchy to find out which mappings
currently exist for the classes in the ontology. If a
class is identified that requires further mapping, the
designer can switch back to the view of the desired
data asset and create the mappings.

If during the mapping phase, the designer discov-
ers missing classes, properties, or business rules, the
designer iterates back to the construction phase (phase
three) to add the necessary concepts to the model. It is
our experience from the COG project that especially
missing properties and business rules are discovered
in the rationalization phase and not so much missing
classes.

Mappings are created in two stages. First the
Coarse Mapping (see Figure 3) is created, linking
composites in the data sources (e.g. tables, complex

Figure 3: Coarse mapping in the Unicorn Workbench

Figure 4: Detailed mapping in the Unicorn Workbench

types) to classes in the ontology. Then the Detailed
Mapping (see Figure 4) is created, linking atoms from
the source schemas to the properties in the ontology.

Conditions can be specified on the values of the
atoms of the composite in the source schema. This
way certain groups of instances can be mapped to dif-
ferent classes in the ontology. These conditional in-
stance mapping groups are, however, not required to
be mutually exclusive. Conditional mapping can not
only be applied to classes (global conditional map-
ping), but also to individual properties (local condi-
tional mapping), as mappings are eventually created
on the property level, during the detailed mapping.
The other way around is also possible: different com-
posites can be mapped to the same class.

The mappings in the detailed mapping stage are
usually made between atoms and direct properties. A
direct property is a regular property of the concerning
class. It is however also possible to create mappings
to indirect properties. An indirect property is not a
property of the concerning class, but a direct or an in-
direct property of a class, which is the type a direct
property of the class (i.e. an indirect property is a
property of a related class). It is therefore possible to
map to an indirect property at an arbitrary depth.

When instances of different composite types in the
source schema need to be mapped to a single class in
the ontology, it is possible to create a mapping view.
Such a mapping view can contain joins over different
composites within one external asset. A join can be
defined over the composites using an existing or an
(in Unicorn created) “implicit” foreign key.

Foreign keys in the database or “implicit” foreign
keys are used either to indicate a simple relationship
with another class or to indicate inheritance. In the

SEMANTIC INTEGRATION OF DISPARATE DATA SOURCES IN THE COG PROJECT

11



former case, the foreign key can be mapped to a prop-
erty in the class that references the target class that
represents the target composite type of the foreign
key. In the latter case, the foreign key is mapped di-
rectly to the inheritance relationship. This latter case
applies when the extension of the composite (i.e. the
set of instances described by the composite) is a sub-
set of the extension of another composite and this re-
lationship is made explicit in the database using a for-
eign key.

When mapping external assets to the central ontol-
ogy, it is possible to use so-called subtype mapping.
An atom in a composite in the external asset can be
mapped to a subclass of the type of the property in
the ontology. This is of course a valid mapping, be-
cause a subclass of the original type is also a valid
type for the property.

3 INFORMATION INTEGRATION
IN THE COG PROJECT

In the COG project we used external assets provided
by CRF (Centro Ricerche Fiat). The source schemas
are taken from real-life data sources currently in use
by CRF and sources to be implemented at CRF in the
future. The goal of the project is to implement a single
integrated (semantic) information architecture for the
various information sources provided by CRF in order
to show the applicability of using ontologies for infor-
mation integration in industry. The sources include
relational databases, XML data sources and PDF and
spreadsheet documents. These PDF documents are
accessed using the LiveLink document management
system, which in turn has an XML interface. For
the integration of the Excel spreadsheet documents,
a special parser was written using the Asset API.

3.1 The Information Integration
Problem In The COG Project

There were five main data sources (see also Figure 5)
provided by CRF to be integrated in the COG project.
These sources consist of three relational databases,
namely CATnet, PSI, and WelcomHome, one XML
data sources, namely LiveLink, and a collection of
Excel spreadsheet documents.

WelcomHome is an application used for project
management (it supports the Microsoft Project appli-
cation). LiveLink is a knowledge and document man-
agement system. CATnet and PSI are applications de-
veloped in-house at CRF to support the vehicle devel-
opment and testing process.

CATnet has been developed to support the entire
testing process, which is a major part of the FIAT ve-

PSI

CATNET

LiveLink Excel

WelcomHome

MS-Project

Web Front End
Query, metadata

exploration, display
and reporting.

COG
Information

Model

Figure 5: COG logical architecture. Shows the integration
of the different data sources using the Unicorn Workbench
tool.

hicle (prototype) development process and essential
for ensuring the quality of the products. Test requests
that are linked to test plans are submitted to the CAT-
net system. These test plans support the planning of
the execution of the tests, which is related to the vehi-
cle development phase, the test laboratory, etc. . .

The test plans are linked to the so-called “technical
memory”, where the technical procedures for test ex-
ecution are specified. This technical memory consists
of PDF documents accessible through the LiveLink
system. After the test executions, the test results are
stored in the CATnet database for later retrieval. This
retrieval of test results is critical in order to assure
quality of the products. Whenever a customer com-
plaint is received or a defect in a vehicle is detected,
it has to be possible to easily retrieve the results of the
tests performed on the concerning automobile com-
ponent.

To facilitate this retrieval process, there is a cus-
tomer perspective (also called the ‘Voice of Cus-
tomer’ or VoC) tree for each vehicle model in the PSI
system. The customer perspective trees are used to
locate the appropriate tests that should have been per-
formed on a particular vehicle system. The marketing
manager can drill down the tree to locate the specific
tests that have been performed, after which the test
results can be retrieved from the CATnet system.

3.2 Solving the integration problem
in COG using the Semantic
Information Management

During the development of the ontology in the COG
project, some shortcomings in the Unicorn tool be-
came apparent. In order to overcome these shortcom-
ings, these problems were fed into the requirements

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

12



for the new version of the Unicorn Workbench. Dur-
ing the COG project, a new version of Unicorn (v2.5)
was released that overcomes most shortcomings in
the old version identified during the development for
COG. Examples of features developed especially for
the COG project are the mapping to subtypes, speci-
fication of inverse properties, and mapping of foreign
keys to inheritance relationships.

Another important development for the new ver-
sion of Unicorn that has proven very useful for the
COG project was the Asset API. Using this API it was
possible to develop parsers for the integration of Ex-
cel documents and Microsoft Access databases (i.e.
PSI) that can be used for importing data schemas from
these platforms. Without this Asset API and these
parsers, these sources could not have been integrated.

Based on the data sources provided by CRF and
the interviews with domain experts at CRF, four main
subject areas for the Information Model were identi-
fied, namely:

• Motor vehicle development. This area covers the
motor vehicles themselves, such as automobile
parts and vehicle systems.

• Project management. This area covers the project
management capabilities present in WelcomHome.

• Testing Management. This area covers the manage-
ment of the execution of the tests. Things like test-
ing guidelines, test plan, testing laboratories, and
so on, are the components of this area.

• Test requests. This area covers the customer per-
spective tree, standards, test requests, test results,
etc . . .

For each of these subject areas a package in the
ontology was created, after which the classes, prop-
erties, and business rules were created corresponding
to the composites in the source schemas. Interviews
with domain experts were mostly used as input for
the ontology development process, as well as working
with the current applications (mainly PSI and CAT-
net) in use. This was the third phase (the construction
phase) in the SIM methodology.

The next step (phase four - rationalization) was to
map the source schemas to the ontology. This map-
ping was done using the mapping functionality of the
Unicorn tool. During this mapping phase, many iter-
ations back to phase three were necessary. It turned
out that the classes in the ontology had been identi-
fied correctly, but still many properties and business
rules had to be added or changed while trying to map
the external assets.

4 RELATED WORK

The MOMIS (Bergamaschi et al., 2001) approach
is a semi-automatic approach to schema integration,
developed at the university of Modena, Italy. The
approach has not been used in any major industrial
projects and is mainly an academic research activity.
Any data source can be connected to the architecture,
as long as an ODLI3 wrapper is created. MOMIS
has a single mediator, which provides a global data
schema and query interface to the user.

InfoSleuth (Fowler et al., 1999) is a multi-agent
system for semantic inter-operability in heteroge-
neous data sources. Agents are used for query and
instance transformations between data schemas. An
agent is aware of its own ontology and the mapping
between that ontology and the data schema, it is aware
of the shared ontologies and it can map its ontol-
ogy to those of other agents. InfoSleuth uses several
shared ontologies, made available through the ontol-
ogy agents. Individual data sources have (through
the resource agents) a mapping to these shared on-
tologies. The shared ontologies are linked together
through one-to-one ontology mapping. Note that the
user agents use the shared ontologies as their vocab-
ulary and local ontologies are only maintained by the
resource agents.

PROMPT (Noy and Musen, 2000) provides a a
semi-automatic approach to ontology merging, not
specifically data schema integration. In the ontology
merging in PROMPT it is assumed that the original
ontologies no longer exist after the merged ontology
has been created. Therefore, there are no mappings
between the original and the merged ontologies, as
there are in most data schema integration solutions.

ONION (Mitra and Wiederhold, 2001) takes a cen-
tralized, hierarchical approach to ontology mapping,
where the user views the (global) articulation ontolo-
gies. The source ontologies are mapped to each other
via articulation ontologies that are in turn used by the
user to express queries. The articulation ontologies
are organized in a tree structure. An articulation on-
tology used for the mapping of two source ontologies
can in turn be one of the sources for another articula-
tion ontology. The creation of a hierarchy can be seen
as a form of ontology clustering. But while (Visser
and Tamma, 1999) take a top-down approach (first
the root application ontology is specified, then child
ontologies are created as is necessary), ONION takes
a bottom-up approach in the creation of the articula-
tion ontologies; furthermore, there is no defined root
ontology for the cluster.

SEMANTIC INTEGRATION OF DISPARATE DATA SOURCES IN THE COG PROJECT

13



5 CONCLUSION

In this paper we have outlined the problems in in-
formation integration we were facing in the COG
project. We have described a solution to the integra-
tion problem using the Semantic Information Man-
agement (SIM) Methodology (Schreiber, 2003) and
the Unicorn Workbench tool, which we have applied
in the COG project.

We have described how the SIM together with the
Unicorn Workbench was used in the COG project and
what the role is in the overall COG Architecture.

Many problems in the construction of the Infor-
mation Model and the mapping to the disparate data
schemas were caused by the poor understanding of
the source data schemas. The data schemas contained
concepts in the Italian language, while the ontology
engineering and mapping was done by non-Italian
speakers. What further complicated the matter was
the fact that the users that worked with the existing
applications were no expert on the database schemas
that were being used, which made the mapping a hard
problem. It turned out that the only possibility for
the ontology engineer to construct the ontology was
to have a look at the applications together with the
end-users, which was a tedious job.

These problems indicate the necessity of the usage
of a central Information Architecture, through which
the nature of the data residing throughout the organi-
zation can be understood.

Much of the mentioned related work consists of
academic research prototypes. The Unicorn Work-
bench tool, along with the Semantic Information
Management architecture, has proven itself in many
projects in an industrial setting.

Many of the mentioned approaches take a semi-
automatic approach to the data schema (or ontology)
mapping. The mentioned approaches all use ontol-
ogy mapping or ontology merging as a basis. The
Unicorn Workbench does not map ontologies explic-
itly, but is specialized in the mapping of database (and
several other types of) schemas to a central ontology
and provides an integration platform for data sources
throughout the enterprise.

Major limitations of the current Unicorn Work-
bench tool are the lack of support for semi-automatic
mapping, as in PROMPT (Noy and Musen, 2000) and
Chimæra (McGuinness et al., 2000), and the lack of
support for the integration of ontologies. The tool
support only the integration of data sources into one
ontology, and does not support the mapping of several
ontologies in different organization(al unit)s. The ex-
istence of only one ontology can lead to several prob-
lems, as pointed out in (Visser and Cui, 1998) and
(Uschold, 2000).

ACKNOWLEDGEMENTS

The research presented in this paper was funded by
the COG project, under contract number IST-2001-
38491, http://www.cogproject.org/. Some materials
presented in this paper are the copyright of Unicorn
Solutions, Inc. and are used with permission.

We would like to acknowledge all partners in the
COG project and all people in DERI who have looked
at earlier versions and provided useful feedback.

REFERENCES

Bergamaschi, S., Castano, S., Beneventano, D., and
Vincini, M. (2001). Semantic integration of hetero-
geneous information sources. Special Issue on Intelli-
gent Information Integration, Data & Knowledge En-
gineering, 36(1):215–249.

Fensel, D. (2003). Ontologies: Silver Bullet for Knowledge
Management and Electronic Commerce, 2nd edition.
Springer-Verlag, Berlin.

Fowler, J., Nodine, M., Perry, B., and Bargmeyer, B. (1999).
Agent-based semantic interoperability in infosleuth.
SIGMOD Record, 28(1).

McGuinness, D., Fikes, R., Rice, J., and Wilder, S. (2000).
An environment for merging and testing large ontolo-
gies. In Proc. 7th Intl. Conf. On Principles of Knowl-
edge Representation and Reasoning (KR2000), Col-
orado, USA.

Mitra, P. and Wiederhold, G. (2001). An algebra for se-
mantic interoperability of information sources. In
IEEE International Conference on Bioinformatics and
Biomedical Egineering, pages 174–182.

Noy, N. F. and Musen, M. A. (2000). Prompt: Algorithm
and tool for automated ontology merging and align-
ment. In Proc. 17th Natl. Conf. On Artificial Intelli-
gence (AAAI2000), Austin, Texas, USA.

Schreiber, Z. (2003). Semantic information management:
Solving the enterprise data problem. To be found on
the http://www.unicorn.com/ website.

Uschold, M. (2000). Creating, integration, and maintain-
ing local and global ontologies. In Proceedings of
the First Workshop on Ontology Learning (OL-2000)
in conjunction with the 14th European Conference on
Artificial Intelligence (ECAI-2000), Berlin, Germany.

Visser, P. and Cui, Z. (1998). On accepting heterogeneous
ontologies in distributed architectures. In Proceedings
of the ECAI98 workshop on applications of ontologies
and problem-solving methods, Brighton, UK.

Visser, P. and Tamma, V. (1999). An experience with
ontology clustering for information integration. In
Proceedings of the IJCAI-99 Workshop on Intelligent
Information Integration in conjunction with the Six-
teenth International Joint Conference on Artificial In-
telligence, Stockholm, Sweden.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

14


